diff options
author | Ido Barnea <ibarnea@cisco.com> | 2016-07-13 14:17:09 +0300 |
---|---|---|
committer | Ido Barnea <ibarnea@cisco.com> | 2016-07-24 14:00:31 +0300 |
commit | a551c94a6069f30617825f9046d36099846ab7ec (patch) | |
tree | 005c42cdc50eda621a93dc7dc7b8611b8bb97380 /src/dpdk/drivers/net/e1000/base/e1000_phy.c | |
parent | 47906bbc49195f2ef2ed44cd54337feb87f7dbc3 (diff) |
dpdk0716 rc3
Diffstat (limited to 'src/dpdk/drivers/net/e1000/base/e1000_phy.c')
-rw-r--r-- | src/dpdk/drivers/net/e1000/base/e1000_phy.c | 4260 |
1 files changed, 4260 insertions, 0 deletions
diff --git a/src/dpdk/drivers/net/e1000/base/e1000_phy.c b/src/dpdk/drivers/net/e1000/base/e1000_phy.c new file mode 100644 index 00000000..33f478b1 --- /dev/null +++ b/src/dpdk/drivers/net/e1000/base/e1000_phy.c @@ -0,0 +1,4260 @@ +/******************************************************************************* + +Copyright (c) 2001-2015, Intel Corporation +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + 3. Neither the name of the Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE +LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR +CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF +SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN +CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE +POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include "e1000_api.h" + +STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw); +STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set); +STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page); +STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read); + +/* Cable length tables */ +STATIC const u16 e1000_m88_cable_length_table[] = { + 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; +#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_m88_cable_length_table) / \ + sizeof(e1000_m88_cable_length_table[0])) + +STATIC const u16 e1000_igp_2_cable_length_table[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, + 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, + 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, + 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, + 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, + 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, + 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, + 124}; +#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ + (sizeof(e1000_igp_2_cable_length_table) / \ + sizeof(e1000_igp_2_cable_length_table[0])) + +/** + * e1000_init_phy_ops_generic - Initialize PHY function pointers + * @hw: pointer to the HW structure + * + * Setups up the function pointers to no-op functions + **/ +void e1000_init_phy_ops_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + DEBUGFUNC("e1000_init_phy_ops_generic"); + + /* Initialize function pointers */ + phy->ops.init_params = e1000_null_ops_generic; + phy->ops.acquire = e1000_null_ops_generic; + phy->ops.check_polarity = e1000_null_ops_generic; + phy->ops.check_reset_block = e1000_null_ops_generic; + phy->ops.commit = e1000_null_ops_generic; + phy->ops.force_speed_duplex = e1000_null_ops_generic; + phy->ops.get_cfg_done = e1000_null_ops_generic; + phy->ops.get_cable_length = e1000_null_ops_generic; + phy->ops.get_info = e1000_null_ops_generic; + phy->ops.set_page = e1000_null_set_page; + phy->ops.read_reg = e1000_null_read_reg; + phy->ops.read_reg_locked = e1000_null_read_reg; + phy->ops.read_reg_page = e1000_null_read_reg; + phy->ops.release = e1000_null_phy_generic; + phy->ops.reset = e1000_null_ops_generic; + phy->ops.set_d0_lplu_state = e1000_null_lplu_state; + phy->ops.set_d3_lplu_state = e1000_null_lplu_state; + phy->ops.write_reg = e1000_null_write_reg; + phy->ops.write_reg_locked = e1000_null_write_reg; + phy->ops.write_reg_page = e1000_null_write_reg; + phy->ops.power_up = e1000_null_phy_generic; + phy->ops.power_down = e1000_null_phy_generic; + phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; + phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; + phy->ops.cfg_on_link_up = e1000_null_ops_generic; +} + +/** + * e1000_null_set_page - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, + u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_set_page"); + UNREFERENCED_2PARAMETER(hw, data); + return E1000_SUCCESS; +} + +/** + * e1000_null_read_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_null_read_reg"); + UNREFERENCED_3PARAMETER(hw, offset, data); + return E1000_SUCCESS; +} + +/** + * e1000_null_phy_generic - No-op function, return void + * @hw: pointer to the HW structure + **/ +void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_null_phy_generic"); + UNREFERENCED_1PARAMETER(hw); + return; +} + +/** + * e1000_null_lplu_state - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, + bool E1000_UNUSEDARG active) +{ + DEBUGFUNC("e1000_null_lplu_state"); + UNREFERENCED_2PARAMETER(hw, active); + return E1000_SUCCESS; +} + +/** + * e1000_null_write_reg - No-op function, return 0 + * @hw: pointer to the HW structure + **/ +s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, + u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_null_write_reg"); + UNREFERENCED_3PARAMETER(hw, offset, data); + return E1000_SUCCESS; +} + +/** + * e1000_read_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value read + * + **/ +s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG *data) +{ + DEBUGFUNC("e1000_read_i2c_byte_null"); + UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); + return E1000_SUCCESS; +} + +/** + * e1000_write_i2c_byte_null - No-op function, return 0 + * @hw: pointer to hardware structure + * @byte_offset: byte offset to write + * @dev_addr: device address + * @data: data value to write + * + **/ +s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, + u8 E1000_UNUSEDARG byte_offset, + u8 E1000_UNUSEDARG dev_addr, + u8 E1000_UNUSEDARG data) +{ + DEBUGFUNC("e1000_write_i2c_byte_null"); + UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); + return E1000_SUCCESS; +} + +/** + * e1000_check_reset_block_generic - Check if PHY reset is blocked + * @hw: pointer to the HW structure + * + * Read the PHY management control register and check whether a PHY reset + * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise + * return E1000_BLK_PHY_RESET (12). + **/ +s32 e1000_check_reset_block_generic(struct e1000_hw *hw) +{ + u32 manc; + + DEBUGFUNC("e1000_check_reset_block"); + + manc = E1000_READ_REG(hw, E1000_MANC); + + return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? + E1000_BLK_PHY_RESET : E1000_SUCCESS; +} + +/** + * e1000_get_phy_id - Retrieve the PHY ID and revision + * @hw: pointer to the HW structure + * + * Reads the PHY registers and stores the PHY ID and possibly the PHY + * revision in the hardware structure. + **/ +s32 e1000_get_phy_id(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val = E1000_SUCCESS; + u16 phy_id; + u16 retry_count = 0; + + DEBUGFUNC("e1000_get_phy_id"); + + if (!phy->ops.read_reg) + return E1000_SUCCESS; + + while (retry_count < 2) { + ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); + if (ret_val) + return ret_val; + + phy->id = (u32)(phy_id << 16); + usec_delay(20); + ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); + if (ret_val) + return ret_val; + + phy->id |= (u32)(phy_id & PHY_REVISION_MASK); + phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); + + if (phy->id != 0 && phy->id != PHY_REVISION_MASK) + return E1000_SUCCESS; + + retry_count++; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_reset_dsp_generic - Reset PHY DSP + * @hw: pointer to the HW structure + * + * Reset the digital signal processor. + **/ +s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) +{ + s32 ret_val; + + DEBUGFUNC("e1000_phy_reset_dsp_generic"); + + if (!hw->phy.ops.write_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); +} + +/** + * e1000_read_phy_reg_mdic - Read MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the MDI control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_read_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + *data = (u16) mdic; + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay_irq(100); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_mdic - Write MDI control register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write to register at offset + * + * Writes data to MDI control register in the PHY at offset. + **/ +s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, mdic = 0; + + DEBUGFUNC("e1000_write_phy_reg_mdic"); + + if (offset > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", offset); + return -E1000_ERR_PARAM; + } + + /* Set up Op-code, Phy Address, and register offset in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = (((u32)data) | + (offset << E1000_MDIC_REG_SHIFT) | + (phy->addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + E1000_WRITE_REG(hw, E1000_MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed + * Increasing the time out as testing showed failures with + * the lower time out + */ + for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { + usec_delay_irq(50); + mdic = E1000_READ_REG(hw, E1000_MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { + DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", + offset, + (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); + return -E1000_ERR_PHY; + } + + /* Allow some time after each MDIC transaction to avoid + * reading duplicate data in the next MDIC transaction. + */ + if (hw->mac.type == e1000_pch2lan) + usec_delay_irq(100); + + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_i2c - Read PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the i2c interface and stores the + * retrieved information in data. + **/ +s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + + DEBUGFUNC("e1000_read_phy_reg_i2c"); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + (E1000_I2CCMD_OPCODE_READ)); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + /* Need to byte-swap the 16-bit value. */ + *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_i2c - Write PHY register using i2c + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset using the i2c interface. + **/ +s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) +{ + struct e1000_phy_info *phy = &hw->phy; + u32 i, i2ccmd = 0; + u16 phy_data_swapped; + + DEBUGFUNC("e1000_write_phy_reg_i2c"); + + /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ + if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { + DEBUGOUT1("PHY I2C Address %d is out of range.