diff options
author | Ido Barnea <ibarnea@cisco.com> | 2015-12-09 05:07:44 +0200 |
---|---|---|
committer | Ido Barnea <ibarnea@cisco.com> | 2015-12-27 08:50:12 +0200 |
commit | 509648b87434b9032d38b8ca5ad470ba3edcc036 (patch) | |
tree | 920548ce9e2e5aeed4c88c1b288290505e7d7987 /src/dpdk_lib18/librte_pmd_e1000 | |
parent | b161dc672544a913f7f1ddf3a086dd75f2f1134a (diff) |
Adding dpdk 2.2 instead of dpdk 1.8 and making changes to make compilation work.
40G and 10G filters do not work yet.
Diffstat (limited to 'src/dpdk_lib18/librte_pmd_e1000')
44 files changed, 0 insertions, 44586 deletions
diff --git a/src/dpdk_lib18/librte_pmd_e1000/Makefile b/src/dpdk_lib18/librte_pmd_e1000/Makefile deleted file mode 100755 index 14bc4a24..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/Makefile +++ /dev/null @@ -1,95 +0,0 @@ -# BSD LICENSE -# -# Copyright(c) 2010-2014 Intel Corporation. All rights reserved. -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions -# are met: -# -# * Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# * Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in -# the documentation and/or other materials provided with the -# distribution. -# * Neither the name of Intel Corporation nor the names of its -# contributors may be used to endorse or promote products derived -# from this software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -include $(RTE_SDK)/mk/rte.vars.mk - -# -# library name -# -LIB = librte_pmd_e1000.a - -CFLAGS += -O3 -CFLAGS += $(WERROR_FLAGS) - -ifeq ($(CC), icc) -# -# CFLAGS for icc -# -CFLAGS_BASE_DRIVER = -wd177 -wd181 -wd188 -wd869 -wd2259 -else -# -# CFLAGS for gcc -# -CFLAGS_BASE_DRIVER = -Wno-uninitialized -Wno-unused-parameter -CFLAGS_BASE_DRIVER += -Wno-unused-variable -endif - -# -# Add extra flags for base driver files (also known as shared code) -# to disable warnings in them -# -BASE_DRIVER_OBJS=$(patsubst %.c,%.o,$(notdir $(wildcard $(RTE_SDK)/lib/librte_pmd_e1000/e1000/*.c))) -$(foreach obj, $(BASE_DRIVER_OBJS), $(eval CFLAGS_$(obj)+=$(CFLAGS_BASE_DRIVER))) - -VPATH += $(RTE_SDK)/lib/librte_pmd_e1000/e1000 - -# -# all source are stored in SRCS-y -# -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_80003es2lan.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82540.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82541.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82542.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82543.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82571.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_82575.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_i210.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_api.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_ich8lan.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mac.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_manage.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_mbx.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_nvm.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_osdep.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_phy.c -SRCS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += e1000_vf.c -SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_ethdev.c -SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_rxtx.c -SRCS-$(CONFIG_RTE_LIBRTE_IGB_PMD) += igb_pf.c -SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_ethdev.c -SRCS-$(CONFIG_RTE_LIBRTE_EM_PMD) += em_rxtx.c - -# this lib depends upon: -DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_eal lib/librte_ether -DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_mempool lib/librte_mbuf -DEPDIRS-$(CONFIG_RTE_LIBRTE_E1000_PMD) += lib/librte_net lib/librte_malloc - -include $(RTE_SDK)/mk/rte.lib.mk diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/README b/src/dpdk_lib18/librte_pmd_e1000/e1000/README deleted file mode 100755 index 851e54e1..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/README +++ /dev/null @@ -1,39 +0,0 @@ -.. - BSD LICENSE - - Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions - are met: - - * Redistributions of source code must retain the above copyright - notice, this list of conditions and the following disclaimer. - * Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in - the documentation and/or other materials provided with the - distribution. - * Neither the name of Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived - from this software without specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -This directory contains source code of FreeBSD em & igb drivers of version -cid-shared-code.2014.04.21 released by LAD. The sub-directory of lad/ -contains the original source package. -Few changes to the original FreeBSD sources were made to: -- Adopt it for PMD usage mode: - e1000_osdep.c - e1000_osdep.h diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.c deleted file mode 100755 index 72692d9e..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.c +++ /dev/null @@ -1,1514 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* 80003ES2LAN Gigabit Ethernet Controller (Copper) - * 80003ES2LAN Gigabit Ethernet Controller (Serdes) - */ - -#include "e1000_api.h" - -STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw); -STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw); -STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, - u16 *data); -STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, - u16 data); -STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw); -STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex); -STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw); -STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 *data); -STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 data); -STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw); -STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask); -STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw); - -/* A table for the GG82563 cable length where the range is defined - * with a lower bound at "index" and the upper bound at - * "index + 5". - */ -STATIC const u16 e1000_gg82563_cable_length_table[] = { - 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF }; -#define GG82563_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_gg82563_cable_length_table) / \ - sizeof(e1000_gg82563_cable_length_table[0])) - -/** - * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - DEBUGFUNC("e1000_init_phy_params_80003es2lan"); - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - return E1000_SUCCESS; - } else { - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - phy->type = e1000_phy_gg82563; - - phy->ops.acquire = e1000_acquire_phy_80003es2lan; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.release = e1000_release_phy_80003es2lan; - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan; - phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan; - phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan; - phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan; - - phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan; - - /* This can only be done after all function pointers are setup. */ - ret_val = e1000_get_phy_id(hw); - - /* Verify phy id */ - if (phy->id != GG82563_E_PHY_ID) - return -E1000_ERR_PHY; - - return ret_val; -} - -/** - * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_80003es2lan"); - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - nvm->type = e1000_nvm_eeprom_spi; - - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - - /* Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_80003es2lan; - nvm->ops.read = e1000_read_nvm_eerd; - nvm->ops.release = e1000_release_nvm_80003es2lan; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_80003es2lan; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_init_mac_params_80003es2lan"); - - /* Set media type and media-dependent function pointers */ - switch (hw->device_id) { - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - hw->phy.media_type = e1000_media_type_internal_serdes; - mac->ops.check_for_link = e1000_check_for_serdes_link_generic; - mac->ops.setup_physical_interface = - e1000_setup_fiber_serdes_link_generic; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - mac->ops.check_for_link = e1000_check_for_copper_link_generic; - mac->ops.setup_physical_interface = - e1000_setup_copper_link_80003es2lan; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC supported; valid only if manageability features are enabled. */ - mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_FWSM_MODE_MASK); - /* Adaptive IFS not supported */ - mac->adaptive_ifs = false; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_80003es2lan; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_80003es2lan; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_generic; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan; - - /* set lan id for port to determine which phy lock to use */ - hw->mac.ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_80003es2lan"); - - hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan; - hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan; - hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan; -} - -/** - * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to acquire access rights to the correct PHY. - **/ -STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - DEBUGFUNC("e1000_acquire_phy_80003es2lan"); - - mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; - return e1000_acquire_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_release_phy_80003es2lan - Release rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to release access rights to the correct PHY. - **/ -STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - DEBUGFUNC("e1000_release_phy_80003es2lan"); - - mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; - e1000_release_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register - * @hw: pointer to the HW structure - * - * Acquire the semaphore to access the Kumeran interface. - * - **/ -STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan"); - - mask = E1000_SWFW_CSR_SM; - - return e1000_acquire_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register - * @hw: pointer to the HW structure - * - * Release the semaphore used to access the Kumeran interface - **/ -STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw) -{ - u16 mask; - - DEBUGFUNC("e1000_release_mac_csr_80003es2lan"); - - mask = E1000_SWFW_CSR_SM; - - e1000_release_swfw_sync_80003es2lan(hw, mask); -} - -/** - * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM - * @hw: pointer to the HW structure - * - * Acquire the semaphore to access the EEPROM. - **/ -STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_80003es2lan"); - - ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); - if (ret_val) - return ret_val; - - ret_val = e1000_acquire_nvm_generic(hw); - - if (ret_val) - e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); - - return ret_val; -} - -/** - * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM - * @hw: pointer to the HW structure - * - * Release the semaphore used to access the EEPROM. - **/ -STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_80003es2lan"); - - e1000_release_nvm_generic(hw); - e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 i = 0; - s32 timeout = 50; - - DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_generic(hw)) - return -E1000_ERR_SWFW_SYNC; - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - return -E1000_ERR_SWFW_SYNC; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_80003es2lan"); - - while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) - ; /* Empty */ - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/** - * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: pointer to the data returned from the operation - * - * Read the GG82563 PHY register. - **/ -STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 *data) -{ - s32 ret_val; - u32 page_select; - u16 temp; - - DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan"); - - ret_val = e1000_acquire_phy_80003es2lan(hw); - if (ret_val) - return