diff options
Diffstat (limited to 'src/plugins/dpdk/hqos')
-rw-r--r-- | src/plugins/dpdk/hqos/hqos.c | 772 | ||||
-rw-r--r-- | src/plugins/dpdk/hqos/qos_doc.md | 411 |
2 files changed, 1183 insertions, 0 deletions
diff --git a/src/plugins/dpdk/hqos/hqos.c b/src/plugins/dpdk/hqos/hqos.c new file mode 100644 index 00000000..c9b85652 --- /dev/null +++ b/src/plugins/dpdk/hqos/hqos.c @@ -0,0 +1,772 @@ +/* + * Copyright(c) 2016 Intel Corporation. All rights reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at: + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include <stdio.h> +#include <stdlib.h> +#include <unistd.h> +#include <sys/stat.h> +#include <sys/mount.h> +#include <string.h> +#include <fcntl.h> + +#include <vppinfra/vec.h> +#include <vppinfra/error.h> +#include <vppinfra/format.h> +#include <vppinfra/bitmap.h> + +#include <vnet/vnet.h> +#include <vnet/ethernet/ethernet.h> +#include <dpdk/device/dpdk.h> + +#include <vlib/pci/pci.h> +#include <vlibmemory/api.h> +#include <vlibmemory/vl_memory_msg_enum.h> /* enumerate all vlib messages */ + +#define vl_typedefs /* define message structures */ +#include <vlibmemory/vl_memory_api_h.h> +#undef vl_typedefs + +/* instantiate all the print functions we know about */ +#define vl_print(handle, ...) vlib_cli_output (handle, __VA_ARGS__) +#define vl_printfun +#include <vlibmemory/vl_memory_api_h.h> +#undef vl_printfun + +#include <dpdk/device/dpdk_priv.h> + +/*** + * + * HQoS default configuration values + * + ***/ + +static dpdk_device_config_hqos_t hqos_params_default = { + .hqos_thread_valid = 0, + + .swq_size = 4096, + .burst_enq = 256, + .burst_deq = 220, + + /* + * Packet field to identify the subport. + * + * Default value: Since only one subport is defined by default (see below: + * n_subports_per_port = 1), the subport ID is hardcoded to 0. + */ + .pktfield0_slabpos = 0, + .pktfield0_slabmask = 0, + + /* + * Packet field to identify the pipe. + * + * Default value: Assuming Ethernet/IPv4/UDP packets, UDP payload bits 12 .. 23 + */ + .pktfield1_slabpos = 40, + .pktfield1_slabmask = 0x0000000FFF000000LLU, + + /* Packet field used as index into TC translation table to identify the traffic + * class and queue. + * + * Default value: Assuming Ethernet/IPv4 packets, IPv4 DSCP field + */ + .pktfield2_slabpos = 8, + .pktfield2_slabmask = 0x00000000000000FCLLU, + .tc_table = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + }, + + /* port */ + .port = { + .name = NULL, /* Set at init */ + .socket = 0, /* Set at init */ + .rate = 1250000000, /* Assuming 10GbE port */ + .mtu = 14 + 1500, /* Assuming Ethernet/IPv4 pkt (Ethernet FCS not included) */ + .frame_overhead = RTE_SCHED_FRAME_OVERHEAD_DEFAULT, + .n_subports_per_port = 1, + .n_pipes_per_subport = 4096, + .qsize = {64, 64, 64, 64}, + .pipe_profiles = NULL, /* Set at config */ + .n_pipe_profiles = 1, + +#ifdef RTE_SCHED_RED + .red_params = { + /* Traffic Class 0 Colors Green / Yellow / Red */ + [0][0] = {.min_th = 48,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [0][1] = {.min_th = 40,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [0][2] = {.min_th = 32,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + + /* Traffic Class 1 - Colors Green / Yellow / Red */ + [1][0] = {.min_th = 48,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [1][1] = {.min_th = 40,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [1][2] = {.min_th = 32,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + + /* Traffic Class 2 - Colors Green / Yellow / Red */ + [2][0] = {.min_th = 48,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [2][1] = {.min_th = 40,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [2][2] = {.min_th = 32,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + + /* Traffic Class 3 - Colors Green / Yellow / Red */ + [3][0] = {.min_th = 48,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [3][1] = {.min_th = 40,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9}, + [3][2] = {.min_th = 32,.max_th = 64,.maxp_inv = + 10,.wq_log2 = 9} + }, +#endif /* RTE_SCHED_RED */ + }, +}; + +static struct rte_sched_subport_params hqos_subport_params_default = { + .tb_rate = 1250000000, /* 10GbE line rate (measured in bytes/second) */ + .tb_size = 1000000, + .tc_rate = {1250000000, 1250000000, 1250000000, 1250000000}, + .tc_period = 10, +}; + +static struct rte_sched_pipe_params hqos_pipe_params_default = { + .tb_rate = 305175, /* 10GbE line rate divided by 4K pipes */ + .tb_size = 1000000, + .tc_rate = {305175, 305175, 305175, 305175}, + .tc_period = 40, +#ifdef RTE_SCHED_SUBPORT_TC_OV + .tc_ov_weight = 1, +#endif + .wrr_weights = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, +}; + +/*** + * + * HQoS configuration + * + ***/ + +int +dpdk_hqos_validate_mask (u64 mask, u32 n) +{ + int count = __builtin_popcountll (mask); + int pos_lead = sizeof (u64) * 8 - __builtin_clzll (mask); + int pos_trail = __builtin_ctzll (mask); + int count_expected = __builtin_popcount (n - 1); + + /* Handle the exceptions */ + if (n == 0) + return -1; /* Error */ + + if ((mask == 0) && (n == 1)) + return 0; /* OK */ + + if (((mask == 0) && (n != 1)) || ((mask != 0) && (n == 1))) + return -2; /* Error */ + + /* Check that mask is contiguous */ + if ((pos_lead - pos_trail) != count) + return -3; /* Error */ + + /* Check that mask contains the expected number of bits set */ + if (count != count_expected) + return -4; /* Error */ + + return 0; /* OK */ +} + +void +dpdk_device_config_hqos_pipe_profile_default (dpdk_device_config_hqos_t * + hqos, u32 pipe_profile_id) +{ + memcpy (&hqos->pipe[pipe_profile_id], &hqos_pipe_params_default, + sizeof (hqos_pipe_params_default)); +} + +void +dpdk_device_config_hqos_default (dpdk_device_config_hqos_t * hqos) +{ + struct rte_sched_subport_params *subport_params; + struct rte_sched_pipe_params *pipe_params; + u32 *pipe_map; + u32 i; + + memcpy (hqos, &hqos_params_default, sizeof (hqos_params_default)); + + /* pipe */ + vec_add2 (hqos->pipe, pipe_params, hqos->port.n_pipe_profiles); + + for (i = 0; i < vec_len (hqos->pipe); i++) + memcpy (&pipe_params[i], + &hqos_pipe_params_default, sizeof (hqos_pipe_params_default)); + + hqos->port.pipe_profiles = hqos->pipe; + + /* subport */ + vec_add2 (hqos->subport, subport_params, hqos->port.n_subports_per_port); + + for (i = 0; i < vec_len (hqos->subport); i++) + memcpy (&subport_params[i], + &hqos_subport_params_default, + sizeof (hqos_subport_params_default)); + + /* pipe profile */ + vec_add2 (hqos->pipe_map, + pipe_map, + hqos->port.n_subports_per_port * hqos->port.n_pipes_per_subport); + + for (i = 0; i < vec_len (hqos->pipe_map); i++) + pipe_map[i] = 0; +} + +/*** + * + * HQoS init + * + ***/ + +clib_error_t * +dpdk_port_setup_hqos (dpdk_device_t * xd, dpdk_device_config_hqos_t * hqos) +{ + vlib_thread_main_t *tm = vlib_get_thread_main (); + char name[32]; + u32 subport_id, i; + int rv; + + /* Detect the set of worker threads */ + int worker_thread_first = 0; + int worker_thread_count = 0; + + uword *p = hash_get_mem (tm->thread_registrations_by_name, "workers"); + vlib_thread_registration_t *tr = + p ? (vlib_thread_registration_t *) p[0] : 0; + + if (tr && tr->count > 0) + { + worker_thread_first = tr->first_index; + worker_thread_count = tr->count; + } + + /* Allocate the per-thread device data array */ + vec_validate_aligned (xd->hqos_wt, tm->n_vlib_mains - 1, + CLIB_CACHE_LINE_BYTES); + memset (xd->hqos_wt, 0, tm->n_vlib_mains * sizeof (xd->hqos_wt[0])); + + vec_validate_aligned (xd->hqos_ht, 0, CLIB_CACHE_LINE_BYTES); + memset (xd->hqos_ht, 0, sizeof (xd->hqos_ht[0])); + + /* Allocate space for one SWQ per worker thread in the I/O TX thread data structure */ + vec_validate (xd->hqos_ht->swq, worker_thread_count); + + /* SWQ */ + for (i = 0; i < worker_thread_count + 1; i++) + { + u32 swq_flags = RING_F_SP_ENQ | RING_F_SC_DEQ; + + snprintf (name, sizeof (name), "SWQ-worker%u-to-device%u", i, + xd->device_index); + xd->hqos_ht->swq[i] = + rte_ring_create (name, hqos->swq_size, xd->cpu_socket, swq_flags); + if (xd->hqos_ht->swq[i] == NULL) + return clib_error_return (0, + "SWQ-worker%u-to-device%u: rte_ring_create err", + i, xd->device_index); + } + + /* + * HQoS + */ + + /* HQoS port */ + snprintf (name, sizeof (name), "HQoS%u", xd->device_index); + hqos->port.name = strdup (name); + if (hqos->port.name == NULL) + return clib_error_return (0, "HQoS%u: strdup err", xd->device_index); + + hqos->port.socket = rte_eth_dev_socket_id (xd->device_index); + if (hqos->port.socket == SOCKET_ID_ANY) + hqos->port.socket = 0; + + xd->hqos_ht->hqos = rte_sched_port_config (&hqos->port); + if (xd->hqos_ht->hqos == NULL) + return clib_error_return (0, "HQoS%u: rte_sched_port_config err", + xd->device_index); + + /* HQoS subport */ + for (subport_id = 0; subport_id < hqos->port.n_subports_per_port; + subport_id++) + { + u32 pipe_id; + + rv = + rte_sched_subport_config (xd->hqos_ht->hqos, subport_id, + &hqos->subport[subport_id]); + if (rv) + return clib_error_return (0, + "HQoS%u subport %u: rte_sched_subport_config err (%d)", + xd->device_index, subport_id, rv); + + /* HQoS pipe */ + for (pipe_id = 0; pipe_id < hqos->port.n_pipes_per_subport; pipe_id++) + { + u32 pos = subport_id * hqos->port.n_pipes_per_subport + pipe_id; + u32 profile_id = hqos->pipe_map[pos]; + + rv = + rte_sched_pipe_config (xd->hqos_ht->hqos, subport_id, pipe_id, + profile_id); + if (rv) + return clib_error_return (0, + "HQoS%u subport %u pipe %u: rte_sched_pipe_config err (%d)", + xd->device_index, subport_id, pipe_id, + rv); + } + } + + /* Set up per-thread device data for the I/O TX thread */ + xd->hqos_ht->hqos_burst_enq = hqos->burst_enq; + xd->hqos_ht->hqos_burst_deq = hqos->burst_deq; + vec_validate (xd->hqos_ht->pkts_enq, 2 * hqos->burst_enq - 1); + vec_validate (xd->hqos_ht->pkts_deq, hqos->burst_deq - 1); + xd->hqos_ht->pkts_enq_len = 0; + xd->hqos_ht->swq_pos = 0; + xd->hqos_ht->flush_count = 0; + + /* Set up per-thread device data for each worker thread */ + for (i = 0; i < worker_thread_count + 1; i++) + { + u32 tid; + if (i) + tid = worker_thread_first + (i - 1); + else + tid = i; + + xd->hqos_wt[tid].swq = xd->hqos_ht->swq[i]; + xd->hqos_wt[tid].hqos_field0_slabpos = hqos->pktfield0_slabpos; + xd->hqos_wt[tid].hqos_field0_slabmask = hqos->pktfield0_slabmask; + xd->hqos_wt[tid].hqos_field0_slabshr = + __builtin_ctzll (hqos->pktfield0_slabmask); + xd->hqos_wt[tid].hqos_field1_slabpos = hqos->pktfield1_slabpos; + xd->hqos_wt[tid].hqos_field1_slabmask = hqos->pktfield1_slabmask; + xd->hqos_wt[tid].hqos_field1_slabshr = + __builtin_ctzll (hqos->pktfield1_slabmask); + xd->hqos_wt[tid].hqos_field2_slabpos = hqos->pktfield2_slabpos; + xd->hqos_wt[tid].hqos_field2_slabmask = hqos->pktfield2_slabmask; + xd->hqos_wt[tid].hqos_field2_slabshr = + __builtin_ctzll (hqos->pktfield2_slabmask); + memcpy (xd->hqos_wt[tid].hqos_tc_table, hqos->tc_table, + sizeof (hqos->tc_table)); + } + + return 0; +} + +/*** + * + * HQoS run-time + * + ***/ +/* + * dpdk_hqos_thread - Contains the main loop of an HQoS thread. + * + * w + * Information for the current thread + */ +static_always_inline void +dpdk_hqos_thread_internal_hqos_dbg_bypass (vlib_main_t * vm) +{ + dpdk_main_t *dm = &dpdk_main; + u32 thread_index = vm->thread_index; + u32 dev_pos; + + dev_pos = 0; + while (1) + { + vlib_worker_thread_barrier_check (); + + u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]); + if (dev_pos >= n_devs) + dev_pos = 0; + + dpdk_device_and_queue_t *dq = + vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos); + dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device); + + dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht; + u32 device_index = xd->device_index; + u16 queue_id = dq->queue_id; + + struct rte_mbuf **pkts_enq = hqos->pkts_enq; + u32 pkts_enq_len = hqos->pkts_enq_len; + u32 swq_pos = hqos->swq_pos; + u32 n_swq = vec_len (hqos->swq), i; + u32 flush_count = hqos->flush_count; + + for (i = 0; i < n_swq; i++) + { + /* Get current SWQ for this device */ + struct rte_ring *swq = hqos->swq[swq_pos]; + + /* Read SWQ burst to packet buffer of this device */ + pkts_enq_len += rte_ring_sc_dequeue_burst (swq, + (void **) + &pkts_enq[pkts_enq_len], + hqos->hqos_burst_enq, 0); + + /* Get next SWQ for this device */ + swq_pos++; + if (swq_pos >= n_swq) + swq_pos = 0; + hqos->swq_pos = swq_pos; + + /* HWQ TX enqueue when burst available */ + if (pkts_enq_len >= hqos->hqos_burst_enq) + { + u32 n_pkts = rte_eth_tx_burst (device_index, + (uint16_t) queue_id, + pkts_enq, + (uint16_t) pkts_enq_len); + + for (; n_pkts < pkts_enq_len; n_pkts++) + rte_pktmbuf_free (pkts_enq[n_pkts]); + + pkts_enq_len = 0; + flush_count = 0; + break; + } + } + if (pkts_enq_len) + { + flush_count++; + if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD)) + { + rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len); + + pkts_enq_len = 0; + flush_count = 0; + } + } + hqos->pkts_enq_len = pkts_enq_len; + hqos->flush_count = flush_count; + + /* Advance to next device */ + dev_pos++; + } +} + +static_always_inline void +dpdk_hqos_thread_internal (vlib_main_t * vm) +{ + dpdk_main_t *dm = &dpdk_main; + u32 thread_index = vm->thread_index; + u32 dev_pos; + + dev_pos = 0; + while (1) + { + vlib_worker_thread_barrier_check (); + + u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]); + if (PREDICT_FALSE (n_devs == 0)) + { + dev_pos = 0; + continue; + } + if (dev_pos >= n_devs) + dev_pos = 0; + + dpdk_device_and_queue_t *dq = + vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos); + dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device); + + dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht; + u32 device_index = xd->device_index; + u16 queue_id = dq->queue_id; + + struct rte_mbuf **pkts_enq = hqos->pkts_enq; + struct rte_mbuf **pkts_deq = hqos->pkts_deq; + u32 pkts_enq_len = hqos->pkts_enq_len; + u32 swq_pos = hqos->swq_pos; + u32 n_swq = vec_len (hqos->swq), i; + u32 flush_count = hqos->flush_count; + + /* + * SWQ dequeue and HQoS enqueue for current device + */ + for (i = 0; i < n_swq; i++) + { + /* Get current SWQ for this device */ + struct rte_ring *swq = hqos->swq[swq_pos]; + + /* Read SWQ burst to packet buffer of this device */ + pkts_enq_len += rte_ring_sc_dequeue_burst (swq, + (void **) + &pkts_enq[pkts_enq_len], + hqos->hqos_burst_enq, 0); + + /* Get next SWQ for this device */ + swq_pos++; + if (swq_pos >= n_swq) + swq_pos = 0; + hqos->swq_pos = swq_pos; + + /* HQoS enqueue when burst available */ + if (pkts_enq_len >= hqos->hqos_burst_enq) + { + rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len); + + pkts_enq_len = 0; + flush_count = 0; + break; + } + } + if (pkts_enq_len) + { + flush_count++; + if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD)) + { + rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len); + + pkts_enq_len = 0; + flush_count = 0; + } + } + hqos->pkts_enq_len = pkts_enq_len; + hqos->flush_count = flush_count; + + /* + * HQoS dequeue and HWQ TX enqueue for current device + */ + { + u32 pkts_deq_len, n_pkts; + + pkts_deq_len = rte_sched_port_dequeue (hqos->hqos, + pkts_deq, + hqos->hqos_burst_deq); + + for (n_pkts = 0; n_pkts < pkts_deq_len;) + n_pkts += rte_eth_tx_burst (device_index, + (uint16_t) queue_id, + &pkts_deq[n_pkts], + (uint16_t) (pkts_deq_len - n_pkts)); + } + + /* Advance to next device */ + dev_pos++; + } +} + +void +dpdk_hqos_thread (vlib_worker_thread_t * w) +{ + vlib_main_t *vm; + vlib_thread_main_t *tm = vlib_get_thread_main (); + dpdk_main_t *dm = &dpdk_main; + + vm = vlib_get_main (); + + ASSERT (vm->thread_index == vlib_get_thread_index ()); + + clib_time_init (&vm->clib_time); + clib_mem_set_heap (w->thread_mheap); + + /* Wait until the dpdk init sequence is complete */ + while (tm->worker_thread_release == 0) + vlib_worker_thread_barrier_check (); + + if (vec_len (dm->devices_by_hqos_cpu[vm->thread_index]) == 0) + return + clib_error + ("current I/O TX thread does not have any devices assigned to it"); + + if (DPDK_HQOS_DBG_BYPASS) + dpdk_hqos_thread_internal_hqos_dbg_bypass (vm); + else + dpdk_hqos_thread_internal (vm); +} + +void +dpdk_hqos_thread_fn (void *arg) +{ + vlib_worker_thread_t *w = (vlib_worker_thread_t *) arg; + vlib_worker_thread_init (w); + dpdk_hqos_thread (w); +} + +/* *INDENT-OFF* */ +VLIB_REGISTER_THREAD (hqos_thread_reg, static) = +{ + .name = "hqos-threads", + .short_name = "hqos-threads", + .function = dpdk_hqos_thread_fn, +}; +/* *INDENT-ON* */ + +/* + * HQoS run-time code to be called by the worker threads + */ +#define BITFIELD(byte_array, slab_pos, slab_mask, slab_shr) \ +({ \ + u64 slab = *((u64 *) &byte_array[slab_pos]); \ + u64 val = (rte_be_to_cpu_64(slab) & slab_mask) >> slab_shr; \ + val; \ +}) + +#define RTE_SCHED_PORT_HIERARCHY(subport, pipe, traffic_class, queue, color) \ + ((((u64) (queue)) & 0x3) | \ + ((((u64) (traffic_class)) & 0x3) << 2) | \ + ((((u64) (color)) & 0x3) << 4) | \ + ((((u64) (subport)) & 0xFFFF) << 16) | \ + ((((u64) (pipe)) & 0xFFFFFFFF) << 32)) + +void +dpdk_hqos_metadata_set (dpdk_device_hqos_per_worker_thread_t * hqos, + struct rte_mbuf **pkts, u32 n_pkts) +{ + u32 i; + + for (i = 0; i < (n_pkts & (~0x3)); i += 4) + { + struct rte_mbuf *pkt0 = pkts[i]; + struct rte_mbuf *pkt1 = pkts[i + 1]; + struct rte_mbuf *pkt2 = pkts[i + 2]; + struct rte_mbuf *pkt3 = pkts[i + 3]; + + u8 *pkt0_data = rte_pktmbuf_mtod (pkt0, u8 *); + u8 *pkt1_data = rte_pktmbuf_mtod (pkt1, u8 *); + u8 *pkt2_data = rte_pktmbuf_mtod (pkt2, u8 *); + u8 *pkt3_data = rte_pktmbuf_mtod (pkt3, u8 *); + + u64 pkt0_subport = BITFIELD (pkt0_data, hqos->hqos_field0_slabpos, + hqos->hqos_field0_slabmask, + hqos->hqos_field0_slabshr); + u64 pkt0_pipe = BITFIELD (pkt0_data, hqos->hqos_field1_slabpos, + hqos->hqos_field1_slabmask, + hqos->hqos_field1_slabshr); + u64 pkt0_dscp = BITFIELD (pkt0_data, hqos->hqos_field2_slabpos, + hqos->hqos_field2_slabmask, + hqos->hqos_field2_slabshr); + u32 pkt0_tc = hqos->hqos_tc_table[pkt0_dscp & 0x3F] >> 2; + u32 pkt0_tc_q = hqos->hqos_tc_table[pkt0_dscp & 0x3F] & 0x3; + + u64 pkt1_subport = BITFIELD (pkt1_data, hqos->hqos_field0_slabpos, + hqos->hqos_field0_slabmask, + hqos->hqos_field0_slabshr); + u64 pkt1_pipe = BITFIELD (pkt1_data, hqos->hqos_field1_slabpos, + hqos->hqos_field1_slabmask, + hqos->hqos_field1_slabshr); + u64 pkt1_dscp = BITFIELD (pkt1_data, hqos->hqos_field2_slabpos, + hqos->hqos_field2_slabmask, + hqos->hqos_field2_slabshr); + u32 pkt1_tc = hqos->hqos_tc_table[pkt1_dscp & 0x3F] >> 2; + u32 pkt1_tc_q = hqos->hqos_tc_table[pkt1_dscp & 0x3F] & 0x3; + + u64 pkt2_subport = BITFIELD (pkt2_data, hqos->hqos_field0_slabpos, + hqos->hqos_field0_slabmask, + hqos->hqos_field0_slabshr); + u64 pkt2_pipe = BITFIELD (pkt2_data, hqos->hqos_field1_slabpos, + hqos->hqos_field1_slabmask, + hqos->hqos_field1_slabshr); + u64 pkt2_dscp = BITFIELD (pkt2_data, hqos->hqos_field2_slabpos, + hqos->hqos_field2_slabmask, + hqos->hqos_field2_slabshr); + u32 pkt2_tc = hqos->hqos_tc_table[pkt2_dscp & 0x3F] >> 2; + u32 pkt2_tc_q = hqos->hqos_tc_table[pkt2_dscp & 0x3F] & 0x3; + + u64 pkt3_subport = BITFIELD (pkt3_data, hqos->hqos_field0_slabpos, + hqos->hqos_field0_slabmask, + hqos->hqos_field0_slabshr); + u64 pkt3_pipe = BITFIELD (pkt3_data, hqos->hqos_field1_slabpos, + hqos->hqos_field1_slabmask, + hqos->hqos_field1_slabshr); + u64 pkt3_dscp = BITFIELD (pkt3_data, hqos->hqos_field2_slabpos, + hqos->hqos_field2_slabmask, + hqos->hqos_field2_slabshr); + u32 pkt3_tc = hqos->hqos_tc_table[pkt3_dscp & 0x3F] >> 2; + u32 pkt3_tc_q = hqos->hqos_tc_table[pkt3_dscp & 0x3F] & 0x3; + + u64 pkt0_sched = RTE_SCHED_PORT_HIERARCHY (pkt0_subport, + pkt0_pipe, + pkt0_tc, + pkt0_tc_q, + 0); + u64 pkt1_sched = RTE_SCHED_PORT_HIERARCHY (pkt1_subport, + pkt1_pipe, + pkt1_tc, + pkt1_tc_q, + 0); + u64 pkt2_sched = RTE_SCHED_PORT_HIERARCHY (pkt2_subport, + pkt2_pipe, + pkt2_tc, + pkt2_tc_q, + 0); + u64 pkt3_sched = RTE_SCHED_PORT_HIERARCHY (pkt3_subport, + pkt3_pipe, + pkt3_tc, + pkt3_tc_q, + 0); + + pkt0->hash.sched.lo = pkt0_sched & 0xFFFFFFFF; + pkt0->hash.sched.hi = pkt0_sched >> 32; + pkt1->hash.sched.lo = pkt1_sched & 0xFFFFFFFF; + pkt1->hash.sched.hi = pkt1_sched >> 32; + pkt2->hash.sched.lo = pkt2_sched & 0xFFFFFFFF; + pkt2->hash.sched.hi = pkt2_sched >> 32; + pkt3->hash.sched.lo = pkt3_sched & 0xFFFFFFFF; + pkt3->hash.sched.hi = pkt3_sched >> 32; + } + + for (; i < n_pkts; i++) + { + struct rte_mbuf *pkt = pkts[i]; + + u8 *pkt_data = rte_pktmbuf_mtod (pkt, u8 *); + + u64 pkt_subport = BITFIELD (pkt_data, hqos->hqos_field0_slabpos, + hqos->hqos_field0_slabmask, + hqos->hqos_field0_slabshr); + u64 pkt_pipe = BITFIELD (pkt_data, hqos->hqos_field1_slabpos, + hqos->hqos_field1_slabmask, + hqos->hqos_field1_slabshr); + u64 pkt_dscp = BITFIELD (pkt_data, hqos->hqos_field2_slabpos, + hqos->hqos_field2_slabmask, + hqos->hqos_field2_slabshr); + u32 pkt_tc = hqos->hqos_tc_table[pkt_dscp & 0x3F] >> 2; + u32 pkt_tc_q = hqos->hqos_tc_table[pkt_dscp & 0x3F] & 0x3; + + u64 pkt_sched = RTE_SCHED_PORT_HIERARCHY (pkt_subport, + pkt_pipe, + pkt_tc, + pkt_tc_q, + 0); + + pkt->hash.sched.lo = pkt_sched & 0xFFFFFFFF; + pkt->hash.sched.hi = pkt_sched >> 32; + } +} + +/* + * fd.io coding-style-patch-verification: ON + * + * Local Variables: + * eval: (c-set-style "gnu") + * End: + */ diff --git a/src/plugins/dpdk/hqos/qos_doc.md b/src/plugins/dpdk/hqos/qos_doc.md new file mode 100644 index 00000000..7c064246 --- /dev/null +++ b/src/plugins/dpdk/hqos/qos_doc.md @@ -0,0 +1,411 @@ +# QoS Hierarchical Scheduler {#qos_doc} + +The Quality-of-Service (QoS) scheduler performs egress-traffic management by +prioritizing the transmission of the packets of different type services and +subcribers based on the Service Level Agreements (SLAs). The QoS scheduler can +be enabled on one or more NIC output interfaces depending upon the +requirement. + + +## Overview + +The QoS schdeuler supports a number of scheduling and shaping levels which +construct hierarchical-tree. The first level in the hierarchy is port (i.e. +the physical interface) that constitutes the root node of the tree. The +subsequent level is subport which represents the group of the +users/subscribers. The individual user/subscriber is represented by the pipe +at the next level. Each user can have different traffic type based on the +criteria of specific loss rate, jitter, and latency. These traffic types are +represented at the traffic-class level in the form of different traffic- +classes. The last level contains number of queues which are grouped together +to host the packets of the specific class type traffic. + +The QoS scheduler implementation requires flow classification, enqueue and +dequeue operations. The flow classification is mandatory stage for HQoS where +incoming packets are classified by mapping the packet fields information to +5-tuple (HQoS subport, pipe, traffic class, queue within traffic class, and +color) and storing that information in mbuf sched field. The enqueue operation +uses this information to determine the queue for storing the packet, and at +this stage, if the specific queue is full, QoS drops the packet. The dequeue +operation consists of scheduling the packet based on its length and available +credits, and handing over the scheduled packet to the output interface. + +For more information on QoS Scheduler, please refer DPDK Programmer's Guide- +http://dpdk.org/doc/guides/prog_guide/qos_framework.html + + +### QoS Schdeuler Parameters + +Following illustrates the default HQoS configuration for each 10GbE output +port: + +Single subport (subport 0): + - Subport rate set to 100% of port rate + - Each of the 4 traffic classes has rate set to 100% of port rate + +4K pipes per subport 0 (pipes 0 .. 