\n", + hw->phy.addr); + return -E1000_ERR_CONFIG; + } + + /* Swap the data bytes for the I2C interface */ + phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); + + /* Set up Op-code, Phy Address, and register address in the I2CCMD + * register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | + phy_data_swapped); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) + break; + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + + return E1000_SUCCESS; +} + +/** + * e1000_read_sfp_data_byte - Reads SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to be read + * @data: read data buffer pointer + * + * Reads one byte from SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_read_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing with the + * EEPROM to retrieve the desired data. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + + /* Poll the ready bit to see if the I2C read completed */ + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + data_local = E1000_READ_REG(hw, E1000_I2CCMD); + if (data_local & E1000_I2CCMD_READY) + break; + } + if (!(data_local & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (data_local & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + *data = (u8) data_local & 0xFF; + + return E1000_SUCCESS; +} + +/** + * e1000_write_sfp_data_byte - Writes SFP module data. + * @hw: pointer to the HW structure + * @offset: byte location offset to write to + * @data: data to write + * + * Writes one byte to SFP module data stored + * in SFP resided EEPROM memory or SFP diagnostic area. + * Function should be called with + * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access + * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters + * access + **/ +s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) +{ + u32 i = 0; + u32 i2ccmd = 0; + u32 data_local = 0; + + DEBUGFUNC("e1000_write_sfp_data_byte"); + + if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { + DEBUGOUT("I2CCMD command address exceeds upper limit\n"); + return -E1000_ERR_PHY; + } + /* The programming interface is 16 bits wide + * so we need to read the whole word first + * then update appropriate byte lane and write + * the updated word back. + */ + /* Set up Op-code, EEPROM Address,in the I2CCMD + * register. The MAC will take care of interfacing + * with an EEPROM to write the data given. + */ + i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_READ); + /* Set a command to read single word */ + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { + usec_delay(50); + /* Poll the ready bit to see if lastly + * launched I2C operation completed + */ + i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); + if (i2ccmd & E1000_I2CCMD_READY) { + /* Check if this is READ or WRITE phase */ + if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == + E1000_I2CCMD_OPCODE_READ) { + /* Write the selected byte + * lane and update whole word + */ + data_local = i2ccmd & 0xFF00; + data_local |= data; + i2ccmd = ((offset << + E1000_I2CCMD_REG_ADDR_SHIFT) | + E1000_I2CCMD_OPCODE_WRITE | data_local); + E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); + } else { + break; + } + } + } + if (!(i2ccmd & E1000_I2CCMD_READY)) { + DEBUGOUT("I2CCMD Write did not complete\n"); + return -E1000_ERR_PHY; + } + if (i2ccmd & E1000_I2CCMD_ERROR) { + DEBUGOUT("I2CCMD Error bit set\n"); + return -E1000_ERR_PHY; + } + return E1000_SUCCESS; +} + +/** + * e1000_read_phy_reg_m88 - Read m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_read_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_m88 - Write m88 PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + + DEBUGFUNC("e1000_write_phy_reg_m88"); + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_set_page_igp - Set page as on IGP-like PHY(s) + * @hw: pointer to the HW structure + * @page: page to set (shifted left when necessary) + * + * Sets PHY page required for PHY register access. Assumes semaphore is + * already acquired. Note, this function sets phy.addr to 1 so the caller + * must set it appropriately (if necessary) after this function returns. + **/ +s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) +{ + DEBUGFUNC("e1000_set_page_igp"); + + DEBUGOUT1("Setting page 0x%x\n", page); + + hw->phy.addr = 1; + + return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); +} + +/** + * __e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("__e1000_read_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_read_phy_reg_mdic(hw, + MAX_PHY_REG_ADDRESS & offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_igp - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores the + * retrieved information in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_read_phy_reg_igp_locked - Read igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_igp(hw, offset, data, true); +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_write_phy_reg_igp"); + + if (!locked) { + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + if (offset > MAX_PHY_MULTI_PAGE_REG) + ret_val = e1000_write_phy_reg_mdic(hw, + IGP01E1000_PHY_PAGE_SELECT, + (u16)offset); + if (!ret_val) + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & + offset, + data); + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_igp - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, false); +} + +/** + * e1000_write_phy_reg_igp_locked - Write igp PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_igp(hw, offset, data, true); +} + +/** + * __e1000_read_kmrn_reg - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then reads the PHY register at offset + * using the kumeran interface. The information retrieved is stored in data. + * Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("__e1000_read_kmrn_reg"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); + *data = (u16)kmrnctrlsta; + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_read_kmrn_reg_generic - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset using the + * kumeran interface. The information retrieved is stored in data. + * Release the acquired semaphore before exiting. + **/ +s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_read_kmrn_reg_locked - Read kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset using the kumeran interface. The + * information retrieved is stored in data. + * Assumes semaphore already acquired. + **/ +s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_kmrn_reg(hw, offset, data, true); +} + +/** + * __e1000_write_kmrn_reg - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary. Then write the data to PHY register + * at the offset using the kumeran interface. Release any acquired semaphores + * before exiting. + **/ +STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, + bool locked) +{ + u32 kmrnctrlsta; + + DEBUGFUNC("e1000_write_kmrn_reg_generic"); + + if (!locked) { + s32 ret_val = E1000_SUCCESS; + + if (!hw->phy.ops.acquire) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + + kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & + E1000_KMRNCTRLSTA_OFFSET) | data; + E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); + E1000_WRITE_FLUSH(hw); + + usec_delay(2); + + if (!locked) + hw->phy.ops.release(hw); + + return E1000_SUCCESS; +} + +/** + * e1000_write_kmrn_reg_generic - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to the PHY register at the offset + * using the kumeran interface. Release the acquired semaphore before exiting. + **/ +s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, false); +} + +/** + * e1000_write_kmrn_reg_locked - Write kumeran register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Write the data to PHY register at the offset using the kumeran interface. + * Assumes semaphore already acquired. + **/ +s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_kmrn_reg(hw, offset, data, true); +} + +/** + * e1000_set_master_slave_mode - Setup PHY for Master/slave mode + * @hw: pointer to the HW structure + * + * Sets up Master/slave mode + **/ +STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + /* Resolve Master/Slave mode */ + ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (hw->phy.ms_type) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + /* fall-through */ + default: + break; + } + + return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); +} + +/** + * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link + * @hw: pointer to the HW structure + * + * Sets up Carrier-sense on Transmit and downshift values. + **/ +s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_82577"); + + if (hw->phy.type == e1000_phy_82580) { + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + } + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; + + /* Enable downshift */ + phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; + + ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); + if (ret_val) + return ret_val; + + /* Set MDI/MDIX mode */ + ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; + /* Options: + * 0 - Auto (default) + * 1 - MDI mode + * 2 - MDI-X mode + */ + switch (hw->phy.mdix) { + case 1: + break; + case 2: + phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; + break; + case 0: + default: + phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; + break; + } + ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); + if (ret_val) + return ret_val; + + return e1000_set_master_slave_mode(hw); +} + +/** + * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock + * and downshift values are set also. + **/ +s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* For BM PHY this bit is downshift enable */ + if (phy->type != e1000_phy_bm) + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift on BM (disabled by default) */ + if (phy->type == e1000_phy_bm) { + /* For 82574/82583, first disable then enable downshift */ + if (phy->id == BME1000_E_PHY_ID_R2) { + phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + + phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; + } + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((phy->type == e1000_phy_m88) && + (phy->revision < E1000_REVISION_4) && + (phy->id != BME1000_E_PHY_ID_R2)) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((phy->revision == E1000_REVISION_2) && + (phy->id == M88E1111_I_PHY_ID)) { + /* 82573L PHY - set the downshift counter to 5x. */ + phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + } + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { + /* Set PHY page 0, register 29 to 0x0003 */ + ret_val = phy->ops.write_reg(hw, 29, 0x0003); + if (ret_val) + return ret_val; + + /* Set PHY page 0, register 30 to 0x0000 */ + ret_val = phy->ops.write_reg(hw, 30, 0x0000); + if (ret_val) + return ret_val; + } + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + if (phy->type == e1000_phy_82578) { + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + /* 82578 PHY - set the downshift count to 1x. */ + phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; + phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. + * Also enables and sets the downshift parameters. + **/ +s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); + + + /* Enable CRS on Tx. This must be set for half-duplex operation. */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (phy->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + /* M88E1112 does not support this mode) */ + if (phy->id != M88E1112_E_PHY_ID) { + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + } + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (phy->disable_polarity_correction) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + + /* Enable downshift and setting it to X6 */ + if (phy->id == M88E1543_E_PHY_ID) { + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; + ret_val = + phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + } + + phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; + phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; + phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; + + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Commit the changes. */ + ret_val = phy->ops.commit(hw); + if (ret_val) { + DEBUGOUT("Error committing the PHY changes\n"); + return ret_val; + } + + ret_val = e1000_set_master_slave_mode(hw); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; +} + +/** + * e1000_copper_link_setup_igp - Setup igp PHY's for copper link + * @hw: pointer to the HW structure + * + * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for + * igp PHY's. + **/ +s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_copper_link_setup_igp"); + + + ret_val = hw->phy.ops.reset(hw); + if (ret_val) { + DEBUGOUT("Error resetting the PHY.\n"); + return ret_val; + } + + /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid + * timeout issues when LFS is enabled. + */ + msec_delay(100); + + /* The NVM settings will configure LPLU in D3 for + * non-IGP1 PHYs. + */ + if (phy->type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* disable lplu d0 during driver init */ + if (hw->phy.ops.set_d0_lplu_state) { + ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D0\n"); + return ret_val; + } + } + /* Configure mdi-mdix settings */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (phy->mdix) { + case 1: + data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->mac.autoneg) { + /* when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. + */ + if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + + /* Set auto Master/Slave resolution process */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); + if (ret_val) + return ret_val; + + data &= ~CR_1000T_MS_ENABLE; + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_set_master_slave_mode(hw); + } + + return ret_val; +} + +/** + * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation + * @hw: pointer to the HW structure + * + * Reads the MII auto-neg advertisement register and/or the 1000T control + * register and if the PHY is already setup for auto-negotiation, then + * return successful. Otherwise, setup advertisement and flow control to + * the appropriate values for the wanted auto-negotiation. + **/ +s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg = 0; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + phy->autoneg_advertised &= phy->autoneg_mask; + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) { + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, + &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + } + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | + NWAY_AR_100TX_HD_CAPS | + NWAY_AR_10T_FD_CAPS | + NWAY_AR_10T_HD_CAPS); + mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); + + DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (phy->autoneg_advertised & ADVERTISE_1000_HALF) + DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- + * negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and Tx flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc.current_mode) { + case e1000_fc_none: + /* Flow control (Rx & Tx) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_rx_pause: + /* Rx Flow control is enabled, and Tx Flow control is + * disabled, by a software over-ride. + * + * Since there really isn't a way to advertise that we are + * capable of Rx Pause ONLY, we will advertise that we + * support both symmetric and asymmetric Rx PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + * hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case e1000_fc_tx_pause: + /* Tx Flow control is enabled, and Rx Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case e1000_fc_full: + /* Flow control (both Rx and Tx) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + if (phy->autoneg_mask & ADVERTISE_1000_FULL) + ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, + mii_1000t_ctrl_reg); + + return ret_val; +} + +/** + * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link + * @hw: pointer to the HW structure + * + * Performs initial bounds checking on autoneg advertisement parameter, then + * configure to advertise the full capability. Setup the PHY to autoneg + * and restart the negotiation process between the link partner. If + * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. + **/ +s32 e1000_copper_link_autoneg(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the autoneg advertisement + * parameter. + */ + phy->autoneg_advertised &= phy->autoneg_mask; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (!phy->autoneg_advertised) + phy->autoneg_advertised = phy->autoneg_mask; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (phy->autoneg_wait_to_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->mac.get_link_status = true; + + return ret_val; +} + +/** + * e1000_setup_copper_link_generic - Configure copper link settings + * @hw: pointer to the HW structure + * + * Calls the appropriate function to configure the link for auto-neg or forced + * speed and duplex. Then we check for link, once link is established calls + * to configure collision distance and flow control are called. If link is + * not established, we return -E1000_ERR_PHY (-2). + **/ +s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) +{ + s32 ret_val; + bool link; + + DEBUGFUNC("e1000_setup_copper_link_generic"); + + if (hw->mac.autoneg) { + /* Setup autoneg and flow control advertisement and perform + * autonegotiation. + */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H or 100F + * depending on user settings. + */ + DEBUGOUT("Forcing Speed and Duplex\n"); + ret_val = hw->phy.ops.force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, + &link); + if (ret_val) + return ret_val; + + if (link) { + DEBUGOUT("Valid link established!!!\n"); + hw->mac.ops.config_collision_dist(hw); + ret_val = e1000_config_fc_after_link_up_generic(hw); + } else { + DEBUGOUT("Unable to establish link!!!\n"); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Waits for link and returns + * successful if link up is successful, else -E1000_ERR_PHY (-2). + **/ +s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IGP PSCR: %X\n", phy_data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. Clears the + * auto-crossover to force MDI manually. Resets the PHY to commit the + * changes. If time expires while waiting for link up, we reset the DSP. + * After reset, TX_CLK and CRS on Tx must be set. Return successful upon + * successful completion, else return corresponding error code. + **/ +s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); + + /* I210 and I211 devices support Auto-Crossover in forced operation. */ + if (phy->type != e1000_phy_i210) { + /* Clear Auto-Crossover to force MDI manually. M88E1000 + * requires MDI forced whenever speed and duplex are forced. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); + } + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + /* Reset the phy to commit changes. */ + ret_val = hw->phy.ops.commit(hw); + if (ret_val) + return ret_val; + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) { + bool reset_dsp = true; + + switch (hw->phy.id) { + case I347AT4_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I210_I_PHY_ID: + reset_dsp = false; + break; + default: + if (hw->phy.type != e1000_phy_m88) + reset_dsp = false; + break; + } + + if (!reset_dsp) { + DEBUGOUT("Link taking longer than expected.\n"); + } else { + /* We didn't get link. + * Reset the DSP and cross our fingers. + */ + ret_val = phy->ops.write_reg(hw, + M88E1000_PHY_PAGE_SELECT, + 0x001d); + if (ret_val) + return ret_val; + ret_val = e1000_phy_reset_dsp_generic(hw); + if (ret_val) + return ret_val; + } + } + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + if (hw->phy.type != e1000_phy_m88) + return E1000_SUCCESS; + + if (hw->phy.id == I347AT4_E_PHY_ID || + hw->phy.id == M88E1340M_E_PHY_ID || + hw->phy.id == M88E1112_E_PHY_ID) + return E1000_SUCCESS; + if (hw->phy.id == I210_I_PHY_ID) + return E1000_SUCCESS; + if ((hw->phy.id == M88E1543_E_PHY_ID) || + (hw->phy.id == M88E1512_E_PHY_ID)) + return E1000_SUCCESS; + ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Resetting the phy means we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock from + * the reset value of 2.5MHz. + */ + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* In addition, we must re-enable CRS on Tx for both half and full + * duplex. + */ + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex + * @hw: pointer to the HW structure + * + * Forces the speed and duplex settings of the PHY. + * This is a function pointer entry point only called by + * PHY setup routines. + **/ +s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); + if (ret_val) + return ret_val; + + /* Disable MDI-X support for 10/100 */ + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + data &= ~IFE_PMC_AUTO_MDIX; + data &= ~IFE_PMC_FORCE_MDIX; + + ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); + if (ret_val) + return ret_val; + + DEBUGOUT1("IFE PMC: %X\n", data); + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; +} + +/** + * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex + * @hw: pointer to the HW structure + * @phy_ctrl: pointer to current value of PHY_CONTROL + * + * Forces speed and duplex on the PHY by doing the following: disable flow + * control, force speed/duplex on the MAC, disable auto speed detection, + * disable auto-negotiation, configure duplex, configure speed, configure + * the collision distance, write configuration to CTRL register. The + * caller must write to the PHY_CONTROL register for these settings to + * take affect. + **/ +void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); + + /* Turn off flow control when forcing speed/duplex */ + hw->fc.current_mode = e1000_fc_none; + + /* Force speed/duplex on the mac */ + ctrl = E1000_READ_REG(hw, E1000_CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~E1000_CTRL_SPD_SEL; + + /* Disable Auto Speed Detection */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Disable autoneg on the phy */ + *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; + + /* Forcing Full or Half Duplex? */ + if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { + ctrl &= ~E1000_CTRL_FD; + *phy_ctrl &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } else { + ctrl |= E1000_CTRL_FD; + *phy_ctrl |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } + + /* Forcing 10mb or 100mb? */ + if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { + ctrl |= E1000_CTRL_SPD_100; + *phy_ctrl |= MII_CR_SPEED_100; + *phy_ctrl &= ~MII_CR_SPEED_1000; + DEBUGOUT("Forcing 100mb\n"); + } else { + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb\n"); + } + + hw->mac.ops.config_collision_dist(hw); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); +} + +/** + * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 + * @hw: pointer to the HW structure + * @active: boolean used to enable/disable lplu + * + * Success returns 0, Failure returns 1 + * + * The low power link up (lplu) state is set to the power management level D3 + * and SmartSpeed is disabled when active is true, else clear lplu for D3 + * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU + * is used during Dx states where the power conservation is most important. + * During driver activity, SmartSpeed should be enabled so performance is + * maintained. + **/ +s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_set_d3_lplu_state_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); + if (ret_val) + return ret_val; + + if (!active) { + data &= ~IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used + * during Dx states where the power conservation is most + * important. During driver activity we should enable + * SmartSpeed, so performance is maintained. + */ + if (phy->smart_speed == e1000_smart_speed_on) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } else if (phy->smart_speed == e1000_smart_speed_off) { + ret_val = phy->ops.read_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, + IGP01E1000_PHY_PORT_CONFIG, + data); + if (ret_val) + return ret_val; + } + } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || + (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || + (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { + data |= IGP02E1000_PM_D3_LPLU; + ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, + data); + if (ret_val) + return ret_val; + + /* When LPLU is enabled, we should disable SmartSpeed */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &data); + if (ret_val) + return ret_val; + + data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + data); + } + + return ret_val; +} + +/** + * e1000_check_downshift_generic - Checks whether a downshift in speed occurred + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns 1 + * + * A downshift is detected by querying the PHY link health. + **/ +s32 e1000_check_downshift_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_downshift_generic"); + + switch (phy->type) { + case e1000_phy_i210: + case e1000_phy_m88: + case e1000_phy_gg82563: + case e1000_phy_bm: + case e1000_phy_82578: + offset = M88E1000_PHY_SPEC_STATUS; + mask = M88E1000_PSSR_DOWNSHIFT; + break; + case e1000_phy_igp: + case e1000_phy_igp_2: + case e1000_phy_igp_3: + offset = IGP01E1000_PHY_LINK_HEALTH; + mask = IGP01E1000_PLHR_SS_DOWNGRADE; + break; + default: + /* speed downshift not supported */ + phy->speed_downgraded = false; + return E1000_SUCCESS; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->speed_downgraded = !!(phy_data & mask); + + return ret_val; +} + +/** + * e1000_check_polarity_m88 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); + + if (!ret_val) + phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_check_polarity_igp - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY port status register, and the + * current speed (since there is no polarity at 100Mbps). + **/ +s32 e1000_check_polarity_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_igp"); + + /* Polarity is determined based on the speed of + * our connection. + */ + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + offset = IGP01E1000_PHY_PCS_INIT_REG; + mask = IGP01E1000_PHY_POLARITY_MASK; + } else { + /* This really only applies to 10Mbps since + * there is no polarity for 100Mbps (always 0). + */ + offset = IGP01E1000_PHY_PORT_STATUS; + mask = IGP01E1000_PSSR_POLARITY_REVERSED; + } + + ret_val = phy->ops.read_reg(hw, offset, &data); + + if (!ret_val) + phy->cable_polarity = ((data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_check_polarity_ife - Check cable polarity for IFE PHY + * @hw: pointer to the HW structure + * + * Polarity is determined on the polarity reversal feature being enabled. + **/ +s32 e1000_check_polarity_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, offset, mask; + + DEBUGFUNC("e1000_check_polarity_ife"); + + /* Polarity is determined based on the reversal feature being enabled. + */ + if (phy->polarity_correction) { + offset = IFE_PHY_EXTENDED_STATUS_CONTROL; + mask = IFE_PESC_POLARITY_REVERSED; + } else { + offset = IFE_PHY_SPECIAL_CONTROL; + mask = IFE_PSC_FORCE_POLARITY; + } + + ret_val = phy->ops.read_reg(hw, offset, &phy_data); + + if (!ret_val) + phy->cable_polarity = ((phy_data & mask) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_wait_autoneg - Wait for auto-neg completion + * @hw: pointer to the HW structure + * + * Waits for auto-negotiation to complete or for the auto-negotiation time + * limit to expire, which ever happens first. + **/ +STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_wait_autoneg"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ + for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_AUTONEG_COMPLETE) + break; + msec_delay(100); + } + + /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation + * has completed. + */ + return ret_val; +} + +/** + * e1000_phy_has_link_generic - Polls PHY for link + * @hw: pointer to the HW structure + * @iterations: number of times to poll for link + * @usec_interval: delay between polling attempts + * @success: pointer to whether polling was successful or not + * + * Polls the PHY status register for link, 'iterations' number of times. + **/ +s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, + u32 usec_interval, bool *success) +{ + s32 ret_val = E1000_SUCCESS; + u16 i, phy_status; + + DEBUGFUNC("e1000_phy_has_link_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + for (i = 