aboutsummaryrefslogtreecommitdiffstats
path: root/libtransport/src/protocols/rtc/rtc_state.cc
blob: eabf8942c12a05f0cfb8a54a087f38069688beee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
/*
 * Copyright (c) 2017-2021 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <protocols/rtc/rtc_consts.h>
#include <protocols/rtc/rtc_state.h>

namespace transport {

namespace protocol {

namespace rtc {

RTCState::RTCState(ProbeHandler::SendProbeCallback &&rtt_probes_callback,
                   DiscoveredRttCallback &&discovered_rtt_callback,
                   asio::io_service &io_service)
    : rtt_probes_(std::make_shared<ProbeHandler>(
          std::move(rtt_probes_callback), io_service)),
      discovered_rtt_callback_(std::move(discovered_rtt_callback)) {
  init_rtt_timer_ = std::make_unique<asio::steady_timer>(io_service);
  initParams();
}

RTCState::~RTCState() {}

void RTCState::initParams() {
  // packets counters (total)
  sent_interests_ = 0;
  sent_rtx_ = 0;
  received_data_ = 0;
  received_nacks_ = 0;
  received_timeouts_ = 0;
  received_probes_ = 0;

  // loss counters
  packets_lost_ = 0;
  losses_recovered_ = 0;
  first_seq_in_round_ = 0;
  highest_seq_received_ = 0;
  highest_seq_received_in_order_ = 0;
  last_seq_nacked_ = 0;
  loss_rate_ = 0.0;
  residual_loss_rate_ = 0.0;

  // bw counters
  received_bytes_ = 0;
  avg_packet_size_ = INIT_PACKET_SIZE;
  production_rate_ = 0.0;
  received_rate_ = 0.0;

  // nack counter
  nack_on_last_round_ = false;
  received_nacks_last_round_ = 0;

  // packets counter
  received_packets_last_round_ = 0;
  received_data_last_round_ = 0;
  received_data_from_cache_ = 0;
  data_from_cache_rate_ = 0;
  sent_interests_last_round_ = 0;
  sent_rtx_last_round_ = 0;

  // round conunters
  rounds_ = 0;
  rounds_without_nacks_ = 0;
  rounds_without_packets_ = 0;

  last_production_seq_ = 0;
  producer_is_active_ = false;
  last_prod_update_ = 0;

  // paths stats
  path_table_.clear();
  main_path_ = nullptr;

  // packet received
  received_or_lost_packets_.clear();

  // pending interests
  pending_interests_.clear();

  // init rtt
  first_interest_sent_ = ~0;
  init_rtt_ = false;
  rtt_probes_->setProbes(INIT_RTT_PROBE_INTERVAL, INIT_RTT_PROBES);
  rtt_probes_->sendProbes();
  setInitRttTimer(INIT_RTT_PROBE_RESTART);
}

// packet events
void RTCState::onSendNewInterest(const core::Name *interest_name) {
  uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();
  uint32_t seq = interest_name->getSuffix();
  pending_interests_.insert(std::pair<uint32_t, uint64_t>(seq, now));

  if(sent_interests_ == 0) first_interest_sent_ = now;

  sent_interests_++;
  sent_interests_last_round_++;
}

void RTCState::onTimeout(uint32_t seq) {
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
  }
  received_timeouts_++;
}

void RTCState::onRetransmission(uint32_t seq) {
  // remove the interest for the pendingInterest map only after the first rtx.
  // in this way we can handle the ooo packets that come in late as normla
  // packet. we consider a packet lost only if we sent at least an RTX for it.
  // XXX this may become problematic if we stop the RTX transmissions
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    pending_interests_.erase(it);
    packets_lost_++;
  }
  sent_rtx_++;
  sent_rtx_last_round_++;
}

void RTCState::onDataPacketReceived(const core::ContentObject &content_object,
                                    bool compute_stats) {
  uint32_t seq = content_object.getName().getSuffix();
  if (compute_stats) {
    updatePathStats(content_object, false);
    received_data_last_round_++;
  }
  received_data_++;

  struct data_packet_t *data_pkt =
      (struct data_packet_t *)content_object.getPayload()->data();
  uint64_t production_time = data_pkt->getTimestamp();
  if (last_prod_update_ < production_time) {
    last_prod_update_ = production_time;
    uint32_t production_rate = data_pkt->getProductionRate();
    production_rate_ = (double)production_rate;
  }

  updatePacketSize(content_object);
  updateReceivedBytes(content_object);
  addRecvOrLost(seq, PacketState::RECEIVED);

  if (seq > highest_seq_received_) highest_seq_received_ = seq;