4095) with identical configuration: + - Pipe rate set to 1/4K of port rate + - Each of the 4 traffic classes has rate set to 100% of pipe rate + - Within each traffic class, the byte-level WRR weights for the 4 queues are set to 1:1:1:1 + + +#### Port configuration + +``` +port { + rate 1250000000 /* Assuming 10GbE port */ + frame_overhead 24 /* Overhead fields per Ethernet frame: + * 7B (Preamble) + + * 1B (Start of Frame Delimiter (SFD)) + + * 4B (Frame Check Sequence (FCS)) + + * 12B (Inter Frame Gap (IFG)) + */ + mtu 1522 /* Assuming Ethernet/IPv4 pkt (FCS not included) */ + n_subports_per_port 1 /* Number of subports per output interface */ + n_pipes_per_subport 4096 /* Number of pipes (users/subscribers) */ + queue_sizes 64 64 64 64 /* Packet queue size for each traffic class. + * All queues within the same pipe traffic class + * have the same size. Queues from different + * pipes serving the same traffic class have + * the same size. */ +} +``` + + +#### Subport configuration + +``` +subport 0 { + tb_rate 1250000000 /* Subport level token bucket rate (bytes per second) */ + tb_size 1000000 /* Subport level token bucket size (bytes) */ + tc0_rate 1250000000 /* Subport level token bucket rate for traffic class 0 (bytes per second) */ + tc1_rate 1250000000 /* Subport level token bucket rate for traffic class 1 (bytes per second) */ + tc2_rate 1250000000 /* Subport level token bucket rate for traffic class 2 (bytes per second) */ + tc3_rate 1250000000 /* Subport level token bucket rate for traffic class 3 (bytes per second) */ + tc_period 10 /* Time interval for refilling the token bucket associated with traffic class (Milliseconds) */ + pipe 0 4095 profile 0 /* pipes (users/subscribers) configured with pipe profile 0 */ +} +``` + + +#### Pipe configuration + +``` +pipe_profile 0 { + tb_rate 305175 /* Pipe level token bucket rate (bytes per second) */ + tb_size 1000000 /* Pipe level token bucket size (bytes) */ + tc0_rate 305175 /* Pipe level token bucket rate for traffic class 0 (bytes per second) */ + tc1_rate 305175 /* Pipe level token bucket rate for traffic class 1 (bytes per second) */ + tc2_rate 305175 /* Pipe level token bucket rate for traffic class 2 (bytes per second) */ + tc3_rate 305175 /* Pipe level token bucket rate for traffic class 3 (bytes per second) */ + tc_period 40 /* Time interval for refilling the token bucket associated with traffic class at pipe level (Milliseconds) */ + tc3_oversubscription_weight 1 /* Weight traffic class 3 oversubscription */ + tc0_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 0 */ + tc1_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 1 */ + tc2_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 2 */ + tc3_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 3 */ +} +``` + + +#### Random Early Detection (RED) parameters per traffic class and color (Green / Yellow / Red) + +``` +red { + tc0_wred_min 48 40 32 /* Minimum threshold for traffic class 0 queue (min_th) in number of packets */ + tc0_wred_max 64 64 64 /* Maximum threshold for traffic class 0 queue (max_th) in number of packets */ + tc0_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 0 queue (maxp = 1 / maxp_inv) */ + tc0_wred_weight 9 9 9 /* Traffic Class 0 queue weight */ + tc1_wred_min 48 40 32 /* Minimum threshold for traffic class 1 queue (min_th) in number of packets */ + tc1_wred_max 64 64 64 /* Maximum threshold for traffic class 1 queue (max_th) in number of packets */ + tc1_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 1 queue (maxp = 1 / maxp_inv) */ + tc1_wred_weight 9 9 9 /* Traffic Class 1 queue weight */ + tc2_wred_min 48 40 32 /* Minimum threshold for traffic class 2 queue (min_th) in number of packets */ + tc2_wred_max 64 64 64 /* Maximum threshold for traffic class 2 queue (max_th) in number of packets */ + tc2_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 2 queue (maxp = 1 / maxp_inv) */ + tc2_wred_weight 9 9 9 /* Traffic Class 2 queue weight */ + tc3_wred_min 48 40 32 /* Minimum threshold for traffic class 3 queue (min_th) in number of packets */ + tc3_wred_max 64 64 64 /* Maximum threshold for traffic class 3 queue (max_th) in number