0; i < iterations; i++) { + /* Some PHYs require the PHY_STATUS register to be read + * twice due to the link bit being sticky. No harm doing + * it across the board. + */ + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) { + /* If the first read fails, another entity may have + * ownership of the resources, wait and try again to + * see if they have relinquished the resources yet. + */ + if (usec_interval >= 1000) + msec_delay(usec_interval/1000); + else + usec_delay(usec_interval); + } + ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); + if (ret_val) + break; + if (phy_status & MII_SR_LINK_STATUS) + break; + if (usec_interval >= 1000) + msec_delay(usec_interval/1000); + else + usec_delay(usec_interval); + } + + *success = (i < iterations); + + return ret_val; +} + +/** + * e1000_get_cable_length_m88 - Determine cable length for m88 PHY + * @hw: pointer to the HW structure + * + * Reads the PHY specific status register to retrieve the cable length + * information. The cable length is determined by averaging the minimum and + * maximum values to get the "average" cable length. The m88 PHY has four + * possible cable length values, which are: + * Register Value Cable Length + * 0 < 50 meters + * 1 50 - 80 meters + * 2 80 - 110 meters + * 3 110 - 140 meters + * 4 > 140 meters + **/ +s32 e1000_get_cable_length_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, index; + + DEBUGFUNC("e1000_get_cable_length_m88"); + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, phy_data2, is_cm; + u16 index, default_page; + + DEBUGFUNC("e1000_get_cable_length_m88_gen2"); + + switch (hw->phy.id) { + case I210_I_PHY_ID: + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + + I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + break; + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case M88E1340M_E_PHY_ID: + case I347AT4_E_PHY_ID: + /* Remember the original page select and set it to 7 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); + if (ret_val) + return ret_val; + + /* Get cable length from PHY Cable Diagnostics Control Reg */ + ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), + &phy_data); + if (ret_val) + return ret_val; + + /* Check if the unit of cable length is meters or cm */ + ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); + if (ret_val) + return ret_val; + + is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); + + /* Populate the phy structure with cable length in meters */ + phy->min_cable_length = phy_data / (is_cm ? 100 : 1); + phy->max_cable_length = phy_data / (is_cm ? 100 : 1); + phy->cable_length = phy_data / (is_cm ? 100 : 1); + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + break; + + case M88E1112_E_PHY_ID: + /* Remember the original page select and set it to 5 */ + ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, + &default_page); + if (ret_val) + return ret_val; + + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, + &phy_data); + if (ret_val) + return ret_val; + + index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) + return -E1000_ERR_PHY; + + phy->min_cable_length = e1000_m88_cable_length_table[index]; + phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; + + phy->cable_length = (phy->min_cable_length + + phy->max_cable_length) / 2; + + /* Reset the page select to its original value */ + ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, + default_page); + if (ret_val) + return ret_val; + + break; + default: + return -E1000_ERR_PHY; + } + + return ret_val; +} + +/** + * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY + * @hw: pointer to the HW structure + * + * The automatic gain control (agc) normalizes the amplitude of the + * received signal, adjusting for the attenuation produced by the + * cable. By reading the AGC registers, which represent the + * combination of coarse and fine gain value, the value can be put + * into a lookup table to obtain the approximate cable length + * for each channel. + **/ +s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, i, agc_value = 0; + u16 cur_agc_index, max_agc_index = 0; + u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; + static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { + IGP02E1000_PHY_AGC_A, + IGP02E1000_PHY_AGC_B, + IGP02E1000_PHY_AGC_C, + IGP02E1000_PHY_AGC_D + }; + + DEBUGFUNC("e1000_get_cable_length_igp_2"); + + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { + ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + /* Getting bits 15:9, which represent the combination of + * coarse and fine gain values. The result is a number + * that can be put into the lookup table to obtain the + * approximate cable length. + */ + cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & + IGP02E1000_AGC_LENGTH_MASK); + + /* Array index bound check. */ + if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || + (cur_agc_index == 0)) + return -E1000_ERR_PHY; + + /* Remove min & max AGC values from calculation. */ + if (e1000_igp_2_cable_length_table[min_agc_index] > + e1000_igp_2_cable_length_table[cur_agc_index]) + min_agc_index = cur_agc_index; + if (e1000_igp_2_cable_length_table[max_agc_index] < + e1000_igp_2_cable_length_table[cur_agc_index]) + max_agc_index = cur_agc_index; + + agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; + } + + agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + + e1000_igp_2_cable_length_table[max_agc_index]); + agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); + + /* Calculate cable length with the error range of +/- 10 meters. */ + phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? + (agc_value - IGP02E1000_AGC_RANGE) : 0); + phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; + + phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_info_m88 - Retrieve PHY information + * @hw: pointer to the HW structure + * + * Valid for only copper links. Read the PHY status register (sticky read) + * to verify that link is up. Read the PHY special control register to + * determine the polarity and 10base-T extended distance. Read the PHY + * special status register to determine MDI/MDIx and current speed. If + * speed is 1000, then determine cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_m88(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_m88"); + + if (phy->media_type != e1000_media_type_copper) { + DEBUGOUT("Phy info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy->polarity_correction = !!(phy_data & + M88E1000_PSCR_POLARITY_REVERSAL); + + ret_val = e1000_check_polarity_m88(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + /* Set values to "undefined" */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_igp - Retrieve igp PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_igp(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_igp"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_igp(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); + + if ((data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + ret_val = phy->ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return ret_val; +} + +/** + * e1000_get_phy_info_ife - Retrieves various IFE PHY states + * @hw: pointer to the HW structure + * + * Populates "phy" structure with various feature states. + **/ +s32 e1000_get_phy_info_ife(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_ife"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); + if (ret_val) + return ret_val; + phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); + + if (phy->polarity_correction) { + ret_val = e1000_check_polarity_ife(hw); + if (ret_val) + return ret_val; + } else { + /* Polarity is forced */ + phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + } + + ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); + + /* The following parameters are undefined for 10/100 operation. */ + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + + return E1000_SUCCESS; +} + +/** + * e1000_phy_sw_reset_generic - PHY software reset + * @hw: pointer to the HW structure + * + * Does a software reset of the PHY by reading the PHY control register and + * setting/write the control register reset bit to the PHY. + **/ +s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 phy_ctrl; + + DEBUGFUNC("e1000_phy_sw_reset_generic"); + + if (!hw->phy.ops.read_reg) + return E1000_SUCCESS; + + ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); + if (ret_val) + return ret_val; + + phy_ctrl |= MII_CR_RESET; + ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); + if (ret_val) + return ret_val; + + usec_delay(1); + + return ret_val; +} + +/** + * e1000_phy_hw_reset_generic - PHY hardware reset + * @hw: pointer to the HW structure + * + * Verify the reset block is not blocking us from resetting. Acquire + * semaphore (if necessary) and read/set/write the device control reset + * bit in the PHY. Wait the appropriate delay time for the device to + * reset and release the semaphore (if necessary). + **/ +s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u32 ctrl; + + DEBUGFUNC("e1000_phy_hw_reset_generic"); + + if (phy->ops.check_reset_block) { + ret_val = phy->ops.check_reset_block(hw); + if (ret_val) + return E1000_SUCCESS; + } + + ret_val = phy->ops.acquire(hw); + if (ret_val) + return ret_val; + + ctrl = E1000_READ_REG(hw, E1000_CTRL); + E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(hw); + + usec_delay(phy->reset_delay_us); + + E1000_WRITE_REG(hw, E1000_CTRL, ctrl); + E1000_WRITE_FLUSH(hw); + + usec_delay(150); + + phy->ops.release(hw); + + return phy->ops.get_cfg_done(hw); +} + +/** + * e1000_get_cfg_done_generic - Generic configuration done + * @hw: pointer to the HW structure + * + * Generic function to wait 10 milli-seconds for configuration to complete + * and return