aboutsummaryrefslogtreecommitdiffstats
path: root/libtransport/src/utils/membuf.cc
blob: 73c45cf6d7ac6b2f9875be84946b6b8337b6fadf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * Copyright (c) 2017-2019 Cisco and/or its affiliates.
 * Copyright 2013-present Facebook, Inc.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * The code in this file if adapated from the IOBuf of folly:
 * https://github.com/facebook/folly/blob/master/folly/io/IOBuf.h
 */
#ifdef _WIN32
#include <hicn/transport/portability/win_portability.h>
#endif

#include <hicn/transport/utils/membuf.h>

#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <stdexcept>
#include <vector>

using std::unique_ptr;

namespace {

enum : uint16_t {
  kHeapMagic = 0xa5a5,
  // This memory segment contains an MemBuf that is still in use
  kMemBufInUse = 0x01,
  // This memory segment contains buffer data that is still in use
  kDataInUse = 0x02,
};

enum : std::size_t {
  // When create() is called for buffers less than kDefaultCombinedBufSize,
  // we allocate a single combined memory segment for the MemBuf and the data
  // together.  See the comments for createCombined()/createSeparate() for more
  // details.
  //
  // (The size of 1k is largely just a guess here.  We could could probably do
  // benchmarks of real applications to see if adjusting this number makes a
  // difference.  Callers that know their exact use case can also explicitly
  // call createCombined() or createSeparate().)
  kDefaultCombinedBufSize = 1024
};

// Helper function for MemBuf::takeOwnership()
void takeOwnershipError(bool freeOnError, void* buf,
                        utils::MemBuf::FreeFunction freeFn, void* userData) {
  if (!freeOnError) {
    return;
  }
  if (!freeFn) {
    free(buf);
    return;
  }
  try {
    freeFn(buf, userData);
  } catch (...) {
    // The user's free function is not allowed to throw.
    // (We are already in the middle of throwing an exception, so
    // we cannot let this exception go unhandled.)
    abort();
  }
}

}  // namespace

namespace utils {

struct MemBuf::HeapPrefix {
  explicit HeapPrefix(uint16_t flg) : magic(kHeapMagic), flags(flg) {}
  ~HeapPrefix() {
    // Reset magic to 0 on destruction.  This is solely for debugging purposes
    // to help catch bugs where someone tries to use HeapStorage after it has
    // been deleted.
    magic = 0;
  }

  uint16_t magic;
  std::atomic<uint16_t> flags;
};

struct MemBuf::HeapStorage {
  HeapPrefix prefix;
  // The MemBuf is last in the HeapStorage object.
  // This way operator new will work even if allocating a subclass of MemBuf
  // that requires more space.
  utils::MemBuf buf;
};

struct MemBuf::HeapFullStorage {
  static_assert(sizeof(HeapStorage) <= 64,
                "MemBuf may not grow over 56 bytes!");

  HeapStorage hs;
  SharedInfo shared;
  std::max_align_t align;
};

MemBuf::SharedInfo::SharedInfo() : freeFn(nullptr), userData(nullptr) {
  // Use relaxed memory ordering here.  Since we are creating a new SharedInfo,
  // no other threads should be referring to it yet.
  refcount.store(1, std::memory_order_relaxed);
}

MemBuf::SharedInfo::SharedInfo(FreeFunction fn, void* arg)
    : freeFn(fn), userData(arg) {
  // Use relaxed memory ordering here.  Since we are creating a new SharedInfo,
  // no other threads should be referring to it yet.
  refcount.store(1, std::memory_order_relaxed);
}

void* MemBuf::operator new(size_t size) {
  size_t fullSize = offsetof(HeapStorage, buf) + size;
  auto* storage = static_cast<HeapStorage*>(malloc(fullSize));

  new (&storage->prefix) HeapPrefix(kMemBufInUse);
  return &(storage->buf);
}

void* MemBuf::operator new(size_t /* size */, void* ptr) { return ptr; }

void MemBuf::operator delete(void* ptr) {
  auto* storageAddr = static_cast<uint8_t*>(ptr) - offsetof(HeapStorage, buf);
  auto* storage = reinterpret_cast<HeapStorage*>(storageAddr);
  releaseStorage(storage, kMemBufInUse);
}