of packets */ + tc3_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 3 queue (maxp = 1 / maxp_inv) */ + tc3_wred_weight 9 9 9 /* Traffic Class 3 queue weight */ +} +``` + + +### DPDK QoS Scheduler Integration in VPP + +The Hierarchical Quaity-of-Service (HQoS) scheduler object could be seen as +part of the logical NIC output interface. To enable HQoS on specific output +interface, vpp startup.conf file has to be configured accordingly. The output +interface that requires HQoS, should have "hqos" parameter specified in dpdk +section. Another optional parameter "hqos-thread" has been defined which can +be used to associate the output interface with specific hqos thread. In cpu +section of the config file, "corelist-hqos-threads" is introduced to assign +logical cpu cores to run the HQoS threads. A HQoS thread can run multiple HQoS +objects each associated with different output interfaces. All worker threads +instead of writing packets to NIC TX queue directly, write the packets to a +software queues. The hqos_threads read the software queues, and enqueue the +packets to HQoS objects, as well as dequeue packets from HQOS objects and +write them to NIC output interfaces. The worker threads need to be able to +send the packets to any output interface, therefore, each HQoS object +associated with NIC output interface should have software queues equal to +worker threads count. + +Following illustrates the sample startup configuration file with 4x worker +threads feeding 2x hqos threads that handle each QoS scheduler for 1x output +interface. + +``` +dpdk { + socket-mem 16384,16384 + + dev 0000:02:00.0 { + num-rx-queues 2 + hqos + } + dev 0000:06:00.0 { + num-rx-queues 2 + hqos + } + + num-mbufs 1000000 +} + +cpu { + main-core 0 + corelist-workers 1, 2, 3, 4 + corelist-hqos-threads 5, 6 +} +``` + + +### QoS scheduler CLI Commands + +Each QoS scheduler instance is initialised with default parameters required to +configure hqos port, subport, pipe and queues. Some of the parameters can be +re-configured in run-time through CLI commands. + + +#### Configuration + +Following commands can be used to configure QoS scheduler parameters. + +The command below can be used to set the subport level parameters such as +token bucket rate (bytes per seconds), token bucket size (bytes), traffic +class rates (bytes per seconds) and token update period (Milliseconds). + +``` +set dpdk interface hqos subport <interface> subport <subport_id> [rate <n>] + [bktsize <n>] [tc0 <n>] [tc1 <n>] [tc2 <n>] [tc3 <n>] [period <n>] +``` + +For setting the pipe profile, following command can be used. + +``` +set dpdk interface hqos pipe <interface> subport <subport_id> pipe <pipe_id> + profile <profile_id> +``` + +To assign QoS scheduler instance to the specific thread, following command can +be used. + +``` +set dpdk interface hqos placement <interface> thread <n> +``` + +The command below is used to set the packet fields required for classifiying +the incoming packet. As a result of classification process, packet field +information will be mapped to 5 tuples (subport, pipe, traffic class, pipe, +color) and stored in packet mbuf. + +``` +set dpdk interface hqos pktfield <interface> id subport|pipe|tc offset <n> + mask <hex-mask> +``` + +The DSCP table entries used for idenfiying the traffic class and queue can be set using the command below; + +``` +set dpdk interface hqos tctbl <interface> entry <map_val> tc <tc_id> queue <queue_id> +``` + + +#### Show Command + +The QoS Scheduler configuration can displayed using the command below. + +``` + vpp# show dpdk interface hqos TenGigabitEthernet2/0/0 + Thread: + Input SWQ size = 4096 packets + Enqueue burst size = 256 packets + Dequeue burst size = 220 packets + Packet field 0: slab position = 0, slab bitmask = 0x0000000000000000 (subport) + Packet field 1: slab position = 40, slab bitmask = 0x0000000fff000000 (pipe) + Packet field 2: slab position = 8, slab bitmask = 0x00000000000000fc (tc) + Packet field 2 tc translation table: ([Mapped Value Range]: tc/queue tc/queue ...) + [ 0 .. 15]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 + [16 .. 31]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 + [32 .. 47]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 + [48 .. 