ret_val; - - /* Select Configuration Page */ - if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - page_select = GG82563_PHY_PAGE_SELECT; - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - page_select = GG82563_PHY_PAGE_SELECT_ALT; - } - - temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); - ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); - if (ret_val) { - e1000_release_phy_80003es2lan(hw); - return ret_val; - } - - if (hw->dev_spec._80003es2lan.mdic_wa_enable) { - /* The "ready" bit in the MDIC register may be incorrectly set - * before the device has completed the "Page Select" MDI - * transaction. So we wait 200us after each MDI command... - */ - usec_delay(200); - - /* ...and verify the command was successful. */ - ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); - - if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { - e1000_release_phy_80003es2lan(hw); - return -E1000_ERR_PHY; - } - - usec_delay(200); - - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - usec_delay(200); - } else { - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - } - - e1000_release_phy_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @data: value to write to the register - * - * Write to the GG82563 PHY register. - **/ -STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw, - u32 offset, u16 data) -{ - s32 ret_val; - u32 page_select; - u16 temp; - - DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan"); - - ret_val = e1000_acquire_phy_80003es2lan(hw); - if (ret_val) - return ret_val; - - /* Select Configuration Page */ - if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { - page_select = GG82563_PHY_PAGE_SELECT; - } else { - /* Use Alternative Page Select register to access - * registers 30 and 31 - */ - page_select = GG82563_PHY_PAGE_SELECT_ALT; - } - - temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT); - ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp); - if (ret_val) { - e1000_release_phy_80003es2lan(hw); - return ret_val; - } - - if (hw->dev_spec._80003es2lan.mdic_wa_enable) { - /* The "ready" bit in the MDIC register may be incorrectly set - * before the device has completed the "Page Select" MDI - * transaction. So we wait 200us after each MDI command... - */ - usec_delay(200); - - /* ...and verify the command was successful. */ - ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp); - - if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) { - e1000_release_phy_80003es2lan(hw); - return -E1000_ERR_PHY; - } - - usec_delay(200); - - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - - usec_delay(200); - } else { - ret_val = e1000_write_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - } - - e1000_release_phy_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_nvm_80003es2lan - Write to ESB2 NVM - * @hw: pointer to the HW structure - * @offset: offset of the register to read - * @words: number of words to write - * @data: buffer of data to write to the NVM - * - * Write "words" of data to the ESB2 NVM. - **/ -STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - DEBUGFUNC("e1000_write_nvm_80003es2lan"); - - return e1000_write_nvm_spi(hw, offset, words, data); -} - -/** - * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete - * @hw: pointer to the HW structure - * - * Wait a specific amount of time for manageability processes to complete. - * This is a function pointer entry point called by the phy module. - **/ -STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - u32 mask = E1000_NVM_CFG_DONE_PORT_0; - - DEBUGFUNC("e1000_get_cfg_done_80003es2lan"); - - if (hw->bus.func == 1) - mask = E1000_NVM_CFG_DONE_PORT_1; - - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) - break; - msec_delay(1); - timeout--; - } - if (!timeout) { - DEBUGOUT("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex - * @hw: pointer to the HW structure - * - * Force the speed and duplex settings onto the PHY. This is a - * function pointer entry point called by the phy module. - **/ -STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan"); - - if (!(hw->phy.ops.read_reg)) - return E1000_SUCCESS; - - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("GG82563 PSCR: %X\n", phy_data); - - ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - /* Reset the phy to commit changes. */ - phy_data |= MII_CR_RESET; - - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - usec_delay(1); - - if (hw->phy.autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - /* We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = e1000_phy_reset_dsp_generic(hw); - if (ret_val) - return ret_val; - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - /* Resetting the phy means we need to verify the TX_CLK corresponds - * to the link speed. 10Mbps -> 2.5MHz, else 25MHz. - */ - phy_data &= ~GG82563_MSCR_TX_CLK_MASK; - if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED) - phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5; - else - phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25; - - /* In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, - phy_data); - - return ret_val; -} - -/** - * e1000_get_cable_length_80003es2lan - Set approximate cable length - * @hw: pointer to the HW structure - * - * Find the approximate cable length as measured by the GG82563 PHY. - * This is a function pointer entry point called by the phy module. - **/ -STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - DEBUGFUNC("e1000_get_cable_length_80003es2lan"); - - if (!(hw->phy.ops.read_reg)) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data); - if (ret_val) - return ret_val; - - index = phy_data & GG82563_DSPD_CABLE_LENGTH; - - if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) - return -E1000_ERR_PHY; - - phy->min_cable_length = e1000_gg82563_cable_length_table[index]; - phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return E1000_SUCCESS; -} - -/** - * e1000_get_link_up_info_80003es2lan - Report speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to speed buffer - * @duplex: pointer to duplex buffer - * - * Retrieve the current speed and duplex configuration. - **/ -STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_80003es2lan"); - - if (hw->phy.media_type == e1000_media_type_copper) { - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, - duplex); - hw->phy.ops.cfg_on_link_up(hw); - } else { - ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw, - speed, - duplex); - } - - return ret_val; -} - -/** - * e1000_reset_hw_80003es2lan - Reset the ESB2 controller - * @hw: pointer to the HW structure - * - * Perform a global reset to the ESB2 controller. - **/ -STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 kum_reg_data; - - DEBUGFUNC("e1000_reset_hw_80003es2lan"); - - /* Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - ret_val = e1000_acquire_phy_80003es2lan(hw); - if (ret_val) - return ret_val; - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - e1000_release_phy_80003es2lan(hw); - - /* Disable IBIST slave mode (far-end loopback) */ - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data); - if (ret_val) - return ret_val; - kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; - e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - kum_reg_data); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) - /* We don't want to continue accessing MAC registers. */ - return ret_val; - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - return e1000_check_alt_mac_addr_generic(hw); -} - -/** - * e1000_init_hw_80003es2lan - Initialize the ESB2 controller - * @hw: pointer to the HW structure - * - * Initialize the hw bits, LED, VFTA, MTA, link and hw counters. - **/ -STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 reg_data; - s32 ret_val; - u16 kum_reg_data; - u16 i; - - DEBUGFUNC("e1000_init_hw_80003es2lan"); - - e1000_initialize_hw_bits_80003es2lan(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - /* An error is not fatal and we should not stop init due to this */ - if (ret_val) - DEBUGOUT("Error initializing identification LED\n"); - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - if (ret_val) - return ret_val; - - /* Disable IBIST slave mode (far-end loopback) */ - e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - &kum_reg_data); - kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE; - e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, - kum_reg_data); - - /* Set the transmit descriptor write-back policy */ - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); - - /* ...for both queues. */ - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); - - /* Enable retransmit on late collisions */ - reg_data = E1000_READ_REG(hw, E1000_TCTL); - reg_data |= E1000_TCTL_RTLC; - E1000_WRITE_REG(hw, E1000_TCTL, reg_data); - - /* Configure Gigabit Carry Extend Padding */ - reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT); - reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; - reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN; - E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data); - - /* Configure Transmit Inter-Packet Gap */ - reg_data = E1000_READ_REG(hw, E1000_TIPG); - reg_data &= ~E1000_TIPG_IPGT_MASK; - reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; - E1000_WRITE_REG(hw, E1000_TIPG, reg_data); - - reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001); - reg_data &= ~0x00100000; - E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data); - - /* default to true to enable the MDIC W/A */ - hw->dev_spec._80003es2lan.mdic_wa_enable = true; - - ret_val = - e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >> - E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i); - if (!ret_val) { - if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) == - E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO) - hw->dev_spec._80003es2lan.mdic_wa_enable = false; - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2 - * @hw: pointer to the HW structure - * - * Initializes required hardware-dependent bits needed for normal operation. - **/ -STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan"); - - /* Transmit Descriptor Control 0 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = E1000_READ_REG(hw, E1000_TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ - if (hw->phy.media_type != e1000_media_type_copper) - reg &= ~(1 << 20); - E1000_WRITE_REG(hw, E1000_TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = E1000_READ_REG(hw, E1000_TARC(1)); - if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - E1000_WRITE_REG(hw, E1000_TARC(1), reg); - - /* Disable IPv6 extension header parsing because some malformed - * IPv6 headers can hang the Rx. - */ - reg = E1000_READ_REG(hw, E1000_RFCTL); - reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); - E1000_WRITE_REG(hw, E1000_RFCTL, reg); - - return; -} - -/** - * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link - * @hw: pointer to the HW structure - * - * Setup some GG82563 PHY registers for obtaining link - **/ -STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 reg; - u16 data; - - DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan"); - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data); - if (ret_val) - return ret_val; - - data |= GG82563_MSCR_ASSERT_CRS_ON_TX; - /* Use 25MHz for both link down and 1000Base-T for Tx clock. */ - data |= GG82563_MSCR_TX_CLK_1000MBPS_25; - - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; - - switch (phy->mdix) { - case 1: - data |= GG82563_PSCR_CROSSOVER_MODE_MDI; - break; - case 2: - data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; - break; - case 0: - default: - data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - if (phy->disable_polarity_correction) - data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; - - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data); - if (ret_val) - return ret_val; - - /* SW Reset the PHY so all changes take effect */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - /* Bypass Rx and Tx FIFO's */ - reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL; - data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS | - E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS); - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); - if (ret_val) - return ret_val; - - reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE; - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data); - if (ret_val) - return ret_val; - data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data); - if (ret_val) - return ret_val; - - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data); - if (ret_val) - return ret_val; - - /* Do not init these registers when the HW is in IAMT mode, since the - * firmware will have already initialized them. We only initialize - * them if the HW is not in IAMT mode. - */ - if (!hw->mac.ops.check_mng_mode(hw)) { - /* Enable Electrical Idle on the PHY */ - data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, - data); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - &data); - if (ret_val) - return ret_val; - - data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - data); - if (ret_val) - return ret_val; - } - - /* Workaround: Disable padding in Kumeran interface in the MAC - * and in the PHY to avoid CRC errors. - */ - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data); - if (ret_val) - return ret_val; - - data |= GG82563_ICR_DIS_PADDING; - ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - -/** - * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2 - * @hw: pointer to the HW structure - * - * Essentially a wrapper for setting up all things "copper" related. - * This is a function pointer entry point called by the mac module. - **/ -STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 reg_data; - - DEBUGFUNC("e1000_setup_copper_link_80003es2lan"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Set the mac to wait the maximum time between each - * iteration and increase the max iterations when - * polling the phy; this fixes erroneous timeouts at 10Mbps. - */ - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4), - 0xFFFF); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9), - reg_data); - if (ret_val) - return ret_val; - ret_val = - e1000_read_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - ®_data); - if (ret_val) - return ret_val; - reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING; - ret_val = - e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_INB_CTRL, - reg_data); - if (ret_val) - return ret_val; - - ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw); - if (ret_val) - return ret_val; - - return e1000_setup_copper_link_generic(hw); -} - -/** - * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up - * @hw: pointer to the HW structure - * @duplex: current duplex setting - * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - **/ -STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 speed; - u16 duplex; - - DEBUGFUNC("e1000_configure_on_link_up"); - - if (hw->phy.media_type == e1000_media_type_copper) { - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed, - &duplex); - if (ret_val) - return ret_val; - - if (speed == SPEED_1000) - ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw); - else - ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex); - } - - return ret_val; -} - -/** - * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation - * @hw: pointer to the HW structure - * @duplex: current duplex setting - * - * Configure the KMRN interface by applying last minute quirks for - * 10/100 operation. - **/ -STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex) -{ - s32 ret_val; - u32 tipg; - u32 i = 0; - u16 reg_data, reg_data2; - - DEBUGFUNC("e1000_configure_kmrn_for_10_100"); - - reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT; - ret_val = - e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, E1000_TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN; - E1000_WRITE_REG(hw, E1000_TIPG, tipg); - - do { - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data2); - if (ret_val) - return ret_val; - i++; - } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); - - if (duplex == HALF_DUPLEX) - reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; - else - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - - return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); -} - -/** - * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation - * @hw: pointer to the HW structure - * - * Configure the KMRN interface by applying last minute quirks for - * gigabit operation. - **/ -STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 reg_data, reg_data2; - u32 tipg; - u32 i = 0; - - DEBUGFUNC("e1000_configure_kmrn_for_1000"); - - reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT; - ret_val = - e1000_write_kmrn_reg_80003es2lan(hw, - E1000_KMRNCTRLSTA_OFFSET_HD_CTRL, - reg_data); - if (ret_val) - return ret_val; - - /* Configure Transmit Inter-Packet Gap */ - tipg = E1000_READ_REG(hw, E1000_TIPG); - tipg &= ~E1000_TIPG_IPGT_MASK; - tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN; - E1000_WRITE_REG(hw, E1000_TIPG, tipg); - - do { - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, - ®_data2); - if (ret_val) - return ret_val; - i++; - } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY)); - - reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; - - return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); -} - -/** - * e1000_read_kmrn_reg_80003es2lan - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquire semaphore, then read the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release the semaphore before exiting. - **/ -STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - u32 kmrnctrlsta; - s32 ret_val; - - DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan"); - - ret_val = e1000_acquire_mac_csr_80003es2lan(hw); - if (ret_val) - return ret_val; - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - e1000_release_mac_csr_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_write_kmrn_reg_80003es2lan - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquire semaphore, then write the data to PHY register - * at the offset using the kumeran interface. Release semaphore - * before exiting. - **/ -STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset, - u16 data) -{ - u32 kmrnctrlsta; - s32 ret_val; - - DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan"); - - ret_val = e1000_acquire_mac_csr_80003es2lan(hw); - if (ret_val) - return ret_val; - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - e1000_release_mac_csr_80003es2lan(hw); - - return ret_val; -} - -/** - * e1000_read_mac_addr_80003es2lan - Read device MAC address - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_mac_addr_80003es2lan"); - - /* If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - return ret_val; - - return e1000_read_mac_addr_generic(hw); -} - -/** - * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); - - E1000_READ_REG(hw, E1000_IAC); - E1000_READ_REG(hw, E1000_ICRXOC); - - E1000_READ_REG(hw, E1000_ICRXPTC); - E1000_READ_REG(hw, E1000_ICRXATC); - E1000_READ_REG(hw, E1000_ICTXPTC); - E1000_READ_REG(hw, E1000_ICTXATC); - E1000_READ_REG(hw, E1000_ICTXQEC); - E1000_READ_REG(hw, E1000_ICTXQMTC); - E1000_READ_REG(hw, E1000_ICRXDMTC); -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.h deleted file mode 100755 index f5fe9677..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_80003es2lan.h +++ /dev/null @@ -1,100 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_80003ES2LAN_H_ -#define _E1000_80003ES2LAN_H_ - -#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00 -#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02 -#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10 -#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F - -#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008 -#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800 -#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010 - -#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004 -#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000 -#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000 - -#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C -#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004 - -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gig Carry Extend Padding */ -#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000 - -#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8 -#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9 - -/* GG82563 PHY Specific Status Register (Page 0, Register 16 */ -#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Dis */ -#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060 -#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */ -#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */ -#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */ - -/* PHY Specific Control Register 2 (Page 0, Register 26) */ -#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000 /* 1=Reverse Auto-Neg */ - -/* MAC Specific Control Register (Page 2, Register 21) */ -/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */ -#define GG82563_MSCR_TX_CLK_MASK 0x0007 -#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004 -#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005 -#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007 - -#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */ - -/* DSP Distance Register (Page 5, Register 26) - * 0 = <50M - * 1 = 50-80M - * 2 = 80-100M - * 3 = 110-140M - * 4 = >140M - */ -#define GG82563_DSPD_CABLE_LENGTH 0x0007 - -/* Kumeran Mode Control Register (Page 193, Register 16) */ -#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800 - -/* Max number of times Kumeran read/write should be validated */ -#define GG82563_MAX_KMRN_RETRY 0x5 - -/* Power Management Control Register (Page 193, Register 20) */ -/* 1=Enable SERDES Electrical Idle */ -#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001 - -/* In-Band Control Register (Page 194, Register 18) */ -#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */ - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82540.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82540.c deleted file mode 100755 index fc1fa946..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82540.c +++ /dev/null @@ -1,717 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* - * 82540EM Gigabit Ethernet Controller - * 82540EP Gigabit Ethernet Controller - * 82545EM Gigabit Ethernet Controller (Copper) - * 82545EM Gigabit Ethernet Controller (Fiber) - * 82545GM Gigabit Ethernet Controller - * 82546EB Gigabit Ethernet Controller (Copper) - * 82546EB Gigabit Ethernet Controller (Fiber) - * 82546GB Gigabit Ethernet Controller - */ - -#include "e1000_api.h" - -STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw); -STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw); -STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw); -STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw); -STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw); -STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw); -STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw); -STATIC s32 e1000_read_mac_addr_82540(struct e1000_hw *hw); - -/** - * e1000_init_phy_params_82540 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82540(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_m88; - - /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.read_reg = e1000_read_phy_reg_m88; - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.write_reg = e1000_write_phy_reg_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82540; - - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - - /* Verify phy id */ - switch (hw->mac.type) { - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if (phy->id == M88E1011_I_PHY_ID) - break; - /* Fall Through */ - default: - ret_val = -E1000_ERR_PHY; - goto out; - break; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params_82540 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_82540(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_init_nvm_params_82540"); - - nvm->type = e1000_nvm_eeprom_microwire; - nvm->delay_usec = 50; - nvm->opcode_bits = 3; - switch (nvm->override) { - case e1000_nvm_override_microwire_large: - nvm->address_bits = 8; - nvm->word_size = 256; - break; - case e1000_nvm_override_microwire_small: - nvm->address_bits = 6; - nvm->word_size = 64; - break; - default: - nvm->address_bits = eecd & E1000_EECD_SIZE ? 