success. + **/ +s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) +{ + DEBUGFUNC("e1000_get_cfg_done_generic"); + UNREFERENCED_1PARAMETER(hw); + + msec_delay_irq(10); + + return E1000_SUCCESS; +} + +/** + * e1000_phy_init_script_igp3 - Inits the IGP3 PHY + * @hw: pointer to the HW structure + * + * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. + **/ +s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) +{ + DEBUGOUT("Running IGP 3 PHY init script\n"); + + /* PHY init IGP 3 */ + /* Enable rise/fall, 10-mode work in class-A */ + hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); + /* Remove all caps from Replica path filter */ + hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); + /* Bias trimming for ADC, AFE and Driver (Default) */ + hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); + /* Increase Hybrid poly bias */ + hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); + /* Add 4% to Tx amplitude in Gig mode */ + hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); + /* Disable trimming (TTT) */ + hw->phy.ops.write_reg(hw, 0x2011, 0x0000); + /* Poly DC correction to 94.6% + 2% for all channels */ + hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); + /* ABS DC correction to 95.9% */ + hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); + /* BG temp curve trim */ + hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); + /* Increasing ADC OPAMP stage 1 currents to max */ + hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); + /* Force 1000 ( required for enabling PHY regs configuration) */ + hw->phy.ops.write_reg(hw, 0x0000, 0x0140); + /* Set upd_freq to 6 */ + hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); + /* Disable NPDFE */ + hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); + /* Disable adaptive fixed FFE (Default) */ + hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); + /* Enable FFE hysteresis */ + hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); + /* Fixed FFE for short cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); + /* Fixed FFE for medium cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); + /* Fixed FFE for long cable lengths */ + hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); + /* Enable Adaptive Clip Threshold */ + hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); + /* AHT reset limit to 1 */ + hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); + /* Set AHT master delay to 127 msec */ + hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); + /* Set scan bits for AHT */ + hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); + /* Set AHT Preset bits */ + hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); + /* Change integ_factor of channel A to 3 */ + hw->phy.ops.write_reg(hw, 0x1895, 0x0003); + /* Change prop_factor of channels BCD to 8 */ + hw->phy.ops.write_reg(hw, 0x1796, 0x0008); + /* Change cg_icount + enable integbp for channels BCD */ + hw->phy.ops.write_reg(hw, 0x1798, 0xD008); + /* Change cg_icount + enable integbp + change prop_factor_master + * to 8 for channel A + */ + hw->phy.ops.write_reg(hw, 0x1898, 0xD918); + /* Disable AHT in Slave mode on channel A */ + hw->phy.ops.write_reg(hw, 0x187A, 0x0800); + /* Enable LPLU and disable AN to 1000 in non-D0a states, + * Enable SPD+B2B + */ + hw->phy.ops.write_reg(hw, 0x0019, 0x008D); + /* Enable restart AN on an1000_dis change */ + hw->phy.ops.write_reg(hw, 0x001B, 0x2080); + /* Enable wh_fifo read clock in 10/100 modes */ + hw->phy.ops.write_reg(hw, 0x0014, 0x0045); + /* Restart AN, Speed selection is 1000 */ + hw->phy.ops.write_reg(hw, 0x0000, 0x1340); + + return E1000_SUCCESS; +} + +/** + * e1000_get_phy_type_from_id - Get PHY type from id + * @phy_id: phy_id read from the phy + * + * Returns the phy type from the id. + **/ +enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) +{ + enum e1000_phy_type phy_type = e1000_phy_unknown; + + switch (phy_id) { + case M88E1000_I_PHY_ID: + case M88E1000_E_PHY_ID: + case M88E1111_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1543_E_PHY_ID: + case M88E1512_E_PHY_ID: + case I347AT4_E_PHY_ID: + case M88E1112_E_PHY_ID: + case M88E1340M_E_PHY_ID: + phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ + phy_type = e1000_phy_igp_2; + break; + case GG82563_E_PHY_ID: + phy_type = e1000_phy_gg82563; + break; + case IGP03E1000_E_PHY_ID: + phy_type = e1000_phy_igp_3; + break; + case IFE_E_PHY_ID: + case IFE_PLUS_E_PHY_ID: + case IFE_C_E_PHY_ID: + phy_type = e1000_phy_ife; + break; + case BME1000_E_PHY_ID: + case BME1000_E_PHY_ID_R2: + phy_type = e1000_phy_bm; + break; + case I82578_E_PHY_ID: + phy_type = e1000_phy_82578; + break; + case I82577_E_PHY_ID: + phy_type = e1000_phy_82577; + break; + case I82579_E_PHY_ID: + phy_type = e1000_phy_82579; + break; + case I217_E_PHY_ID: + phy_type = e1000_phy_i217; + break; + case I82580_I_PHY_ID: + phy_type = e1000_phy_82580; + break; + case I210_I_PHY_ID: + phy_type = e1000_phy_i210; + break; + default: + phy_type = e1000_phy_unknown; + break; + } + return phy_type; +} + +/** + * e1000_determine_phy_address - Determines PHY address. + * @hw: pointer to the HW structure + * + * This uses a trial and error method to loop through possible PHY + * addresses. It tests each by reading the PHY ID registers and + * checking for a match. + **/ +s32 e1000_determine_phy_address(struct e1000_hw *hw) +{ + u32 phy_addr = 0; + u32 i; + enum e1000_phy_type phy_type = e1000_phy_unknown; + + hw->phy.id = phy_type; + + for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { + hw->phy.addr = phy_addr; + i = 0; + + do { + e1000_get_phy_id(hw); + phy_type = e1000_get_phy_type_from_id(hw->phy.id); + + /* If phy_type is valid, break - we found our + * PHY address + */ + if (phy_type != e1000_phy_unknown) + return E1000_SUCCESS; + + msec_delay(1); + i++; + } while (i < 10); + } + + return -E1000_ERR_PHY_TYPE; +} + +/** + * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address + * @page: page to access + * + * Returns the phy address for the page requested. + **/ +STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) +{ + u32 phy_addr = 2; + + if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_write_phy_reg_bm - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u32 page = offset >> IGP_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_bm"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + u32 page_shift, page_select; + + /* Page select is register 31 for phy address 1 and 22 for + * phy address 2 and 3. Page select is shifted only for + * phy address 1. + */ + if (hw->phy.addr == 1) { + page_shift = IGP_PAGE_SHIFT; + page_select = IGP01E1000_PHY_PAGE_SELECT; + } else { + page_shift = 0; + page_select = BM_PHY_PAGE_SELECT; + } + + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, page_select, + (page << page_shift)); + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_bm2 - Read BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and storing the retrieved information in data. Release any acquired + * semaphores before exiting. + **/ +s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_read_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_write_phy_reg_bm2 - Write BM PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = (u16)(offset >> IGP_PAGE_SHIFT); + + DEBUGFUNC("e1000_write_phy_reg_bm2"); + + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, false); + goto release; + } + + hw->phy.addr = 1; + + if (offset > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, + page); + + if (ret_val) + goto release; + } + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, + data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers + * @hw: pointer to the HW structure + * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG + * + * Assumes semaphore already acquired and phy_reg points to a valid memory + * address to store contents of the BM_WUC_ENABLE_REG register. + **/ +s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + u16 temp; + + DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* All page select, port ctrl and wakeup registers use phy address 1 */ + hw->phy.addr = 1; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); + if (ret_val) { + DEBUGOUT2("Could not read PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Enable both PHY wakeup mode and Wakeup register page writes. + * Prevent a power state change by disabling ME and Host PHY wakeup. + */ + temp = *phy_reg; + temp |= BM_WUC_ENABLE_BIT; + temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); + + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); + if (ret_val) { + DEBUGOUT2("Could not write PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + return ret_val; + } + + /* Select Host Wakeup Registers page - caller now able to write + * registers on the Wakeup registers page + */ + return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); +} + +/** + * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs + * @hw: pointer to the HW structure + * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG + * + * Restore BM_WUC_ENABLE_REG to its original value. + * + * Assumes semaphore already acquired and *phy_reg is the contents of the + * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by + * caller. + **/ +s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) +{ + s32 ret_val; + + DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); + + if (!phy_reg) + return -E1000_ERR_PARAM; + + /* Select Port Control Registers page */ + ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); + if (ret_val) { + DEBUGOUT("Could not set Port Control page\n"); + return ret_val; + } + + /* Restore 769.17 to its original value */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); + if (ret_val) + DEBUGOUT2("Could not restore PHY register %d.