63]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3 + Port: + Rate = 1250000000 bytes/second + MTU = 1514 bytes + Frame overhead = 24 bytes + Number of subports = 1 + Number of pipes per subport = 4096 + Packet queue size: TC0 = 64, TC1 = 64, TC2 = 64, TC3 = 64 packets + Number of pipe profiles = 1 + Subport 0: + Rate = 120000000 bytes/second + Token bucket size = 1000000 bytes + Traffic class rate: TC0 = 120000000, TC1 = 120000000, TC2 = 120000000, TC3 = 120000000 bytes/second + TC period = 10 milliseconds + Pipe profile 0: + Rate = 305175 bytes/second + Token bucket size = 1000000 bytes + Traffic class rate: TC0 = 305175, TC1 = 305175, TC2 = 305175, TC3 = 305175 bytes/second + TC period = 40 milliseconds + TC0 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1 + TC1 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1 + TC2 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1 + TC3 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1 +``` + +The QoS Scheduler placement over the logical cpu cores can be displayed using +below command. + +``` + vpp# show dpdk interface hqos placement + Thread 5 (vpp_hqos-threads_0 at lcore 5): + TenGigabitEthernet2/0/0 queue 0 + Thread 6 (vpp_hqos-threads_1 at lcore 6): + TenGigabitEthernet4/0/1 queue 0 +``` + + +### QoS Scheduler Binary APIs + +This section explans the available binary APIs for configuring QoS scheduler +parameters in run-time. + +The following API can be used to set the pipe profile of a pipe that belongs +to a given subport: + +``` +sw_interface_set_dpdk_hqos_pipe rx <intfc> | sw_if_index <id> + subport <subport-id> pipe <pipe-id> profile <profile-id> +``` + +The data structures used for set the pipe profile parameter are as follows; + +``` + /** \\brief DPDK interface HQoS pipe profile set request + @param client_index - opaque cookie to identify the sender + @param context - sender context, to match reply w/ request + @param sw_if_index - the interface + @param subport - subport ID + @param pipe - pipe ID within its subport + @param profile - pipe profile ID + */ + define sw_interface_set_dpdk_hqos_pipe { + u32 client_index; + u32 context; + u32 sw_if_index; + u32 subport; + u32 pipe; + u32 profile; + }; + + /** \\brief DPDK interface HQoS pipe profile set reply + @param context - sender context, to match reply w/ request + @param retval - request return code + */ + define sw_interface_set_dpdk_hqos_pipe_reply { + u32 context; + i32 retval; + }; +``` + +The following API can be used to set the subport level parameters, for +example- token bucket rate (bytes per seconds), token bucket size (bytes), +traffic class rate (bytes per seconds) and tokens update period. + +``` +sw_interface_set_dpdk_hqos_subport rx <intfc> | sw_if_index <id> + subport <subport-id> [rate <n>] [bktsize <n>] + [tc0 <n>] [tc1 <n>] [tc2 <n>] [tc3 <n>] [period <n>] +``` + +The data structures used for set the subport level parameter are as follows; + +``` + /** \\brief DPDK interface HQoS subport parameters set request + @param client_index - opaque cookie to identify the sender + @param context - sender context, to match reply w/ request + @param sw_if_index - the interface + @param subport - subport ID + @param tb_rate - subport token bucket rate (measured in bytes/second) + @param tb_size - subport token bucket size (measured in credits) + @param tc_rate - subport traffic class 0 .. 3 rates (measured in bytes/second) + @param tc_period - enforcement period for rates (measured in milliseconds) + */ + define sw_interface_set_dpdk_hqos_subport { + u32 client_index; + u32 context; + u32 sw_if_index; + u32 subport; + u32 tb_rate; + u32 tb_size; + u32 tc_rate[4]; + u32 tc_period; + }; + + /** \\brief DPDK interface HQoS subport parameters set reply + @param context - sender context, to match reply w/ request + @param retval - request return code + */ + define sw_interface_set_dpdk_hqos_subport_reply { + u32 context; + i32 retval; + }; +``` + +The following API can be used set the DSCP table entry. The DSCP table have +64 entries to map the packet DSCP field onto traffic class and hqos input +queue. + +``` +sw_interface_set_dpdk_hqos_tctbl rx <intfc> | sw_if_index <id> + entry <n> tc <n> queue <n> +``` + +The data structures used for setting DSCP table entries are given below. + +``` + /** \\brief DPDK interface HQoS tctbl entry set request + @param client_index - opaque cookie to identify the sender + @param context - sender context, to match reply w/ request + @param sw_if_index - the interface + @param entry - entry index ID + @param tc - traffic class (0 .. 3) + @param queue - traffic class queue (0 .. 3) + */ + define sw_interface_set_dpdk_hqos_tctbl { + u32 client_index; + u32 context; + u32 sw_if_index; + u32 entry; + u32 tc; + u32 queue; + }; + + /** \\brief DPDK interface HQoS tctbl entry set reply + @param context - sender context, to match reply w/ request + @param retval - request return code + */ + define sw_interface_set_dpdk_hqos_tctbl_reply { + u32 context; + i32 retval; + }; +``` |