8 : 6; - nvm->word_size = eecd & E1000_EECD_SIZE ? 256 : 64; - break; - } - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82540 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82540(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_mac_params_82540"); - - /* Set media type */ - switch (hw->device_id) { - case E1000_DEV_ID_82545EM_FIBER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546GB_FIBER: - hw->phy.media_type = e1000_media_type_fiber; - break; - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82540; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82540; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82540 - : e1000_setup_fiber_serdes_link_82540; - /* check for link */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - mac->ops.check_for_link = e1000_check_for_copper_link_generic; - break; - case e1000_media_type_fiber: - mac->ops.check_for_link = e1000_check_for_fiber_link_generic; - break; - case e1000_media_type_internal_serdes: - mac->ops.check_for_link = e1000_check_for_serdes_link_generic; - break; - default: - ret_val = -E1000_ERR_CONFIG; - goto out; - break; - } - /* link info */ - mac->ops.get_link_up_info = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_get_speed_and_duplex_copper_generic - : e1000_get_speed_and_duplex_fiber_serdes_generic; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82540; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82540; - -out: - return ret_val; -} - -/** - * e1000_init_function_pointers_82540 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82540(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82540"); - - hw->mac.ops.init_params = e1000_init_mac_params_82540; - hw->nvm.ops.init_params = e1000_init_nvm_params_82540; - hw->phy.ops.init_params = e1000_init_phy_params_82540; -} - -/** - * e1000_reset_hw_82540 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82540(struct e1000_hw *hw) -{ - u32 ctrl, manc; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_reset_hw_82540"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* - * Delay to allow any outstanding PCI transactions to complete - * before resetting the device. - */ - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to 82540/82545/82546 MAC\n"); - switch (hw->mac.type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - E1000_WRITE_REG(hw, E1000_CTRL_DUP, ctrl | E1000_CTRL_RST); - break; - default: - /* - * These controllers can't ack the 64-bit write when - * issuing the reset, so we use IO-mapping as a - * workaround to issue the reset. - */ - E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - break; - } - - /* Wait for EEPROM reload */ - msec_delay(5); - - /* Disable HW ARPs on ASF enabled adapters */ - manc = E1000_READ_REG(hw, E1000_MANC); - manc &= ~E1000_MANC_ARP_EN; - E1000_WRITE_REG(hw, E1000_MANC, manc); - - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - return ret_val; -} - -/** - * e1000_init_hw_82540 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -STATIC s32 e1000_init_hw_82540(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txdctl, ctrl_ext; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_init_hw_82540"); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - if (mac->type < e1000_82545_rev_3) - E1000_WRITE_REG(hw, E1000_VET, 0); - - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) { - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - /* - * Avoid back to back register writes by adding the register - * read (flush). This is to protect against some strange - * bridge configurations that may issue Memory Write Block - * (MWB) to our register space. The *_rev_3 hardware at - * least doesn't respond correctly to every other dword in an - * MWB to our register space. - */ - E1000_WRITE_FLUSH(hw); - } - - if (mac->type < e1000_82545_rev_3) - e1000_pcix_mmrbc_workaround_generic(hw); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82540(hw); - - if ((hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER) || - (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3)) { - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - /* - * Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. - */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - } - - return ret_val; -} - -/** - * e1000_setup_copper_link_82540 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -STATIC s32 e1000_setup_copper_link_82540(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_setup_copper_link_82540"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - ret_val = e1000_set_phy_mode_82540(hw); - if (ret_val) - goto out; - - if (hw->mac.type == e1000_82545_rev_3 || - hw->mac.type == e1000_82546_rev_3) { - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, - &data); - if (ret_val) - goto out; - data |= 0x00000008; - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, - data); - if (ret_val) - goto out; - } - - ret_val = e1000_copper_link_setup_m88(hw); - if (ret_val) - goto out; - - ret_val = e1000_setup_copper_link_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_setup_fiber_serdes_link_82540 - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Set the output amplitude to the value in the EEPROM and adjust the VCO - * speed to improve Bit Error Rate (BER) performance. Configures collision - * distance and flow control for fiber and serdes links. Upon successful - * setup, poll for link. - **/ -STATIC s32 e1000_setup_fiber_serdes_link_82540(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_82540"); - - switch (mac->type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - if (hw->phy.media_type == e1000_media_type_internal_serdes) { - /* - * If we're on serdes media, adjust the output - * amplitude to value set in the EEPROM. - */ - ret_val = e1000_adjust_serdes_amplitude_82540(hw); - if (ret_val) - goto out; - } - /* Adjust VCO speed to improve BER performance */ - ret_val = e1000_set_vco_speed_82540(hw); - if (ret_val) - goto out; - default: - break; - } - - ret_val = e1000_setup_fiber_serdes_link_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_adjust_serdes_amplitude_82540 - Adjust amplitude based on EEPROM - * @hw: pointer to the HW structure - * - * Adjust the SERDES output amplitude based on the EEPROM settings. - **/ -STATIC s32 e1000_adjust_serdes_amplitude_82540(struct e1000_hw *hw) -{ - s32 ret_val; - u16 nvm_data; - - DEBUGFUNC("e1000_adjust_serdes_amplitude_82540"); - - ret_val = hw->nvm.ops.read(hw, NVM_SERDES_AMPLITUDE, 1, &nvm_data); - if (ret_val) - goto out; - - if (nvm_data != NVM_RESERVED_WORD) { - /* Adjust serdes output amplitude only. */ - nvm_data &= NVM_SERDES_AMPLITUDE_MASK; - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_EXT_CTRL, - nvm_data); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_set_vco_speed_82540 - Set VCO speed for better performance - * @hw: pointer to the HW structure - * - * Set the VCO speed to improve Bit Error Rate (BER) performance. - **/ -STATIC s32 e1000_set_vco_speed_82540(struct e1000_hw *hw) -{ - s32 ret_val; - u16 default_page = 0; - u16 phy_data; - - DEBUGFUNC("e1000_set_vco_speed_82540"); - - /* Set PHY register 30, page 5, bit 8 to 0 */ - - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_PAGE_SELECT, - &default_page); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - goto out; - - phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - goto out; - - /* Set PHY register 30, page 4, bit 11 to 1 */ - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - goto out; - - phy_data |= M88E1000_PHY_VCO_REG_BIT11; - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, - default_page); - -out: - return ret_val; -} - -/** - * e1000_set_phy_mode_82540 - Set PHY to class A mode - * @hw: pointer to the HW structure - * - * Sets the PHY to class A mode and assumes the following operations will - * follow to enable the new class mode: - * 1. Do a PHY soft reset. - * 2. Restart auto-negotiation or force link. - **/ -STATIC s32 e1000_set_phy_mode_82540(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 nvm_data; - - DEBUGFUNC("e1000_set_phy_mode_82540"); - - if (hw->mac.type != e1000_82545_rev_3) - goto out; - - ret_val = hw->nvm.ops.read(hw, NVM_PHY_CLASS_WORD, 1, &nvm_data); - if (ret_val) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - if ((nvm_data != NVM_RESERVED_WORD) && (nvm_data & NVM_PHY_CLASS_A)) { - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, - 0x000B); - if (ret_val) { - ret_val = -E1000_ERR_PHY; - goto out; - } - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, - 0x8104); - if (ret_val) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - } - -out: - return ret_val; -} - -/** - * e1000_power_down_phy_copper_82540 - Remove link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_82540(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_82540 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82540(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82540"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); -} - -/** - * e1000_read_mac_addr_82540 - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - * - * This version is being used over generic because of customer issues - * with VmWare and Virtual Box when using generic. It seems in - * the emulated 82545, RAR[0] does NOT have a valid address after a - * reset, this older method works and using this breaks nothing for - * these legacy adapters. - **/ -s32 e1000_read_mac_addr_82540(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 offset, nvm_data, i; - - DEBUGFUNC("e1000_read_mac_addr"); - - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = i >> 1; - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); - hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); - } - - /* Flip last bit of mac address if we're on second port */ - if (hw->bus.func == E1000_FUNC_1) - hw->mac.perm_addr[5] ^= 1; - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - -out: - return ret_val; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.c deleted file mode 100755 index 952aea28..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.c +++ /dev/null @@ -1,1268 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* - * 82541EI Gigabit Ethernet Controller - * 82541ER Gigabit Ethernet Controller - * 82541GI Gigabit Ethernet Controller - * 82541PI Gigabit Ethernet Controller - * 82547EI Gigabit Ethernet Controller - * 82547GI Gigabit Ethernet Controller - */ - -#include "e1000_api.h" - -STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw); -STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw); -STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw); -STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw); -STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw); -STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw); -STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw); -STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw); -STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, - bool link_up); -STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw); - -STATIC const u16 e1000_igp_cable_length_table[] = { - 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10, - 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 30, 30, 30, 30, - 40, 40, 40, 40, 40, 40, 40, 40, 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, - 60, 60, 60, 60, 60, 60, 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, - 80, 90, 90, 90, 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, - 100, 100, 100, 100, 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, - 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 120, 120, - 120, 120, 120, 120, 120, 120, 120, 120}; -#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \ - (sizeof(e1000_igp_cable_length_table) / \ - sizeof(e1000_igp_cable_length_table[0])) - -/** - * e1000_init_phy_params_82541 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82541(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - DEBUGFUNC("e1000_init_phy_params_82541"); - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_igp; - - /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_82541; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.reset = e1000_phy_hw_reset_82541; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541; - phy->ops.write_reg = e1000_write_phy_reg_igp; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82541; - - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - - /* Verify phy id */ - if (phy->id != IGP01E1000_I_PHY_ID) { - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params_82541 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_82541(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = E1000_SUCCESS; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82541"); - - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->type = e1000_nvm_eeprom_spi; - eecd |= E1000_EECD_ADDR_BITS; - break; - case e1000_nvm_override_spi_small: - nvm->type = e1000_nvm_eeprom_spi; - eecd &= ~E1000_EECD_ADDR_BITS; - break; - case e1000_nvm_override_microwire_large: - nvm->type = e1000_nvm_eeprom_microwire; - eecd |= E1000_EECD_SIZE; - break; - case e1000_nvm_override_microwire_small: - nvm->type = e1000_nvm_eeprom_microwire; - eecd &= ~E1000_EECD_SIZE; - break; - default: - nvm->type = eecd & E1000_EECD_TYPE ? e1000_nvm_eeprom_spi - : e1000_nvm_eeprom_microwire; - break; - } - - if (nvm->type == e1000_nvm_eeprom_spi) { - nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 16 : 8; - nvm->delay_usec = 1; - nvm->opcode_bits = 8; - nvm->page_size = (eecd & E1000_EECD_ADDR_BITS) ? 