  // the producer is responding
  // it is generating valid data packets so we consider it active
  producer_is_active_ = true;

  received_packets_last_round_++;
}

void RTCState::onNackPacketReceived(const core::ContentObject &nack,
                                    bool compute_stats) {
  uint32_t seq = nack.getName().getSuffix();
  struct nack_packet_t *nack_pkt =
      (struct nack_packet_t *)nack.getPayload()->data();
  uint64_t production_time = nack_pkt->getTimestamp();
  uint32_t production_seq = nack_pkt->getProductionSegement();
  uint32_t production_rate = nack_pkt->getProductionRate();

  if (TRANSPORT_EXPECT_FALSE(main_path_ == nullptr) ||
      last_prod_update_ < production_time) {
    // update production rate
    last_prod_update_ = production_time;
    last_production_seq_ = production_seq;
    production_rate_ = (double)production_rate;
  }

  if (compute_stats) {
    // this is not an RTX
    updatePathStats(nack, true);
    nack_on_last_round_ = true;
  }

  // for statistics pourpose we log all nacks, also the one received for
  // retransmitted packets
  received_nacks_++;
  received_nacks_last_round_++;

  if (production_seq > seq) {
    // old nack, seq is lost
    // update last nacked
    if (last_seq_nacked_ < seq) last_seq_nacked_ = seq;
    TRANSPORT_LOGD("lost packet %u beacuse of a past nack", seq);
    onPacketLost(seq);
  } else if (seq > production_seq) {
    // future nack
    // remove the nack from the pending interest map
    // (the packet is not received/lost yet)
    pending_interests_.erase(seq);
  } else {
    // this should be a quite rear event. simply remove the
    // packet from the pending interest list
    pending_interests_.erase(seq);
  }

  // the producer is responding
  // we consider it active only if the production rate is not 0
  // or the production sequence number is not 1
  if (production_rate_ != 0 || production_seq != 1) {
    producer_is_active_ = true;
  }

  received_packets_last_round_++;
}

void RTCState::onPacketLost(uint32_t seq) {
  TRANSPORT_LOGD("packet %u is lost", seq);
  auto it = pending_interests_.find(seq);
  if (it != pending_interests_.end()) {
    // this packet was never retransmitted so it does
    // not appear in the loss count
    packets_lost_++;
  }
  addRecvOrLost(seq, PacketState::LOST);
}

void RTCState::onPacketRecovered(uint32_t seq) {
  losses_recovered_++;
  addRecvOrLost(seq, PacketState::RECEIVED);
}

bool RTCState::onProbePacketReceived(const core::ContentObject &probe) {
  uint32_t seq = probe.getName().getSuffix();
  uint64_t rtt;

  rtt = rtt_probes_->getRtt(seq);

  if (rtt == 0) return false;  // this is not a valid probe

  // like for data and nacks update the path stats. Here the RTT is computed
  // by the probe handler. Both probes for rtt and bw are good to esimate
  // info on the path
  uint32_t path_label = probe.getPathLabel();

  auto path_it = path_table_.find(path_label);

  // update production rate and last_seq_nacked like in case of a nack
  struct nack_packet_t *probe_pkt =
      (struct nack_packet_t *)probe.getPayload()->data();
  uint64_t sender_timestamp = probe_pkt->getTimestamp();
  uint32_t production_seq = probe_pkt->getProductionSegement();
  uint32_t production_rate = probe_pkt->getProductionRate();


  if (path_it == path_table_.end()) {
    // found a new path
    std::shared_ptr<RTCDataPath> newPath =
        std::make_shared<RTCDataPath>(path_label);
    auto ret = path_table_.insert(
        std::pair<uint32_t, std::shared_ptr<RTCDataPath>>(path_label, newPath));
    path_it = ret.first;
  }

  auto path = path_it->second;

  path->insertRttSample(rtt);
  path->receivedNack();

  uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();

  int64_t OWD = now - sender_timestamp;
  path->insertOwdSample(OWD);

  if (last_prod_update_ < sender_timestamp) {
    last_production_seq_ = production_seq;
    last_prod_update_ = sender_timestamp;
    production_rate_ = (double)production_rate;
  }

  // the producer is responding
  // we consider it active only if the production rate is not 0
  // or the production sequence numner is not 1
  if (production_rate_ != 0 || production_seq != 1) {
    producer_is_active_ = true;
  }