%d\n", + BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); + + return ret_val; +} + +/** + * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to read or write + * @read: determines if operation is read or write + * @page_set: BM_WUC_PAGE already set and access enabled + * + * Read the PHY register at offset and store the retrieved information in + * data, or write data to PHY register at offset. Note the procedure to + * access the PHY wakeup registers is different than reading the other PHY + * registers. It works as such: + * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 + * 2) Set page to 800 for host (801 if we were manageability) + * 3) Write the address using the address opcode (0x11) + * 4) Read or write the data using the data opcode (0x12) + * 5) Restore 769.17.2 to its original value + * + * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and + * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). + * + * Assumes semaphore is already acquired. When page_set==true, assumes + * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack + * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). + **/ +STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, + u16 *data, bool read, bool page_set) +{ + s32 ret_val; + u16 reg = BM_PHY_REG_NUM(offset); + u16 page = BM_PHY_REG_PAGE(offset); + u16 phy_reg = 0; + + DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); + + /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ + if ((hw->mac.type == e1000_pchlan) && + (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) + DEBUGOUT1("Attempting to access page %d while gig enabled.\n", + page); + + if (!page_set) { + /* Enable access to PHY wakeup registers */ + ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); + if (ret_val) { + DEBUGOUT("Could not enable PHY wakeup reg access\n"); + return ret_val; + } + } + + DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); + + /* Write the Wakeup register page offset value using opcode 0x11 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); + if (ret_val) { + DEBUGOUT1("Could not write address opcode to page %d\n", page); + return ret_val; + } + + if (read) { + /* Read the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + data); + } else { + /* Write the Wakeup register page value using opcode 0x12 */ + ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, + *data); + } + + if (ret_val) { + DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); + return ret_val; + } + + if (!page_set) + ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); + + return ret_val; +} + +/** + * e1000_power_up_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_up_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg &= ~MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); +} + +/** + * e1000_power_down_phy_copper - Restore copper link in case of PHY power down + * @hw: pointer to the HW structure + * + * In the case of a PHY power down to save power, or to turn off link during a + * driver unload, or wake on lan is not enabled, restore the link to previous + * settings. + **/ +void e1000_power_down_phy_copper(struct e1000_hw *hw) +{ + u16 mii_reg = 0; + + /* The PHY will retain its settings across a power down/up cycle */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); + mii_reg |= MII_CR_POWER_DOWN; + hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); + msec_delay(1); +} + +/** + * __e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then reads the PHY register at offset + * and stores the retrieved information in data. Release any acquired + * semaphore before exiting. + **/ +STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_read_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, + true, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + data, true); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_read_phy_reg_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Acquires semaphore then reads the PHY register at offset and stores + * the retrieved information in data. Release the acquired semaphore + * before exiting. + **/ +s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_read_phy_reg_hv_locked - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to be read + * @data: pointer to the read data + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired. + **/ +s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_read_phy_reg_page_hv - Read HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Reads the PHY register at offset and stores the retrieved information + * in data. Assumes semaphore already acquired and page already set. + **/ +s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) +{ + return __e1000_read_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * __e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * @locked: semaphore has already been acquired or not + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, + bool locked, bool page_set) +{ + s32 ret_val; + u16 page = BM_PHY_REG_PAGE(offset); + u16 reg = BM_PHY_REG_NUM(offset); + u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); + + DEBUGFUNC("__e1000_write_phy_reg_hv"); + + if (!locked) { + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + } + /* Page 800 works differently than the rest so it has its own func */ + if (page == BM_WUC_PAGE) { + ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, + false, page_set); + goto out; + } + + if (page > 0 && page < HV_INTC_FC_PAGE_START) { + ret_val = e1000_access_phy_debug_regs_hv(hw, offset, + &data, false); + goto out; + } + + if (!page_set) { + if (page == HV_INTC_FC_PAGE_START) + page = 0; + + /* Workaround MDIO accesses being disabled after entering IEEE + * Power Down (when bit 11 of the PHY Control register is set) + */ + if ((hw->phy.type == e1000_phy_82578) && + (hw->phy.revision >= 1) && + (hw->phy.addr == 2) && + !(MAX_PHY_REG_ADDRESS & reg) && + (data & (1 << 11))) { + u16 data2 = 0x7EFF; + ret_val = e1000_access_phy_debug_regs_hv(hw, + (1 << 6) | 0x3, + &data2, false); + if (ret_val) + goto out; + } + + if (reg > MAX_PHY_MULTI_PAGE_REG) { + /* Page is shifted left, PHY expects (page x 32) */ + ret_val = e1000_set_page_igp(hw, + (page << IGP_PAGE_SHIFT)); + + hw->phy.addr = phy_addr; + + if (ret_val) + goto out; + } + } + + DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, + page << IGP_PAGE_SHIFT, reg); + + ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, + data); + +out: + if (!locked) + hw->phy.ops.release(hw); + + return ret_val; +} + +/** + * e1000_write_phy_reg_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore then writes the data to PHY register at the offset. + * Release the acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, false, false); +} + +/** + * e1000_write_phy_reg_hv_locked - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired. + **/ +s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, false); +} + +/** + * e1000_write_phy_reg_page_hv - Write HV PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Writes the data to PHY register at the offset. Assumes semaphore + * already acquired and page already set. + **/ +s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) +{ + return __e1000_write_phy_reg_hv(hw, offset, data, true, true); +} + +/** + * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page + * @page: page to be accessed + **/ +STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page) +{ + u32 phy_addr = 2; + + if (page >= HV_INTC_FC_PAGE_START) + phy_addr = 1; + + return phy_addr; +} + +/** + * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers + * @hw: pointer to the HW structure + * @offset: register offset to be read or written + * @data: pointer to the data to be read or written + * @read: determines if operation is read or write + * + * Reads the PHY register at offset and stores the retreived information + * in data. Assumes semaphore already acquired. Note that the procedure + * to access these regs uses the address port and data port to read/write. + * These accesses done with PHY address 2 and without using pages. + **/ +STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, + u16 *data, bool read) +{ + s32 ret_val; + u32 addr_reg; + u32 data_reg; + + DEBUGFUNC("e1000_access_phy_debug_regs_hv"); + + /* This takes care of the difference with desktop vs mobile phy */ + addr_reg = ((hw->phy.type == e1000_phy_82578) ? + I82578_ADDR_REG : I82577_ADDR_REG); + data_reg = addr_reg + 1; + + /* All operations in this function are phy address 2 */ + hw->phy.addr = 2; + + /* masking with 0x3F to remove the page from offset */ + ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); + if (ret_val) { + DEBUGOUT("Could not write the Address Offset port register\n"); + return ret_val; + } + + /* Read or write the data value next */ + if (read) + ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); + else + ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); + + if (ret_val) + DEBUGOUT("Could not access the Data port register\n"); + + return ret_val; +} + +/** + * e1000_link_stall_workaround_hv - Si workaround + * @hw: pointer to the HW structure + * + * This function works around a Si bug where the link partner can get + * a link up indication before the PHY does. If small packets are sent + * by the link partner they can be placed in the packet buffer without + * being properly accounted for by the PHY and will stall preventing + * further packets from being received. The workaround is to clear the + * packet buffer after the PHY detects link up. + **/ +s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) +{ + s32 ret_val = E1000_SUCCESS; + u16 