32 : 8; - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_spi; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_spi; - - /* - * nvm->word_size must be discovered after the pointers - * are set so we can verify the size from the nvm image - * itself. Temporarily set it to a dummy value so the - * read will work. - */ - nvm->word_size = 64; - ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size); - if (ret_val) - goto out; - size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT; - /* - * if size != 0, it can be added to a constant and become - * the left-shift value to set the word_size. Otherwise, - * word_size stays at 64. - */ - if (size) { - size += NVM_WORD_SIZE_BASE_SHIFT_82541; - nvm->word_size = 1 << size; - } - } else { - nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS) ? 8 : 6; - nvm->delay_usec = 50; - nvm->opcode_bits = 3; - nvm->word_size = (eecd & E1000_EECD_ADDR_BITS) ? 256 : 64; - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_generic; - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_release_nvm_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; - } - -out: - return ret_val; -} - -/** - * e1000_init_mac_params_82541 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82541(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_init_mac_params_82541"); - - /* Set media type */ - hw->phy.media_type = e1000_media_type_copper; - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - - /* Function Pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82541; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82541; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface link setup */ - mac->ops.setup_physical_interface = e1000_setup_copper_link_82541; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_link_82541; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_82541; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_82541; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_82541; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541; - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82541 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82541(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82541"); - - hw->mac.ops.init_params = e1000_init_mac_params_82541; - hw->nvm.ops.init_params = e1000_init_nvm_params_82541; - hw->phy.ops.init_params = e1000_init_phy_params_82541; -} - -/** - * e1000_reset_hw_82541 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82541(struct e1000_hw *hw) -{ - u32 ledctl, ctrl, manc; - - DEBUGFUNC("e1000_reset_hw_82541"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* - * Delay to allow any outstanding PCI transactions to complete - * before resetting the device. - */ - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Must reset the Phy before resetting the MAC */ - if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST)); - E1000_WRITE_FLUSH(hw); - msec_delay(5); - } - - DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n"); - switch (hw->mac.type) { - case e1000_82541: - case e1000_82541_rev_2: - /* - * These controllers can't ack the 64-bit write when - * issuing the reset, so we use IO-mapping as a - * workaround to issue the reset. - */ - E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - break; - default: - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - break; - } - - /* Wait for NVM reload */ - msec_delay(20); - - /* Disable HW ARPs on ASF enabled adapters */ - manc = E1000_READ_REG(hw, E1000_MANC); - manc &= ~E1000_MANC_ARP_EN; - E1000_WRITE_REG(hw, E1000_MANC, manc); - - if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { - e1000_phy_init_script_82541(hw); - - /* Configure activity LED after Phy reset */ - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - ledctl &= IGP_ACTIVITY_LED_MASK; - ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } - - /* Once again, mask the interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); - - /* Clear any pending interrupt events. */ - E1000_READ_REG(hw, E1000_ICR); - - return E1000_SUCCESS; -} - -/** - * e1000_init_hw_82541 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -STATIC s32 e1000_init_hw_82541(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - u32 i, txdctl; - s32 ret_val; - - DEBUGFUNC("e1000_init_hw_82541"); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Storing the Speed Power Down value for later use */ - ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, - &dev_spec->spd_default); - if (ret_val) - goto out; - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) { - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - /* - * Avoid back to back register writes by adding the register - * read (flush). This is to protect against some strange - * bridge configurations that may issue Memory Write Block - * (MWB) to our register space. - */ - E1000_WRITE_FLUSH(hw); - } - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); - txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB; - E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82541(hw); - -out: - return ret_val; -} - -/** - * e1000_get_link_up_info_82541 - Report speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to speed buffer - * @duplex: pointer to duplex buffer - * - * Retrieve the current speed and duplex configuration. - **/ -STATIC s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_get_link_up_info_82541"); - - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); - if (ret_val) - goto out; - - if (!phy->speed_downgraded) - goto out; - - /* - * IGP01 PHY may advertise full duplex operation after speed - * downgrade even if it is operating at half duplex. - * Here we set the duplex settings to match the duplex in the - * link partner's capabilities. - */ - ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data); - if (ret_val) - goto out; - - if (!(data & NWAY_ER_LP_NWAY_CAPS)) { - *duplex = HALF_DUPLEX; - } else { - ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data); - if (ret_val) - goto out; - - if (*speed == SPEED_100) { - if (!(data & NWAY_LPAR_100TX_FD_CAPS)) - *duplex = HALF_DUPLEX; - } else if (*speed == SPEED_10) { - if (!(data & NWAY_LPAR_10T_FD_CAPS)) - *duplex = HALF_DUPLEX; - } - } - -out: - return ret_val; -} - -/** - * e1000_phy_hw_reset_82541 - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - **/ -STATIC s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw) -{ - s32 ret_val; - u32 ledctl; - - DEBUGFUNC("e1000_phy_hw_reset_82541"); - - ret_val = e1000_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - e1000_phy_init_script_82541(hw); - - if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) { - /* Configure activity LED after PHY reset */ - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - ledctl &= IGP_ACTIVITY_LED_MASK; - ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } - -out: - return ret_val; -} - -/** - * e1000_setup_copper_link_82541 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -STATIC s32 e1000_setup_copper_link_82541(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val; - u32 ctrl, ledctl; - - DEBUGFUNC("e1000_setup_copper_link_82541"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - - /* Earlier revs of the IGP phy require us to force MDI. */ - if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) { - dev_spec->dsp_config = e1000_dsp_config_disabled; - phy->mdix = 1; - } else { - dev_spec->dsp_config = e1000_dsp_config_enabled; - } - - ret_val = e1000_copper_link_setup_igp(hw); - if (ret_val) - goto out; - - if (hw->mac.autoneg) { - if (dev_spec->ffe_config == e1000_ffe_config_active) - dev_spec->ffe_config = e1000_ffe_config_enabled; - } - - /* Configure activity LED after Phy reset */ - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - ledctl &= IGP_ACTIVITY_LED_MASK; - ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - - ret_val = e1000_setup_copper_link_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_check_for_link_82541 - Check/Store link connection - * @hw: pointer to the HW structure - * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. - **/ -STATIC s32 e1000_check_for_link_82541(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_link_82541"); - - /* - * We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* - * First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) { - ret_val = e1000_config_dsp_after_link_change_82541(hw, false); - goto out; /* No link detected */ - } - - mac->get_link_status = false; - - /* - * Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000_check_downshift_generic(hw); - - /* - * If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - ret_val = e1000_config_dsp_after_link_change_82541(hw, true); - - /* - * Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - mac->ops.config_collision_dist(hw); - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - -out: - return ret_val; -} - -/** - * e1000_config_dsp_after_link_change_82541 - Config DSP after link - * @hw: pointer to the HW structure - * @link_up: boolean flag for link up status - * - * Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS - * at any other case. - * - * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a - * gigabit link is achieved to improve link quality. - **/ -STATIC s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw, - bool link_up) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val; - u32 idle_errs = 0; - u16 phy_data, phy_saved_data, speed, duplex, i; - u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; - u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = { - IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D}; - - DEBUGFUNC("e1000_config_dsp_after_link_change_82541"); - - if (link_up) { - ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - goto out; - } - - if (speed != SPEED_1000) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = phy->ops.get_cable_length(hw); - if (ret_val) - goto out; - - if ((dev_spec->dsp_config == e1000_dsp_config_enabled) && - phy->min_cable_length >= 50) { - - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, - dsp_reg_array[i], - &phy_data); - if (ret_val) - goto out; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - - ret_val = phy->ops.write_reg(hw, - dsp_reg_array[i], - phy_data); - if (ret_val) - goto out; - } - dev_spec->dsp_config = e1000_dsp_config_activated; - } - - if ((dev_spec->ffe_config != e1000_ffe_config_enabled) || - (phy->min_cable_length >= 50)) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* clear previous idle error counts */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - goto