void MemBuf::operator delete(void* /* ptr */, void* /* placement */) {
  // Provide matching operator for `MemBuf::new` to avoid MSVC compilation
  // warning (C4291) about memory leak when exception is thrown in the
  // constructor.
}

bool MemBuf::operator==(const MemBuf& other) {
  if (length() != other.length()) {
    return false;
  }

  return (memcmp(data(), other.data(), length()) == 0);
}

bool MemBuf::operator!=(const MemBuf& other) {
  return !this->operator==(other);
}

void MemBuf::releaseStorage(HeapStorage* storage, uint16_t freeFlags) {
  // Use relaxed memory order here.  If we are unlucky and happen to get
  // out-of-date data the compare_exchange_weak() call below will catch
  // it and load new data with memory_order_acq_rel.
  auto flags = storage->prefix.flags.load(std::memory_order_acquire);

  while (true) {
    uint16_t newFlags = uint16_t(flags & ~freeFlags);
    if (newFlags == 0) {
      // The storage space is now unused.  Free it.
      storage->prefix.HeapPrefix::~HeapPrefix();
      free(storage);
      return;
    }

    // This storage segment still contains portions that are in use.
    // Just clear the flags specified in freeFlags for now.
    auto ret = storage->prefix.flags.compare_exchange_weak(
        flags, newFlags, std::memory_order_acq_rel);
    if (ret) {
      // We successfully updated the flags.
      return;
    }

    // We failed to update the flags.  Some other thread probably updated them
    // and cleared some of the other bits.  Continue around the loop to see if
    // we are the last user now, or if we need to try updating the flags again.
  }
}

void MemBuf::freeInternalBuf(void* /* buf */, void* userData) {
  auto* storage = static_cast<HeapStorage*>(userData);
  releaseStorage(storage, kDataInUse);
}

MemBuf::MemBuf(CreateOp, std::size_t capacity)
    : next_(this),
      prev_(this),
      data_(nullptr),
      length_(0),
      flags_and_shared_info_(0) {
  SharedInfo* info;
  allocExtBuffer(capacity, &buf_, &info, &capacity_);
  setSharedInfo(info);
  data_ = buf_;
}

MemBuf::MemBuf(CopyBufferOp /* op */, const void* buf, std::size_t size,
               std::size_t headroom, std::size_t min_tailroom)
    : MemBuf(CREATE, headroom + size + min_tailroom) {
  advance(headroom);
  if (size > 0) {
    assert(buf != nullptr);
    memcpy(writableData(), buf, size);
    append(size);
  }
}

unique_ptr<MemBuf> MemBuf::create(std::size_t capacity) {
  // For smaller-sized buffers, allocate the MemBuf, SharedInfo, and the buffer
  // all with a single allocation.
  //
  // We don't do this for larger buffers since it can be wasteful if the user
  // needs to reallocate the buffer but keeps using the same MemBuf object.
  // In this case we can't free the data space until the MemBuf is also
  // destroyed.  Callers can explicitly call createCombined() or
  // createSeparate() if they know their use case better, and know if they are
  // likely to reallocate the buffer later.
  if (capacity <= kDefaultCombinedBufSize) {
    return createCombined(capacity);
  }
  return createSeparate(capacity);
}

unique_ptr<MemBuf> MemBuf::createCombined(std::size_t capacity) {
  // To save a memory allocation, allocate space for the MemBuf object, the
  // SharedInfo struct, and the data itself all with a single call to malloc().
  size_t requiredStorage = offsetof(HeapFullStorage, align) + capacity;
  size_t mallocSize = requiredStorage;
  auto* storage = static_cast<HeapFullStorage*>(malloc(mallocSize));

  new (&storage->hs.prefix) HeapPrefix(kMemBufInUse | kDataInUse);
  new (&storage->shared) SharedInfo(freeInternalBuf, storage);

  uint8_t* bufAddr = reinterpret_cast<uint8_t*>(&storage->align);
  uint8_t* storageEnd = reinterpret_cast<uint8_t*>(storage) + mallocSize;
  size_t actualCapacity = size_t(storageEnd - bufAddr);
  unique_ptr<MemBuf> ret(new (&storage->hs.buf) MemBuf(
      InternalConstructor(), packFlagsAndSharedInfo(0, &storage->shared),
      bufAddr, actualCapacity, bufAddr, 0));
  return ret;
}