data; + + DEBUGFUNC("e1000_link_stall_workaround_hv"); + + if (hw->phy.type != e1000_phy_82578) + return E1000_SUCCESS; + + /* Do not apply workaround if in PHY loopback bit 14 set */ + hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); + if (data & PHY_CONTROL_LB) + return E1000_SUCCESS; + + /* check if link is up and at 1Gbps */ + ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); + if (ret_val) + return ret_val; + + data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_MASK); + + if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | + BM_CS_STATUS_SPEED_1000)) + return E1000_SUCCESS; + + msec_delay(200); + + /* flush the packets in the fifo buffer */ + ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + (HV_MUX_DATA_CTRL_GEN_TO_MAC | + HV_MUX_DATA_CTRL_FORCE_SPEED)); + if (ret_val) + return ret_val; + + return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, + HV_MUX_DATA_CTRL_GEN_TO_MAC); +} + +/** + * e1000_check_polarity_82577 - Checks the polarity. + * @hw: pointer to the HW structure + * + * Success returns 0, Failure returns -E1000_ERR_PHY (-2) + * + * Polarity is determined based on the PHY specific status register. + **/ +s32 e1000_check_polarity_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + + DEBUGFUNC("e1000_check_polarity_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + + if (!ret_val) + phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) + ? e1000_rev_polarity_reversed + : e1000_rev_polarity_normal); + + return ret_val; +} + +/** + * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY + * @hw: pointer to the HW structure + * + * Calls the PHY setup function to force speed and duplex. + **/ +s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data; + bool link; + + DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); + + ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); + if (ret_val) + return ret_val; + + e1000_phy_force_speed_duplex_setup(hw, &phy_data); + + ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); + if (ret_val) + return ret_val; + + usec_delay(1); + + if (phy->autoneg_wait_to_complete) { + DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); + + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + if (ret_val) + return ret_val; + + if (!link) + DEBUGOUT("Link taking longer than expected.\n"); + + /* Try once more */ + ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, + 100000, &link); + } + + return ret_val; +} + +/** + * e1000_get_phy_info_82577 - Retrieve I82577 PHY information + * @hw: pointer to the HW structure + * + * Read PHY status to determine if link is up. If link is up, then + * set/determine 10base-T extended distance and polarity correction. Read + * PHY port status to determine MDI/MDIx and speed. Based on the speed, + * determine on the cable length, local and remote receiver. + **/ +s32 e1000_get_phy_info_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 data; + bool link; + + DEBUGFUNC("e1000_get_phy_info_82577"); + + ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) { + DEBUGOUT("Phy info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + phy->polarity_correction = true; + + ret_val = e1000_check_polarity_82577(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); + if (ret_val) + return ret_val; + + phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); + + if ((data & I82577_PHY_STATUS2_SPEED_MASK) == + I82577_PHY_STATUS2_SPEED_1000MBPS) { + ret_val = hw->phy.ops.get_cable_length(hw); + if (ret_val) + return ret_val; + + ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); + if (ret_val) + return ret_val; + + phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + + phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) + ? e1000_1000t_rx_status_ok + : e1000_1000t_rx_status_not_ok; + } else { + phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; + phy->local_rx = e1000_1000t_rx_status_undefined; + phy->remote_rx = e1000_1000t_rx_status_undefined; + } + + return E1000_SUCCESS; +} + +/** + * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY + * @hw: pointer to the HW structure + * + * Reads the diagnostic status register and verifies result is valid before + * placing it in the phy_cable_length field. + **/ +s32 e1000_get_cable_length_82577(struct e1000_hw *hw) +{ + struct e1000_phy_info *phy = &hw->phy; + s32 ret_val; + u16 phy_data, length; + + DEBUGFUNC("e1000_get_cable_length_82577"); + + ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); + if (ret_val) + return ret_val; + + length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> + I82577_DSTATUS_CABLE_LENGTH_SHIFT); + + if (length == E1000_CABLE_LENGTH_UNDEFINED) + return -E1000_ERR_PHY; + + phy->cable_length = length; + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_gs40g - Write GS40G PHY register + * @hw: pointer to the HW structure + * @offset: register offset to write to + * @data: data to write at register offset + * + * Acquires semaphore, if necessary, then writes the data to PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_write_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_write_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_gs40g - Read GS40G PHY register + * @hw: pointer to the HW structure + * @offset: lower half is register offset to read to + * upper half is page to use. + * @data: data to read at register offset + * + * Acquires semaphore, if necessary, then reads the data in the PHY register + * at the offset. Release any acquired semaphores before exiting. + **/ +s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) +{ + s32 ret_val; + u16 page = offset >> GS40G_PAGE_SHIFT; + + DEBUGFUNC("e1000_read_phy_reg_gs40g"); + + offset = offset & GS40G_OFFSET_MASK; + ret_val = hw->phy.ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); + if (ret_val) + goto release; + ret_val = e1000_read_phy_reg_mdic(hw, offset, data); + +release: + hw->phy.ops.release(hw); + return ret_val; +} + +/** + * e1000_read_phy_reg_mphy - Read mPHY control register + * @hw: pointer to the HW structure + * @address: address to be read + * @data: pointer to the read data + * + * Reads the mPHY control register in the PHY at offset and stores the + * information read to data. + **/ +s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) +{ + u32 mphy_ctrl = 0; + bool locked = false; + bool ready; + + DEBUGFUNC("e1000_read_phy_reg_mphy"); + + /* Check if mPHY is ready to read/write operations */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* Check if mPHY access is disabled and enable it if so */ + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { + locked = true; + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + mphy_ctrl |= E1000_MPHY_ENA_ACCESS; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + } + + /* Set the address that we want to read */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* We mask address, because we want to use only current lane */ + mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & + ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | + (address & E1000_MPHY_ADDRESS_MASK); + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + + /* Read data from the address */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + *data = E1000_READ_REG(hw, E1000_MPHY_DATA); + + /* Disable access to mPHY if it was originally disabled */ + if (locked) { + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, + E1000_MPHY_DIS_ACCESS); + } + + return E1000_SUCCESS; +} + +/** + * e1000_write_phy_reg_mphy - Write mPHY control register + * @hw: pointer to the HW structure + * @address: address to write to + * @data: data to write to register at offset + * @line_override: used when we want to use different line than default one + * + * Writes data to mPHY control register. + **/ +s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, + bool line_override) +{ + u32 mphy_ctrl = 0; + bool locked = false; + bool ready; + + DEBUGFUNC("e1000_write_phy_reg_mphy"); + + /* Check if mPHY is ready to read/write operations */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* Check if mPHY access is disabled and enable it if so */ + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { + locked = true; + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + mphy_ctrl |= E1000_MPHY_ENA_ACCESS; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + } + + /* Set the address that we want to read */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + + /* We mask address, because we want to use only current lane */ + if (line_override) + mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; + else + mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; + mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | + (address & E1000_MPHY_ADDRESS_MASK); + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); + + /* Read data from the address */ + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); + + /* Disable access to mPHY if it was originally disabled */ + if (locked) { + ready = e1000_is_mphy_ready(hw); + if (!ready) + return -E1000_ERR_PHY; + E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, + E1000_MPHY_DIS_ACCESS); + } + + return E1000_SUCCESS; +} + +/** + * e1000_is_mphy_ready - Check if mPHY control register is not busy + * @hw: pointer to the HW structure + * + * Returns mPHY control register status. + **/ +bool e1000_is_mphy_ready(struct e1000_hw *hw) +{ + u16 retry_count = 0; + u32 mphy_ctrl = 0; + bool ready = false; + + while (retry_count < 2) { + mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); + if (mphy_ctrl & E1000_MPHY_BUSY) { + usec_delay(20); + retry_count++; + continue; + } + ready = true; + break; + } + + if (!ready) + DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); + + return ready; +} |