out; - - for (i = 0; i < ffe_idle_err_timeout; i++) { - usec_delay(1000); - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - goto out; - - idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { - dev_spec->ffe_config = e1000_ffe_config_active; - - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) - goto out; - break; - } - - if (idle_errs) - ffe_idle_err_timeout = - FFE_IDLE_ERR_COUNT_TIMEOUT_100; - } - } else { - if (dev_spec->dsp_config == e1000_dsp_config_activated) { - /* - * Save off the current value of register 0x2F5B - * to be restored at the end of the routines. - */ - ret_val = phy->ops.read_reg(hw, 0x2F5B, - &phy_saved_data); - if (ret_val) - goto out; - - /* Disable the PHY transmitter */ - ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); - if (ret_val) - goto out; - - msec_delay_irq(20); - - ret_val = phy->ops.write_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIG); - if (ret_val) - goto out; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, - dsp_reg_array[i], - &phy_data); - if (ret_val) - goto out; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; - - ret_val = phy->ops.write_reg(hw, - dsp_reg_array[i], - phy_data); - if (ret_val) - goto out; - } - - ret_val = phy->ops.write_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - goto out; - - msec_delay_irq(20); - - /* Now enable the transmitter */ - ret_val = phy->ops.write_reg(hw, 0x2F5B, - phy_saved_data); - if (ret_val) - goto out; - - dev_spec->dsp_config = e1000_dsp_config_enabled; - } - - if (dev_spec->ffe_config != e1000_ffe_config_active) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* - * Save off the current value of register 0x2F5B - * to be restored at the end of the routines. - */ - ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data); - if (ret_val) - goto out; - - /* Disable the PHY transmitter */ - ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003); - if (ret_val) - goto out; - - msec_delay_irq(20); - - ret_val = phy->ops.write_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIG); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - goto out; - - msec_delay_irq(20); - - /* Now enable the transmitter */ - ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - goto out; - - dev_spec->ffe_config = e1000_ffe_config_enabled; - } - -out: - return ret_val; -} - -/** - * e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - **/ -STATIC s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 i, data; - u16 cur_agc_value, agc_value = 0; - u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D}; - - DEBUGFUNC("e1000_get_cable_length_igp_82541"); - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data); - if (ret_val) - goto out; - - cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT; - - /* Bounds checking */ - if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc_value == 0)) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - agc_value += cur_agc_value; - - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; - } - - /* Remove the minimal AGC result for length < 50m */ - if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) { - agc_value -= min_agc_value; - /* Average the three remaining channels for the length. */ - agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); - } else { - /* Average the channels for the length. */ - agc_value /= IGP01E1000_PHY_CHANNEL_NUM; - } - - phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] > - IGP01E1000_AGC_RANGE) - ? (e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) - : 0; - phy->max_cable_length = e1000_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - -out: - return ret_val; -} - -/** - * e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -STATIC s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_82541"); - - switch (hw->mac.type) { - case e1000_82541_rev_2: - case e1000_82547_rev_2: - break; - default: - ret_val = e1000_set_d3_lplu_state_generic(hw, active); - goto out; - break; - } - - ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data); - if (ret_val) - goto out; - - if (!active) { - data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); - if (ret_val) - goto out; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP01E1000_GMII_FLEX_SPD; - ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - } - -out: - return ret_val; -} - -/** - * e1000_setup_led_82541 - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - **/ -STATIC s32 e1000_setup_led_82541(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val; - - DEBUGFUNC("e1000_setup_led_82541"); - - ret_val = hw->phy.ops.read_reg(hw, IGP01E1000_GMII_FIFO, - &dev_spec->spd_default); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, - (u16)(dev_spec->spd_default & - ~IGP01E1000_GMII_SPD)); - if (ret_val) - goto out; - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - -out: - return ret_val; -} - -/** - * e1000_cleanup_led_82541 - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -STATIC s32 e1000_cleanup_led_82541(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - s32 ret_val; - - DEBUGFUNC("e1000_cleanup_led_82541"); - - ret_val = hw->phy.ops.write_reg(hw, IGP01E1000_GMII_FIFO, - dev_spec->spd_default); - if (ret_val) - goto out; - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - -out: - return ret_val; -} - -/** - * e1000_phy_init_script_82541 - Initialize GbE PHY - * @hw: pointer to the HW structure - * - * Initializes the IGP PHY. - **/ -STATIC s32 e1000_phy_init_script_82541(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - u32 ret_val; - u16 phy_saved_data; - - DEBUGFUNC("e1000_phy_init_script_82541"); - - if (!dev_spec->phy_init_script) { - ret_val = E1000_SUCCESS; - goto out; - } - - /* Delay after phy reset to enable NVM configuration to load */ - msec_delay(20); - - /* - * Save off the current value of register 0x2F5B to be restored at - * the end of this routine. - */ - ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003); - - msec_delay(20); - - hw->phy.ops.write_reg(hw, 0x0000, 0x0140); - - msec_delay(5); - - switch (hw->mac.type) { - case e1000_82541: - case e1000_82547: - hw->phy.ops.write_reg(hw, 0x1F95, 0x0001); - - hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21); - - hw->phy.ops.write_reg(hw, 0x1F79, 0x0018); - - hw->phy.ops.write_reg(hw, 0x1F30, 0x1600); - - hw->phy.ops.write_reg(hw, 0x1F31, 0x0014); - - hw->phy.ops.write_reg(hw, 0x1F32, 0x161C); - - hw->phy.ops.write_reg(hw, 0x1F94, 0x0003); - - hw->phy.ops.write_reg(hw, 0x1F96, 0x003F); - - hw->phy.ops.write_reg(hw, 0x2010, 0x0008); - break; - case e1000_82541_rev_2: - case e1000_82547_rev_2: - hw->phy.ops.write_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - hw->phy.ops.write_reg(hw, 0x0000, 0x3300); - - msec_delay(20); - - /* Now enable the transmitter */ - hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac.type == e1000_82547) { - u16 fused, fine, coarse; - - /* Move to analog registers page */ - hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, - &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - hw->phy.ops.read_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, - &fused); - - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; - - if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == - IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; - - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); - - hw->phy.ops.write_reg(hw, - IGP01E1000_ANALOG_FUSE_CONTROL, - fused); - hw->phy.ops.write_reg(hw, - IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - -out: - return ret_val; -} - -/** - * e1000_init_script_state_82541 - Enable/Disable PHY init script - * @hw: pointer to the HW structure - * @state: boolean value used to enable/disable PHY init script - * - * Allows the driver to enable/disable the PHY init script, if the PHY is an - * IGP PHY. - **/ -void e1000_init_script_state_82541(struct e1000_hw *hw, bool state) -{ - struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541; - - DEBUGFUNC("e1000_init_script_state_82541"); - - if (hw->phy.type != e1000_phy_igp) { - DEBUGOUT("Initialization script not necessary.\n"); - goto out; - } - - dev_spec->phy_init_script = state; - -out: - return; -} - -/** - * e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_82541(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN)) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82541"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.h deleted file mode 100755 index 0f50f556..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82541.h +++ /dev/null @@ -1,91 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_82541_H_ -#define _E1000_82541_H_ - -#define NVM_WORD_SIZE_BASE_SHIFT_82541 (NVM_WORD_SIZE_BASE_SHIFT + 1) - -#define IGP01E1000_PHY_CHANNEL_NUM 4 - -#define IGP01E1000_PHY_AGC_A 0x1172 -#define IGP01E1000_PHY_AGC_B 0x1272 -#define IGP01E1000_PHY_AGC_C 0x1472 -#define IGP01E1000_PHY_AGC_D 0x1872 - -#define IGP01E1000_PHY_AGC_PARAM_A 0x1171 -#define IGP01E1000_PHY_AGC_PARAM_B 0x1271 -#define IGP01E1000_PHY_AGC_PARAM_C 0x1471 -#define IGP01E1000_PHY_AGC_PARAM_D 0x1871 - -#define IGP01E1000_PHY_EDAC_MU_INDEX 0xC000 -#define IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS 0x8000 - -#define IGP01E1000_PHY_DSP_RESET 0x1F33 - -#define IGP01E1000_PHY_DSP_FFE 0x1F35 -#define IGP01E1000_PHY_DSP_FFE_CM_CP 0x0069 -#define IGP01E1000_PHY_DSP_FFE_DEFAULT 0x002A - -#define IGP01E1000_IEEE_FORCE_GIG 0x0140 -#define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 - -#define IGP01E1000_AGC_LENGTH_SHIFT 7 -#define IGP01E1000_AGC_RANGE 10 - -#define FFE_IDLE_ERR_COUNT_TIMEOUT_20 20 -#define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 - -#define IGP01E1000_ANALOG_FUSE_STATUS 0x20D0 -#define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 -#define IGP01E1000_ANALOG_FUSE_CONTROL 0x20DC -#define IGP01E1000_ANALOG_FUSE_BYPASS 0x20DE - -#define IGP01E1000_ANALOG_SPARE_FUSE_ENABLED 0x0100 -#define IGP01E1000_ANALOG_FUSE_FINE_MASK 0x0F80 -#define IGP01E1000_ANALOG_FUSE_COARSE_MASK 0x0070 -#define IGP01E1000_ANALOG_FUSE_COARSE_THRESH 0x0040 -#define IGP01E1000_ANALOG_FUSE_COARSE_10 0x0010 -#define IGP01E1000_ANALOG_FUSE_FINE_1 0x0080 -#define IGP01E1000_ANALOG_FUSE_FINE_10 0x0500 -#define IGP01E1000_ANALOG_FUSE_POLY_MASK 0xF000 -#define IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL 0x0002 - -#define IGP01E1000_MSE_CHANNEL_D 0x000F -#define IGP01E1000_MSE_CHANNEL_C 0x00F0 -#define IGP01E1000_MSE_CHANNEL_B 0x0F00 -#define IGP01E1000_MSE_CHANNEL_A 0xF000 - - -void e1000_init_script_state_82541(struct e1000_hw *hw, bool state); -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82542.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82542.c deleted file mode 100755 index afea4697..