unique_ptr<MemBuf> MemBuf::createSeparate(std::size_t capacity) {
  return std::make_unique<MemBuf>(CREATE, capacity);
}

unique_ptr<MemBuf> MemBuf::createChain(size_t totalCapacity,
                                       std::size_t maxBufCapacity) {
  unique_ptr<MemBuf> out =
      create(std::min(totalCapacity, size_t(maxBufCapacity)));
  size_t allocatedCapacity = out->capacity();

  while (allocatedCapacity < totalCapacity) {
    unique_ptr<MemBuf> newBuf = create(
        std::min(totalCapacity - allocatedCapacity, size_t(maxBufCapacity)));
    allocatedCapacity += newBuf->capacity();
    out->prependChain(std::move(newBuf));
  }

  return out;
}

MemBuf::MemBuf(TakeOwnershipOp, void* buf, std::size_t capacity,
               std::size_t length, FreeFunction freeFn, void* userData,
               bool freeOnError)
    : next_(this),
      prev_(this),
      data_(static_cast<uint8_t*>(buf)),
      buf_(static_cast<uint8_t*>(buf)),
      length_(length),
      capacity_(capacity),
      flags_and_shared_info_(
          packFlagsAndSharedInfo(flag_free_shared_info, nullptr)) {
  try {
    setSharedInfo(new SharedInfo(freeFn, userData));
  } catch (...) {
    takeOwnershipError(freeOnError, buf, freeFn, userData);
    throw;
  }
}

unique_ptr<MemBuf> MemBuf::takeOwnership(void* buf, std::size_t capacity,
                                         std::size_t length,
                                         FreeFunction freeFn, void* userData,
                                         bool freeOnError) {
  try {
    // TODO: We could allocate the MemBuf object and SharedInfo all in a single
    // memory allocation.  We could use the existing HeapStorage class, and
    // define a new kSharedInfoInUse flag.  We could change our code to call
    // releaseStorage(flag_free_shared_info) when this flag_free_shared_info,
    // rather than directly calling delete.
    //
    // Note that we always pass freeOnError as false to the constructor.
    // If the constructor throws we'll handle it below.  (We have to handle
    // allocation failures from std::make_unique too.)
    return std::make_unique<MemBuf>(TAKE_OWNERSHIP, buf, capacity, length,
                                    freeFn, userData, false);
  } catch (...) {
    takeOwnershipError(freeOnError, buf, freeFn, userData);
    throw;
  }
}

MemBuf::MemBuf(WrapBufferOp, const void* buf, std::size_t length,
               std::size_t capacity) noexcept
    : MemBuf(InternalConstructor(), 0,
             // We cast away the const-ness of the buffer here.
             // This is okay since MemBuf users must use unshare() to create a
             // copy of this buffer before writing to the buffer.
             static_cast<uint8_t*>(const_cast<void*>(buf)), capacity,
             static_cast<uint8_t*>(const_cast<void*>(buf)), length) {}

unique_ptr<MemBuf> MemBuf::wrapBuffer(const void* buf, std::size_t length,
                                      std::size_t capacity) {
  return std::make_unique<MemBuf>(WRAP_BUFFER, buf, length, capacity);
}

MemBuf MemBuf::wrapBufferAsValue(const void* buf, std::size_t length,
                                 std::size_t capacity) noexcept {
  return MemBuf(WrapBufferOp::WRAP_BUFFER, buf, length, capacity);
}

MemBuf::MemBuf() noexcept {}

MemBuf::MemBuf(MemBuf&& other) noexcept
    : data_(other.data_),
      buf_(other.buf_),
      length_(other.length_),
      capacity_(other.capacity_),
      flags_and_shared_info_(other.flags_and_shared_info_) {
  // Reset other so it is a clean state to be destroyed.
  other.data_ = nullptr;
  other.buf_ = nullptr;
  other.length_ = 0;
  other.capacity_ = 0;
  other.flags_and_shared_info_ = 0;