  // check for init RTT. if received_probes_ is equal to 0 schedule a timer to
  // wait for the INIT_RTT_PROBES. in this way if some probes get lost we don't
  // wait forever
  received_probes_++;

  if(!init_rtt_ && received_probes_ <= INIT_RTT_PROBES){
    if(received_probes_ == 1){
      // we got the first probe, wait at most INIT_RTT_PROBE_WAIT sec for the others
      main_path_ = path;
      setInitRttTimer(INIT_RTT_PROBE_WAIT);
    }
    if(received_probes_ == INIT_RTT_PROBES) {
      // we are done
      init_rtt_timer_->cancel();
      checkInitRttTimer();
    }
  }

  received_packets_last_round_++;

  // ignore probes sent before the first interest
  if((now - rtt) <= first_interest_sent_) return false;
  return true;
}

void RTCState::onNewRound(double round_len, bool in_sync) {
  // XXX
  // here we take into account only the single path case so we assume that we
  // don't use two paths in parellel for this single flow

  if (path_table_.empty()) return;

  double bytes_per_sec =
      ((double)received_bytes_ * (MILLI_IN_A_SEC / round_len));
  if(received_rate_ == 0)
    received_rate_ = bytes_per_sec;
  else
    received_rate_ = (received_rate_ * MOVING_AVG_ALPHA) +
                   ((1 - MOVING_AVG_ALPHA) * bytes_per_sec);

  // search for an active path. There should be only one active path (meaning a
  // path that leads to the producer socket -no cache- and from which we are
  // currently getting data packets) at any time. However it may happen that
  // there are mulitple active paths in case of mobility (the old path will
  // remain active for a short ammount of time). The main path is selected as
  // the active path from where the consumer received the latest data packet

  uint64_t last_packet_ts = 0;
  main_path_ = nullptr;

  for (auto it = path_table_.begin(); it != path_table_.end(); it++) {
    it->second->roundEnd();
    if (it->second->isActive()) {
      uint64_t ts = it->second->getLastPacketTS();
      if (ts > last_packet_ts) {
        last_packet_ts = ts;
        main_path_ = it->second;
      }
    }
  }

  if (in_sync) updateLossRate();

  // handle nacks
  if (!nack_on_last_round_ && received_bytes_ > 0) {
    rounds_without_nacks_++;
  } else {
    rounds_without_nacks_ = 0;
  }

  // check if the producer is active
  if (received_packets_last_round_ != 0) {
    rounds_without_packets_ = 0;
  } else {
    rounds_without_packets_++;
    if (rounds_without_packets_ >= MAX_ROUND_WHIOUT_PACKETS &&
        producer_is_active_ != false) {
      initParams();
    }
  }

  // compute cache/producer ratio
  if (received_data_last_round_ != 0) {
    double new_rate =
        (double)received_data_from_cache_ / (double)received_data_last_round_;
    data_from_cache_rate_ = data_from_cache_rate_ * MOVING_AVG_ALPHA +
                            (new_rate * (1 - MOVING_AVG_ALPHA));
  }

  // reset counters
  received_bytes_ = 0;
  packets_lost_ = 0;
  losses_recovered_ = 0;
  first_seq_in_round_ = highest_seq_received_;

  nack_on_last_round_ = false;
  received_nacks_last_round_ = 0;

  received_packets_last_round_ = 0;
  received_data_last_round_ = 0;
  received_data_from_cache_ = 0;
  sent_interests_last_round_ = 0;
  sent_rtx_last_round_ = 0;

  rounds_++;
}

void RTCState::updateReceivedBytes(const core::ContentObject &content_object) {
  received_bytes_ +=
      (uint32_t)(content_object.headerSize() + content_object.payloadSize());
}

void RTCState::updatePacketSize(const core::ContentObject &content_object) {
  uint32_t pkt_size =
      (uint32_t)(content_object.headerSize() + content_object.payloadSize());
  avg_packet_size_ = (MOVING_AVG_ALPHA * avg_packet_size_) +
                     ((1 - MOVING_AVG_ALPHA) * pkt_size);
}

void RTCState::updatePathStats(const core::ContentObject &content_object,
                               bool is_nack) {
  // get packet path
  uint32_t path_label = content_object.getPathLabel();
  auto path_it = path_table_.find(path_label);

  if (path_it == path_table_.end()) {
    // found a new path
    std::shared_ptr<RTCDataPath> newPath =
        std::make_shared<RTCDataPath>(path_label);
    auto ret = path_table_.insert(
        std::pair<uint32_t, std::shared_ptr<RTCDataPath>>(path_label, newPath));
    path_it = ret.first;
  }

  auto path = path_it->second;