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82542.c +++ /dev/null @@ -1,588 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* - * 82542 Gigabit Ethernet Controller - */ - -#include "e1000_api.h" - -STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw); -STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw); -STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw); -STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw); -STATIC s32 e1000_led_on_82542(struct e1000_hw *hw); -STATIC s32 e1000_led_off_82542(struct e1000_hw *hw); -STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index); -STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw); -STATIC s32 e1000_read_mac_addr_82542(struct e1000_hw *hw); - -/** - * e1000_init_phy_params_82542 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82542(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_phy_params_82542"); - - phy->type = e1000_phy_none; - - return ret_val; -} - -/** - * e1000_init_nvm_params_82542 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_82542(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - - DEBUGFUNC("e1000_init_nvm_params_82542"); - - nvm->address_bits = 6; - nvm->delay_usec = 50; - nvm->opcode_bits = 3; - nvm->type = e1000_nvm_eeprom_microwire; - nvm->word_size = 64; - - /* Function Pointers */ - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.release = e1000_stop_nvm; - nvm->ops.write = e1000_write_nvm_microwire; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82542 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82542(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_init_mac_params_82542"); - - /* Set media type */ - hw->phy.media_type = e1000_media_type_fiber; - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_82542; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82542; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82542; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_82542; - /* phy/fiber/serdes setup */ - mac->ops.setup_physical_interface = - e1000_setup_fiber_serdes_link_generic; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_fiber_link_generic; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82542; - /* set RAR */ - mac->ops.rar_set = e1000_rar_set_82542; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_82542; - mac->ops.led_off = e1000_led_off_82542; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82542; - /* link info */ - mac->ops.get_link_up_info = - e1000_get_speed_and_duplex_fiber_serdes_generic; - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82542 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82542(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82542"); - - hw->mac.ops.init_params = e1000_init_mac_params_82542; - hw->nvm.ops.init_params = e1000_init_nvm_params_82542; - hw->phy.ops.init_params = e1000_init_phy_params_82542; -} - -/** - * e1000_get_bus_info_82542 - Obtain bus information for adapter - * @hw: pointer to the HW structure - * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. - **/ -STATIC s32 e1000_get_bus_info_82542(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_get_bus_info_82542"); - - hw->bus.type = e1000_bus_type_pci; - hw->bus.speed = e1000_bus_speed_unknown; - hw->bus.width = e1000_bus_width_unknown; - - return E1000_SUCCESS; -} - -/** - * e1000_reset_hw_82542 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82542(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val = E1000_SUCCESS; - u32 ctrl; - - DEBUGFUNC("e1000_reset_hw_82542"); - - if (hw->revision_id == E1000_REVISION_2) { - DEBUGOUT("Disabling MWI on 82542 rev 2\n"); - e1000_pci_clear_mwi(hw); - } - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - /* - * Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to 82542/82543 MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - hw->nvm.ops.reload(hw); - msec_delay(2); - - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - if (hw->revision_id == E1000_REVISION_2) { - if (bus->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - return ret_val; -} - -/** - * e1000_init_hw_82542 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -STATIC s32 e1000_init_hw_82542(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82542 *dev_spec = &hw->dev_spec._82542; - s32 ret_val = E1000_SUCCESS; - u32 ctrl; - u16 i; - - DEBUGFUNC("e1000_init_hw_82542"); - - /* Disabling VLAN filtering */ - E1000_WRITE_REG(hw, E1000_VET, 0); - mac->ops.clear_vfta(hw); - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->revision_id == E1000_REVISION_2) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(hw); - msec_delay(5); - } - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->revision_id == E1000_REVISION_2) { - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* - * Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. - */ - if (dev_spec->dma_fairness) { - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); - } - - /* Setup link and flow control */ - ret_val = e1000_setup_link_82542(hw); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82542(hw); - - return ret_val; -} - -/** - * e1000_setup_link_82542 - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -STATIC s32 e1000_setup_link_82542(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - - DEBUGFUNC("e1000_setup_link_82542"); - - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - goto out; - - hw->fc.requested_mode &= ~e1000_fc_tx_pause; - - if (mac->report_tx_early) - hw->fc.requested_mode &= ~e1000_fc_rx_pause; - - /* - * Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary subroutine to configure the link. */ - ret_val = mac->ops.setup_physical_interface(hw); - if (ret_val) - goto out; - - /* - * Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing Flow Control address, type and timer regs\n"); - - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - ret_val = e1000_set_fc_watermarks_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_led_on_82542 - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. - **/ -STATIC s32 e1000_led_on_82542(struct e1000_hw *hw) -{ - u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGFUNC("e1000_led_on_82542"); - - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_led_off_82542 - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. - **/ -STATIC s32 e1000_led_off_82542(struct e1000_hw *hw) -{ - u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGFUNC("e1000_led_off_82542"); - - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_rar_set_82542 - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -STATIC void e1000_rar_set_82542(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_82542"); - - /* - * HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); - E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); -} - -/** - * e1000_translate_register_82542 - Translate the proper register offset - * @reg: e1000 register to be read - * - * Registers in 82542 are located in different offsets than other adapters - * even though they function in the same manner. This function takes in - * the name of the register to read and returns the correct offset for - * 82542 silicon. - **/ -u32 e1000_translate_register_82542(u32 reg) -{ - /* - * Some of the 82542 registers are located at different - * offsets than they are in newer adapters. - * Despite the difference in location, the registers - * function in the same manner. - */ - switch (reg) { - case E1000_RA: - reg = 0x00040; - break; - case E1000_RDTR: - reg = 0x00108; - break; - case E1000_RDBAL(0): - reg = 0x00110; - break; - case E1000_RDBAH(0): - reg = 0x00114; - break; - case E1000_RDLEN(0): - reg = 0x00118; - break; - case E1000_RDH(0): - reg = 0x00120; - break; - case E1000_RDT(0): - reg = 0x00128; - break; - case E1000_RDBAL(1): - reg = 0x00138; - break; - case E1000_RDBAH(1): - reg = 0x0013C; - break; - case E1000_RDLEN(1): - reg = 0x00140; - break; - case E1000_RDH(1): - reg = 0x00148; - break; - case E1000_RDT(1): - reg = 0x00150; - break; - case E1000_FCRTH: - reg = 0x00160; - break; - case E1000_FCRTL: - reg = 0x00168; - break; - case E1000_MTA: - reg = 0x00200; - break; - case E1000_TDBAL(0): - reg = 0x00420; - break; - case E1000_TDBAH(0): - reg = 0x00424; - break; - case E1000_TDLEN(0): - reg = 0x00428; - break; - case E1000_TDH(0): - reg = 0x00430; - break; - case E1000_TDT(0): - reg = 0x00438; - break; - case E1000_TIDV: - reg = 0x00440; - break; - case E1000_VFTA: - reg = 0x00600; - break; - case E1000_TDFH: - reg = 0x08010; - break; - case E1000_TDFT: - reg = 0x08018; - break; - default: - break; - } - - return reg; -} - -/** - * e1000_clear_hw_cntrs_82542 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82542(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82542"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); -} - -/** - * e1000_read_mac_addr_82542 - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - **/ -s32 e1000_read_mac_addr_82542(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 offset, nvm_data, i; - - DEBUGFUNC("e1000_read_mac_addr"); - - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = i >> 1; - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); - hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); - } - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - -out: - return ret_val; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.c deleted file mode 100755 index 36335ba2..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.c +++ /dev/null @@ -1,1553 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* - * 82543GC Gigabit Ethernet Controller (Fiber) - * 82543GC Gigabit Ethernet Controller (Copper) - * 82544EI Gigabit Ethernet Controller (Copper) - * 82544EI Gigabit Ethernet Controller (Fiber) - * 82544GC Gigabit Ethernet Controller (Copper) - * 82544GC Gigabit Ethernet Controller (LOM) - */ - -#include "e1000_api.h" - -STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw); -STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw); -STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, - u16 *data); -STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, - u16 data); -STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw); -STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw); -STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw); -STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw); -STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw); -STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw); -STATIC s32 e1000_led_on_82543(struct e1000_hw *hw); -STATIC s32 e1000_led_off_82543(struct e1000_hw *hw); -STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, - u32 value); -STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw); -STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw); -STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw); -STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); -STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw); -STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl); -STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw); -STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, - u16 count); -STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw); -STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state); - -/** - * e1000_init_phy_params_82543 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82543(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_init_phy_params_82543"); - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - goto out; - } else { - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 10000; - phy->type = e1000_phy_m88; - - /* Function Pointers */ - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_82543; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.read_reg = (hw->mac.type == e1000_82543) - ? e1000_read_phy_reg_82543 - : e1000_read_phy_reg_m88; - phy->ops.reset = (hw->mac.type == e1000_82543) - ? e1000_phy_hw_reset_82543 - : e1000_phy_hw_reset_generic; - phy->ops.write_reg = (hw->mac.type == e1000_82543) - ? e1000_write_phy_reg_82543 - : e1000_write_phy_reg_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - - /* - * The external PHY of the 82543 can be in a funky state. - * Resetting helps us read the PHY registers for acquiring - * the PHY ID. - */ - if (!e1000_init_phy_disabled_82543(hw)) { - ret_val = phy->ops.reset(hw); - if (ret_val) { - DEBUGOUT("Resetting PHY during init failed.