  // If other was part of the chain, assume ownership of the rest of its chain.
  // (It's only valid to perform move assignment on the head of a chain.)
  if (other.next_ != &other) {
    next_ = other.next_;
    next_->prev_ = this;
    other.next_ = &other;

    prev_ = other.prev_;
    prev_->next_ = this;
    other.prev_ = &other;
  }
}

MemBuf::MemBuf(const MemBuf& other) { *this = other.cloneAsValue(); }

MemBuf::MemBuf(InternalConstructor, uintptr_t flagsAndSharedInfo, uint8_t* buf,
               std::size_t capacity, uint8_t* data, std::size_t length) noexcept
    : next_(this),
      prev_(this),
      data_(data),
      buf_(buf),
      length_(length),
      capacity_(capacity),
      flags_and_shared_info_(flagsAndSharedInfo) {
  assert(data >= buf);
  assert(data + length <= buf + capacity);
}

MemBuf::~MemBuf() {
  // Destroying an MemBuf destroys the entire chain.
  // Users of MemBuf should only explicitly delete the head of any chain.
  // The other elements in the chain will be automatically destroyed.
  while (next_ != this) {
    // Since unlink() returns unique_ptr() and we don't store it,
    // it will automatically delete the unlinked element.
    (void)next_->unlink();
  }

  decrementRefcount();
}

MemBuf& MemBuf::operator=(MemBuf&& other) noexcept {
  if (this == &other) {
    return *this;
  }

  // If we are part of a chain, delete the rest of the chain.
  while (next_ != this) {
    // Since unlink() returns unique_ptr() and we don't store it,
    // it will automatically delete the unlinked element.
    (void)next_->unlink();
  }

  // Decrement our refcount on the current buffer
  decrementRefcount();

  // Take ownership of the other buffer's data
  data_ = other.data_;
  buf_ = other.buf_;
  length_ = other.length_;
  capacity_ = other.capacity_;
  flags_and_shared_info_ = other.flags_and_shared_info_;
  // Reset other so it is a clean state to be destroyed.
  other.data_ = nullptr;
  other.buf_ = nullptr;
  other.length_ = 0;
  other.capacity_ = 0;
  other.flags_and_shared_info_ = 0;

  // If other was part of the chain, assume ownership of the rest of its chain.
  // (It's only valid to perform move assignment on the head of a chain.)
  if (other.next_ != &other) {
    next_ = other.next_;
    next_->prev_ = this;
    other.next_ = &other;

    prev_ = other.prev_;
    prev_->next_ = this;
    other.prev_ = &other;
  }

  return *this;
}

MemBuf& MemBuf::operator=(const MemBuf& other) {
  if (this != &other) {
    *this = MemBuf(other);
  }
  return *this;
}

bool MemBuf::empty() const {
  const MemBuf* current = this;
  do {
    if (current->length() != 0) {
      return false;
    }
    current = current->next_;
  } while (current != this);
  return true;
}

size_t MemBuf::countChainElements() const {
  size_t numElements = 1;
  for (MemBuf* current = next_; current != this; current = current->next_) {
    ++numElements;
  }
  return numElements;
}

std::size_t MemBuf::computeChainDataLength() const {
  std::size_t fullLength = length_;
  for (MemBuf* current = next_; current != this; current = current->next_) {
    fullLength += current->length_;
  }
  return fullLength;
}

void MemBuf::prependChain(unique_ptr<MemBuf>&& iobuf) {
  // Take ownership of the specified MemBuf
  MemBuf* other = iobuf.release();

  // Remember the pointer to the tail of the other chain
  MemBuf* otherTail = other->prev_;

  // Hook up prev_->next_ to point at the start of the other chain,
  // and other->prev_ to point at prev_
  prev_->next_ = other;
  other->prev_ = prev_;

  // Hook up otherTail->next_ to point at us,
  // and prev_ to point back at otherTail,
  otherTail->next_ = this;
  prev_ = otherTail;
}

unique_ptr<MemBuf> MemBuf::clone() const {
  return std::make_unique<MemBuf>(cloneAsValue());
}

unique_ptr<MemBuf> MemBuf::cloneOne() const {
  return std::make_unique<MemBuf>(cloneOneAsValue());
}

unique_ptr<MemBuf> MemBuf::cloneCoalesced() const {
  return std::make_unique<MemBuf>(cloneCoalescedAsValue());
}

unique_ptr<MemBuf> MemBuf::cloneCoalescedWithHeadroomTailroom(
    std::size_t new_headroom, std::size_t new_tailroom) const {
  return std::make_unique<MemBuf>(
      cloneCoalescedAsValueWithHeadroomTailroom(new_headroom, new_tailroom));
}