  // compute rtt
  uint32_t seq = content_object.getName().getSuffix();
  uint64_t interest_sent_time = getInterestSentTime(seq);
  if (interest_sent_time == 0)
    return;  // this should not happen,
             // it means that we are processing an interest
             // that is not pending

  uint64_t now = std::chrono::duration_cast<std::chrono::milliseconds>(
                     std::chrono::steady_clock::now().time_since_epoch())
                     .count();

  uint64_t RTT = now - interest_sent_time;

  path->insertRttSample(RTT);

  // compute OWD (the first part of the nack and data packet header are the
  // same, so we cast to data data packet)
  struct data_packet_t *packet =
      (struct data_packet_t *)content_object.getPayload()->data();
  uint64_t sender_timestamp = packet->getTimestamp();
  int64_t OWD = now - sender_timestamp;
  path->insertOwdSample(OWD);

  // compute IAT or set path to producer
  if (!is_nack) {
    // compute the iat only for the content packets
    uint32_t segment_number = content_object.getName().getSuffix();
    path->computeInterArrivalGap(segment_number);
    if (!path->pathToProducer()) received_data_from_cache_++;
  } else {
    path->receivedNack();
  }
}

void RTCState::updateLossRate() {
  loss_rate_ = 0.0;
  residual_loss_rate_ = 0.0;

  uint32_t number_theorically_received_packets_ =
      highest_seq_received_ - first_seq_in_round_;

  // in this case no new packet was recevied after the previuos round, avoid
  // division by 0
  if (number_theorically_received_packets_ == 0) return;

  loss_rate_ = (double)((double)(packets_lost_) /
                        (double)number_theorically_received_packets_);

  residual_loss_rate_ = (double)((double)(packets_lost_ - losses_recovered_) /
                                 (double)number_theorically_received_packets_);

  if (residual_loss_rate_ < 0) residual_loss_rate_ = 0;
}

void RTCState::addRecvOrLost(uint32_t seq, PacketState state) {
  pending_interests_.erase(seq);
  if (received_or_lost_packets_.size() >= MAX_CACHED_PACKETS) {
    received_or_lost_packets_.erase(received_or_lost_packets_.begin());
  }
  // notice that it may happen that a packet that we consider lost arrives after
  // some time, in this case we simply overwrite the packet state.
  received_or_lost_packets_[seq] = state;

  // keep track of the last packet received/lost
  // without holes.
  if (highest_seq_received_in_order_ < last_seq_nacked_) {
    highest_seq_received_in_order_ = last_seq_nacked_;
  }

  if ((highest_seq_received_in_order_ + 1) == seq) {
    highest_seq_received_in_order_ = seq;
  } else if (seq <= highest_seq_received_in_order_) {
    // here we do nothing
  } else if (seq > highest_seq_received_in_order_) {
    // 1) there is a gap in the sequence so we do not update largest_in_seq_
    // 2) all the packets from largest_in_seq_ to seq are in
    //    received_or_lost_packets_ an we upate largest_in_seq_

    for (uint32_t i = highest_seq_received_in_order_ + 1; i <= seq; i++) {
      if (received_or_lost_packets_.find(i) ==
          received_or_lost_packets_.end()) {
        break;
      }
      // this packet is in order so we can update the
      // highest_seq_received_in_order_
      highest_seq_received_in_order_ = i;
    }
  }
}

void RTCState::setInitRttTimer(uint32_t wait){
  init_rtt_timer_->cancel();
  init_rtt_timer_->expires_from_now(std::chrono::milliseconds(wait));
  init_rtt_timer_->async_wait([this](std::error_code ec) {
    if(ec) return;
    checkInitRttTimer();
  });
}

void RTCState::checkInitRttTimer() {
  if(received_probes_ < INIT_RTT_MIN_PROBES_TO_RECV){
    // we didn't received enough probes, restart
    received_probes_ = 0;
    rtt_probes_->setProbes(INIT_RTT_PROBE_INTERVAL, INIT_RTT_PROBES);
    rtt_probes_->sendProbes();
    setInitRttTimer(INIT_RTT_PROBE_RESTART);
    return;
  }
  init_rtt_ = true;
  main_path_->roundEnd();
  rtt_probes_->setProbes(RTT_PROBE_INTERVAL, 0);
  rtt_probes_->sendProbes();

  // init last_seq_nacked_. skip packets that may come from the cache
  double prod_rate = getProducerRate();
  double rtt = (double)getRTT() / MILLI_IN_A_SEC;
  double packet_size = getAveragePacketSize();
  uint32_t pkt_in_rtt_ = std::floor(((prod_rate / packet_size) * rtt) * 0.8);
  last_seq_nacked_ = last_production_seq_ + pkt_in_rtt_;

  discovered_rtt_callback_();
}

}  // namespace rtc

}  // namespace protocol

}  // namespace transport