1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/*
* Copyright (c) 2021 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <hicn/transport/core/content_object.h>
#include <hicn/transport/core/global_object_pool.h>
#include <protocols/fec/rs.h>
#include <algorithm>
#include <iostream>
#include <random>
namespace transport {
namespace protocol {
double ReedSolomonTest(int k, int n, int seq_offset, int size) {
fec::RSEncoder encoder(k, n, seq_offset);
fec::RSDecoder decoder(k, n, seq_offset);
std::vector<fec::buffer> tx_block(k);
std::vector<fec::buffer> rx_block(k);
int count = 0;
int run = 0;
int iterations = 100;
auto &packet_manager = core::PacketManager<>::getInstance();
encoder.setFECCallback(
[&tx_block](
std::vector<std::pair<uint32_t, fec::buffer>> &repair_packets) {
for (auto &p : repair_packets) {
// Append repair symbols to tx_block
tx_block.emplace_back(std::move(p).second);
}
});
decoder.setFECCallback(
[&](std::vector<std::pair<uint32_t, fec::buffer>> &source_packets) {
for (int i = 0; i < k; i++) {
// Compare decoded source packets with original transmitted packets.
if (*tx_block[i] != *source_packets[i].second) {
count++;
}
}
});
do {
// Discard eventual packet appended in previous callback call
tx_block.erase(tx_block.begin() + k, tx_block.end());
auto _seq_offet = seq_offset;
// Initialization. Feed encoder with first k source packets
for (int i = 0; i < k; i++) {
// Get new buffer from pool
auto packet = packet_manager.getMemBuf();
// Let's append a bit less than size, so that the FEC class will take care
// of filling the rest with zeros
auto cur_size = size - (rand() % 100);
// Set payload, saving 2 bytes at the beginning of the buffer for encoding
// the length
packet->append(cur_size);
packet->trimStart(2);
std::generate(packet->writableData(), packet->writableTail(), rand);
std::fill(packet->writableData(), packet->writableTail(), i + 1);
// Set first byte of payload to seq_offset, to reorder at receiver side
packet->writableData()[0] = uint8_t(_seq_offet++);
// Store packet in tx buffer and clear rx buffer
tx_block[i] = std::move(packet);
}
// Create the repair packets
for (auto &tx : tx_block) {
encoder.consume(tx, tx->writableBuffer()[0]);
}
// Simulate transmission on lossy channel
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
std::vector<bool> losses(n, false);
for (int i = 0; i < n - k; i++) losses[i] = true;
int rxi = 0;
std::shuffle(losses.begin(), losses.end(),
std::default_random_engine(seed));
for (int i = 0; i < n && rxi < k; i++)
if (losses[i] == false) {
rx_block[rxi++] = tx_block[i];
if (i < k) {
// Source packet
decoder.consumeSource(rx_block[rxi - 1],
rx_block[rxi - 1]->data()[0]);
} else {
// Repair packet
decoder.consumeRepair(rx_block[rxi - 1]);
}
}
decoder.clear();
encoder.clear();
} while (++run < iterations);
return count;
}
void ReedSolomonMultiBlockTest(int n_sourceblocks) {
int k = 16;
int n = 24;
int size = 1000;
fec::RSEncoder encoder(k, n);
fec::RSDecoder decoder(k, n);
auto &packet_manager = core::PacketManager<>::getInstance();
std::vector<std::pair<fec::buffer, uint32_t>> tx_block;
std::vector<std::pair<fec::buffer, uint32_t>> rx_block;
int count = 0;
int i = 0;
// Receiver will receive packet for n_sourceblocks in a random order.
int total_packets = n * n_sourceblocks;
int tx_packets = k * n_sourceblocks;
unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
encoder.setFECCallback(
[&](std::vector<std::pair<uint32_t, fec::buffer>> &repair_packets) {
for (auto &p : repair_packets) {
// Append repair symbols to tx_block
tx_block.emplace_back(std::move(p.second), ++i);
}
EXPECT_EQ(tx_block.size(), size_t(n));
// Select k packets to send, including at least one symbol. We start
// from the end for this reason.
for (int j = n - 1; j > n - k - 1; j--) {
rx_block.emplace_back(std::move(tx_block[j]));
}
// Clear tx block for next source block
tx_block.clear();
encoder.clear();
});
// The decode callback must be called exactly n_sourceblocks times
decoder.setFECCallback(
[&](std::vector<std::pair<uint32_t, fec::buffer>> &source_packets) {
count++;
});
// Produce n * n_sourceblocks
// - ( k ) * n_sourceblocks source packets
// - (n - k) * n_sourceblocks symbols)
for (i = 0; i < total_packets; i++) {
// Get new buffer from pool
auto packet = packet_manager.getMemBuf();
// Let's append a bit less than size, so that the FEC class will take care
// of filling the rest with zeros
auto cur_size = size - (rand() % 100);
// Set payload, saving 2 bytes at the beginning of the buffer for encoding
// the length
packet->append(cur_size);
packet->trimStart(2);
std::fill(packet->writableData(), packet->writableTail(), i + 1);
// Set first byte of payload to i, to reorder at receiver side
packet->writableData()[0] = uint8_t(i);
// Store packet in tx buffer
tx_block.emplace_back(packet, i);
// Feed encoder with packet
encoder.consume(packet, i);
}
// Here rx_block must contains k * n_sourceblocks packets
EXPECT_EQ(size_t(tx_packets), size_t(rx_block.size()));
// Lets shuffle the rx_block before starting feeding the decoder.
std::shuffle(rx_block.begin(), rx_block.end(),
std::default_random_engine(seed));
for (auto &p : rx_block) {
int index = p.second % n;
if (index < k) {
// Source packet
decoder.consumeSource(p.first, p.second);
} else {
// Repair packet
decoder.consumeRepair(p.first);
}
}
// Simple test to check we get all the source packets
EXPECT_EQ(count, n_sourceblocks);
}
/**
* @brief Use foreach_rs_fec_type to automatically generate the code of the
* tests and avoid copy/paste the same function.
*/
#define _(name, k, n) \
TEST(ReedSolomonTest, RSK##k##N##n) { \
int K = k; \
int N = n; \
int seq_offset = 0; \
int size = 1000; \
EXPECT_LE(ReedSolomonTest(K, N, seq_offset, size), 0); \
seq_offset = 12345; \
EXPECT_LE(ReedSolomonTest(K, N, seq_offset, size), 0); \
}
foreach_rs_fec_type
#undef _
TEST(ReedSolomonMultiBlockTest, RSMB10) {
int blocks = 10;
ReedSolomonMultiBlockTest(blocks);
}
TEST(ReedSolomonMultiBlockTest, RSMB100) {
int blocks = 100;
ReedSolomonMultiBlockTest(blocks);
}
TEST(ReedSolomonMultiBlockTest, RSMB1000) {
int blocks = 1000;
ReedSolomonMultiBlockTest(blocks);
}
} // namespace protocol
} // namespace transport
|