MemBuf MemBuf::cloneAsValue() const {
  auto tmp = cloneOneAsValue();

  for (MemBuf* current = next_; current != this; current = current->next_) {
    tmp.prependChain(current->cloneOne());
  }

  return tmp;
}

MemBuf MemBuf::cloneOneAsValue() const {
  if (SharedInfo* info = sharedInfo()) {
    setFlags(flag_maybe_shared);
    info->refcount.fetch_add(1, std::memory_order_acq_rel);
  }
  return MemBuf(InternalConstructor(), flags_and_shared_info_, buf_, capacity_,
                data_, length_);
}

MemBuf MemBuf::cloneCoalescedAsValue() const {
  const std::size_t new_headroom = headroom();
  const std::size_t new_tailroom = prev()->tailroom();
  return cloneCoalescedAsValueWithHeadroomTailroom(new_headroom, new_tailroom);
}

MemBuf MemBuf::cloneCoalescedAsValueWithHeadroomTailroom(
    std::size_t new_headroom, std::size_t new_tailroom) const {
  if (!isChained()) {
    return cloneOneAsValue();
  }
  // Coalesce into newBuf
  const std::size_t new_length = computeChainDataLength();
  const std::size_t new_capacity = new_length + new_headroom + new_tailroom;
  MemBuf newBuf{CREATE, new_capacity};
  newBuf.advance(new_headroom);

  auto current = this;
  do {
    if (current->length() > 0) {
      memcpy(newBuf.writableTail(), current->data(), current->length());
      newBuf.append(current->length());
    }
    current = current->next();
  } while (current != this);

  return newBuf;
}

void MemBuf::unshareOneSlow() {
  // Allocate a new buffer for the data
  uint8_t* buf;
  SharedInfo* sharedInfo;
  std::size_t actualCapacity;
  allocExtBuffer(capacity_, &buf, &sharedInfo, &actualCapacity);

  // Copy the data
  // Maintain the same amount of headroom.  Since we maintained the same
  // minimum capacity we also maintain at least the same amount of tailroom.
  std::size_t headlen = headroom();
  if (length_ > 0) {
    assert(data_ != nullptr);
    memcpy(buf + headlen, data_, length_);
  }

  // Release our reference on the old buffer
  decrementRefcount();
  // Make sure flag_maybe_shared and flag_free_shared_info are all cleared.
  setFlagsAndSharedInfo(0, sharedInfo);

  // Update the buffer pointers to point to the new buffer
  data_ = buf + headlen;
  buf_ = buf;
}

void MemBuf::unshareChained() {
  // unshareChained() should only be called if we are part of a chain of
  // multiple MemBufs.  The caller should have already verified this.
  assert(isChained());

  MemBuf* current = this;
  while (true) {
    if (current->isSharedOne()) {
      // we have to unshare
      break;
    }

    current = current->next_;
    if (current == this) {
      // None of the MemBufs in the chain are shared,
      // so return without doing anything
      return;
    }
  }

  // We have to unshare.  Let coalesceSlow() do the work.
  coalesceSlow();
}

void MemBuf::markExternallyShared() {
  MemBuf* current = this;
  do {
    current->markExternallySharedOne();
    current = current->next_;
  } while (current != this);
}

void MemBuf::makeManagedChained() {
  assert(isChained());

  MemBuf* current = this;
  while (true) {
    current->makeManagedOne();
    current = current->next_;
    if (current == this) {
      break;
    }
  }
}

void MemBuf::coalesceSlow() {
  // coalesceSlow() should only be called if we are part of a chain of multiple
  // MemBufs.  The caller should have already verified this.

  // Compute the length of the entire chain
  std::size_t new_length = 0;
  MemBuf* end = this;
  do {
    new_length += end->length_;
    end = end->next_;
  } while (end != this);

  coalesceAndReallocate(new_length, end);
  // We should be only element left in the chain now
}

void MemBuf::coalesceSlow(size_t max_length) {
  // coalesceSlow() should only be called if we are part of a chain of multiple
  // MemBufs.  The caller should have already verified this.

  // Compute the length of the entire chain
  std::size_t new_length = 0;
  MemBuf* end = this;
  while (true) {
    new_length += end->length_;
    end = end->next_;
    if (new_length >= max_length) {
      break;
    }
    if (end == this) {
      throw std::overflow_error(
          "attempted to coalesce more data than "
          "available");
    }
  }

  coalesceAndReallocate(new_length, end);
  // We should have the requested length now
}

void MemBuf::coalesceAndReallocate(size_t new_headroom, size_t new_length,
                                   MemBuf* end, size_t new_tailroom) {
  std::size_t new_capacity = new_length + new_headroom + new_tailroom;

  // Allocate space for the coalesced buffer.
  // We always convert to an external buffer, even if we happened to be an
  // internal buffer before.
  uint8_t* newBuf;
  SharedInfo* newInfo;
  std::size_t actualCapacity;
  allocExtBuffer(new_capacity, &newBuf, &newInfo, &actualCapacity);

  // Copy the data into the new buffer
  uint8_t* new_data = newBuf + new_headroom;
  uint8_t* p = new_data;
  MemBuf* current = this;
  size_t remaining = new_length;
  do {
    if (current->length_ > 0) {
      assert(current->length_ <= remaining);
      assert(current->data_ != nullptr);
      remaining -= current->length_;
      memcpy(p, current->data_, current->length_);
      p += current->length_;
    }
    current = current->next_;
  } while (current != end);
  assert(remaining == 0);

  // Point at the new buffer
  decrementRefcount();

  // Make sure flag_maybe_shared and flag_free_shared_info are all cleared.
  setFlagsAndSharedInfo(0, newInfo);

  capacity_ = actualCapacity;
  buf_ = newBuf;
  data_ = new_data;
  length_ = new_length;

  // Separate from the rest of our chain.
  // Since we don't store the unique_ptr returned by separateChain(),
  // this will immediately delete the returned subchain.
  if (isChained()) {
    (void)separateChain(next_, current->prev_);
  }
}

void MemBuf::decrementRefcount() {
  // Externally owned buffers don't have a SharedInfo object and aren't managed
  // by the reference count
  SharedInfo* info = sharedInfo();
  if (!info) {
    return;
  }

  // Decrement the refcount
  uint32_t newcnt = info->refcount.fetch_sub(1, std::memory_order_acq_rel);
  // Note that fetch_sub() returns the value before we decremented.
  // If it is 1, we were the only remaining user; if it is greater there are
  // still other users.
  if (newcnt > 1) {
    return;
  }

  // We were the last user.  Free the buffer
  freeExtBuffer();

  // Free the SharedInfo if it was allocated separately.
  //
  // This is only used by takeOwnership().
  //
  // To avoid this special case handling in decrementRefcount(), we could have
  // takeOwnership() set a custom freeFn() that calls the user's free function
  // then frees the SharedInfo object.  (This would require that
  // takeOwnership() store the user's free function with its allocated
  // SharedInfo object.)  However, handling this specially with a flag seems
  // like it shouldn't be problematic.
  if (flags() & flag_free_shared_info) {
    delete sharedInfo();
  }
}

void MemBuf::reserveSlow(std::size_t min_headroom, std::size_t min_tailroom) {
  size_t new_capacity = (size_t)length_ + min_headroom + min_tailroom;

  // // reserveSlow() is dangerous if anyone else is sharing the buffer, as we
  // may
  // // reallocate and free the original buffer.  It should only ever be called
  // if
  // // we are the only user of the buffer.

  // We'll need to reallocate the buffer.
  // There are a few options.
  // - If we have enough total room, move the data around in the buffer
  //   and adjust the data_ pointer.
  // - If we're using an internal buffer, we'll switch to an external
  //   buffer with enough headroom and tailroom.
  // - If we have enough headroom (headroom() >= min_headroom) but not too much
  //   (so we don't waste memory), we can try:
  //   - If we don't have too much to copy, we'll use realloc() (note that
  //   realloc might have to copy
  //     headroom + data + tailroom)
  // - Otherwise, bite the bullet and reallocate.
  if (headroom() + tailroom() >= min_headroom + min_tailroom) {
    uint8_t* new_data = writableBuffer() + min_headroom;
    std::memmove(new_data, data_, length_);
    data_ = new_data;
    return;
  }

  size_t new_allocated_capacity = 0;
  uint8_t* new_buffer = nullptr;
  std::size_t new_headroom = 0;
  std::size_t old_headroom = headroom();

  // If we have a buffer allocated with malloc and we just need more tailroom,
  // try to use realloc()/xallocx() to grow the buffer in place.
  SharedInfo* info = sharedInfo();
  if (info && (info->freeFn == nullptr) && length_ != 0 &&
      old_headroom >= min_headroom) {
    size_t head_slack = old_headroom - min_headroom;
    new_allocated_capacity = goodExtBufferSize(new_capacity + head_slack);

    size_t copySlack = capacity() - length_;
    if (copySlack * 2 <= length_) {
      void* p = realloc(buf_, new_allocated_capacity);
      if (TRANSPORT_EXPECT_FALSE(p == nullptr)) {
        throw std::bad_alloc();
      }
      new_buffer = static_cast<uint8_t*>(p);
      new_headroom = old_headroom;
    }
  }

  // None of the previous reallocation strategies worked (or we're using
  // an internal buffer).  malloc/copy/free.
  if (new_buffer == nullptr) {
    new_allocated_capacity = goodExtBufferSize(new_capacity);
    new_buffer = static_cast<uint8_t*>(malloc(new_allocated_capacity));
    if (length_ > 0) {
      assert(data_ != nullptr);
      memcpy(new_buffer + min_headroom, data_, length_);
    }
    if (sharedInfo()) {
      freeExtBuffer();
    }
    new_headroom = min_headroom;
  }

  std::size_t cap;
  initExtBuffer(new_buffer, new_allocated_capacity, &info, &cap);

  if (flags() & flag_free_shared_info) {
    delete sharedInfo();
  }

  setFlagsAndSharedInfo(0, info);
  capacity_ = cap;
  buf_ = new_buffer;
  data_ = new_buffer + new_headroom;
  // length_ is unchanged
}

void MemBuf::freeExtBuffer() {
  SharedInfo* info = sharedInfo();

  if (info->freeFn) {
    try {
      info->freeFn(buf_, info->userData);
    } catch (...) {
      // The user's free function should never throw.  Otherwise we might
      // throw from the MemBuf destructor.  Other code paths like coalesce()
      // also assume that decrementRefcount() cannot throw.
      abort();
    }
  } else {
    free(buf_);
  }
}

void MemBuf::allocExtBuffer(std::size_t minCapacity, uint8_t** bufReturn,
                            SharedInfo** infoReturn,
                            std::size_t* capacityReturn) {
  size_t mallocSize = goodExtBufferSize(minCapacity);
  uint8_t* buf = static_cast<uint8_t*>(malloc(mallocSize));
  initExtBuffer(buf, mallocSize, infoReturn, capacityReturn);
  *bufReturn = buf;
}

size_t MemBuf::goodExtBufferSize(std::size_t minCapacity) {
  // Determine how much space we should allocate.  We'll store the SharedInfo
  // for the external buffer just after the buffer itself.  (We store it just
  // after the buffer rather than just before so that the code can still just
  // use free(buf_) to free the buffer.)
  size_t minSize = static_cast<size_t>(minCapacity) + sizeof(SharedInfo);
  // Add room for padding so that the SharedInfo will be aligned on an 8-byte
  // boundary.
  minSize = (minSize + 7) & ~7;

  // Use goodMallocSize() to bump up the capacity to a decent size to request
  // from malloc, so we can use all of the space that malloc will probably give
  // us anyway.
  return minSize;
}

void MemBuf::initExtBuffer(uint8_t* buf, size_t mallocSize,
                           SharedInfo** infoReturn,
                           std::size_t* capacityReturn) {
  // Find the SharedInfo storage at the end of the buffer
  // and construct the SharedInfo.
  uint8_t* infoStart = (buf + mallocSize) - sizeof(SharedInfo);
  SharedInfo* sharedInfo = new (infoStart) SharedInfo;

  *capacityReturn = std::size_t(infoStart - buf);
  *infoReturn = sharedInfo;
}

bool MemBuf::ensureCapacity(std::size_t capacity) {
  return !isChained() && std::size_t((bufferEnd() - data())) >= capacity;
}

bool MemBuf::ensureCapacityAndFillUnused(std::size_t capacity,
                                         uint8_t placeholder) {
  auto ret = ensureCapacity(capacity);
  if (!ret) {
    return ret;
  }

  if (length() < capacity) {
    std::memset(writableTail(), placeholder, capacity - length());
  }

  return ret;
}

}  // namespace utils