\n"); - goto out; - } - msec_delay(20); - } - - ret_val = e1000_get_phy_id(hw); - if (ret_val) - goto out; - - /* Verify phy id */ - switch (hw->mac.type) { - case e1000_82543: - if (phy->id != M88E1000_E_PHY_ID) { - ret_val = -E1000_ERR_PHY; - goto out; - } - break; - case e1000_82544: - if (phy->id != M88E1000_I_PHY_ID) { - ret_val = -E1000_ERR_PHY; - goto out; - } - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - break; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params_82543 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_82543(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - - DEBUGFUNC("e1000_init_nvm_params_82543"); - - nvm->type = e1000_nvm_eeprom_microwire; - nvm->word_size = 64; - nvm->delay_usec = 50; - nvm->address_bits = 6; - nvm->opcode_bits = 3; - - /* Function Pointers */ - nvm->ops.read = e1000_read_nvm_microwire; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_generic; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.write = e1000_write_nvm_microwire; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82543 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82543(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_init_mac_params_82543"); - - /* Set media type */ - switch (hw->device_id) { - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82544EI_FIBER: - hw->phy.media_type = e1000_media_type_fiber; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pci_generic; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82543; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82543; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_82543; - /* physical interface setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82543 : e1000_setup_fiber_link_82543; - /* check for link */ - mac->ops.check_for_link = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_check_for_copper_link_82543 - : e1000_check_for_fiber_link_82543; - /* link info */ - mac->ops.get_link_up_info = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_get_speed_and_duplex_copper_generic - : e1000_get_speed_and_duplex_fiber_serdes_generic; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_82543; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_82543; - mac->ops.led_off = e1000_led_off_82543; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543; - - /* Set tbi compatibility */ - if ((hw->mac.type != e1000_82543) || - (hw->phy.media_type == e1000_media_type_fiber)) - e1000_set_tbi_compatibility_82543(hw, false); - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82543 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82543(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82543"); - - hw->mac.ops.init_params = e1000_init_mac_params_82543; - hw->nvm.ops.init_params = e1000_init_nvm_params_82543; - hw->phy.ops.init_params = e1000_init_phy_params_82543; -} - -/** - * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status - * @hw: pointer to the HW structure - * - * Returns the current status of 10-bit Interface (TBI) compatibility - * (enabled/disabled). - **/ -STATIC bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - bool state = false; - - DEBUGFUNC("e1000_tbi_compatibility_enabled_82543"); - - if (hw->mac.type != e1000_82543) { - DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); - goto out; - } - - state = !!(dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED); - -out: - return state; -} - -/** - * e1000_set_tbi_compatibility_82543 - Set TBI compatibility - * @hw: pointer to the HW structure - * @state: enable/disable TBI compatibility - * - * Enables or disabled 10-bit Interface (TBI) compatibility. - **/ -void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state) -{ - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - - DEBUGFUNC("e1000_set_tbi_compatibility_82543"); - - if (hw->mac.type != e1000_82543) { - DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); - goto out; - } - - if (state) - dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED; - else - dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED; - -out: - return; -} - -/** - * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status - * @hw: pointer to the HW structure - * - * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP) - * (enabled/disabled). - **/ -bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - bool state = false; - - DEBUGFUNC("e1000_tbi_sbp_enabled_82543"); - - if (hw->mac.type != e1000_82543) { - DEBUGOUT("TBI compatibility workaround for 82543 only.\n"); - goto out; - } - - state = !!(dev_spec->tbi_compatibility & TBI_SBP_ENABLED); - -out: - return state; -} - -/** - * e1000_set_tbi_sbp_82543 - Set TBI SBP - * @hw: pointer to the HW structure - * @state: enable/disable TBI store bad packet - * - * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP). - **/ -STATIC void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state) -{ - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - - DEBUGFUNC("e1000_set_tbi_sbp_82543"); - - if (state && e1000_tbi_compatibility_enabled_82543(hw)) - dev_spec->tbi_compatibility |= TBI_SBP_ENABLED; - else - dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED; - - return; -} - -/** - * e1000_init_phy_disabled_82543 - Returns init PHY status - * @hw: pointer to the HW structure - * - * Returns the current status of whether PHY initialization is disabled. - * True if PHY initialization is disabled else false. - **/ -STATIC bool e1000_init_phy_disabled_82543(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - bool ret_val; - - DEBUGFUNC("e1000_init_phy_disabled_82543"); - - if (hw->mac.type != e1000_82543) { - ret_val = false; - goto out; - } - - ret_val = dev_spec->init_phy_disabled; - -out: - return ret_val; -} - -/** - * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled - * @hw: pointer to the HW structure - * @stats: Struct containing statistic register values - * @frame_len: The length of the frame in question - * @mac_addr: The Ethernet destination address of the frame in question - * @max_frame_size: The maximum frame size - * - * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT - **/ -void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, - struct e1000_hw_stats *stats, u32 frame_len, - u8 *mac_addr, u32 max_frame_size) -{ - if (!(e1000_tbi_sbp_enabled_82543(hw))) - goto out; - - /* First adjust the frame length. */ - frame_len--; - /* - * We need to adjust the statistics counters, since the hardware - * counters overcount this packet as a CRC error and undercount - * the packet as a good packet - */ - /* This packet should not be counted as a CRC error. */ - stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ - stats->gprc++; - - /* Adjust the Good Octets received counters */ - stats->gorc += frame_len; - - /* - * Is this a broadcast or multicast? Check broadcast first, - * since the test for a multicast frame will test positive on - * a broadcast frame. - */ - if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff)) - /* Broadcast packet */ - stats->bprc++; - else if (*mac_addr & 0x01) - /* Multicast packet */ - stats->mprc++; - - /* - * In this case, the hardware has over counted the number of - * oversize frames. - */ - if ((frame_len == max_frame_size) && (stats->roc > 0)) - stats->roc--; - - /* - * Adjust the bin counters when the extra byte put the frame in the - * wrong bin. Remember that the frame_len was adjusted above. - */ - if (frame_len == 64) { - stats->prc64++; - stats->prc127--; - } else if (frame_len == 127) { - stats->prc127++; - stats->prc255--; - } else if (frame_len == 255) { - stats->prc255++; - stats->prc511--; - } else if (frame_len == 511) { - stats->prc511++; - stats->prc1023--; - } else if (frame_len == 1023) { - stats->prc1023++; - stats->prc1522--; - } else if (frame_len == 1522) { - stats->prc1522++; - } - -out: - return; -} - -/** - * e1000_read_phy_reg_82543 - Read PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY at offset and stores the information read to data. - **/ -STATIC s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data) -{ - u32 mdic; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_phy_reg_82543"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - ret_val = -E1000_ERR_PARAM; - goto out; - } - - /* - * We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* - * Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format - * of an MII read instruction consists of a shift out of 14 bits and - * is defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Offset> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = (offset | (hw->phy.addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits_82543(hw, mdic, 14); - - /* - * Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *data = e1000_shift_in_mdi_bits_82543(hw); - -out: - return ret_val; -} - -/** - * e1000_write_phy_reg_82543 - Write PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be written - * @data: pointer to the data to be written at offset - * - * Writes data to the PHY at offset. - **/ -STATIC s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data) -{ - u32 mdic; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_82543"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - ret_val = -E1000_ERR_PARAM; - goto out; - } - - /* - * We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* - * Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. - */ - mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (u32)data; - - e1000_shift_out_mdi_bits_82543(hw, mdic, 32); - -out: - return ret_val; -} - -/** - * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock - * @hw: pointer to the HW structure - * @ctrl: pointer to the control register - * - * Raise the management data input clock by setting the MDC bit in the control - * register. - **/ -STATIC void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) -{ - /* - * Raise the clock input to the Management Data Clock (by setting the - * MDC bit), and then delay a sufficient amount of time. - */ - E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - usec_delay(10); -} - -/** - * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock - * @hw: pointer to the HW structure - * @ctrl: pointer to the control register - * - * Lower the management data input clock by clearing the MDC bit in the - * control register. - **/ -STATIC void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl) -{ - /* - * Lower the clock input to the Management Data Clock (by clearing the - * MDC bit), and then delay a sufficient amount of time. - */ - E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(hw); - usec_delay(10); -} - -/** - * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY - * @hw: pointer to the HW structure - * @data: data to send to the PHY - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the PHY. So, the value in the - * "data" parameter will be shifted out to the PHY one bit at a time. - * In order to do this, "data" must be broken down into bits. - **/ -STATIC void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data, - u16 count) -{ - u32 ctrl, mask; - - /* - * We need to shift "count" number of bits out to the PHY. So, the - * value in the "data" parameter will be shifted out to the PHY one - * bit at a time. In order to do this, "data" must be broken down - * into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* - * A "1" is shifted out to the PHY by setting the MDIO bit to - * "1" and then raising and lowering the Management Data Clock. - * A "0" is shifted out to the PHY by setting the MDIO bit to - * "0" and then raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(10); - - e1000_raise_mdi_clk_82543(hw, &ctrl); - e1000_lower_mdi_clk_82543(hw, &ctrl); - - mask >>= 1; - } -} - -/** - * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY - * @hw: pointer to the HW structure - * - * In order to read a register from the PHY, we need to shift 18 bits - * in from the PHY. Bits are "shifted in" by raising the clock input to - * the PHY (setting the MDC bit), and then reading the value of the data out - * MDIO bit. - **/ -STATIC u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw) -{ - u32 ctrl; - u16 data = 0; - u8 i; - - /* - * In order to read a register from the PHY, we need to shift in a - * total of 18 bits from the PHY. The first two bit (turnaround) - * times are used to avoid contention on the MDIO pin when a read - * operation is performed. These two bits are ignored by us and - * thrown away. Bits are "shifted in" by raising the input to the - * Management Data Clock (setting the MDC bit) and then reading the - * value of the MDIO bit. - */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as - * input. - */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* - * Raise and lower the clock before reading in the data. This accounts - * for the turnaround bits. The first clock occurred when we clocked - * out the last bit of the Register Address. - */ - e1000_raise_mdi_clk_82543(hw, &ctrl); - e1000_lower_mdi_clk_82543(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data <<= 1; - e1000_raise_mdi_clk_82543(hw, &ctrl); - ctrl = E1000_READ_REG(hw, E1000_CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - e1000_lower_mdi_clk_82543(hw, &ctrl); - } - - e1000_raise_mdi_clk_82543(hw, &ctrl); - e1000_lower_mdi_clk_82543(hw, &ctrl); - - return data; -} - -/** - * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY - * @hw: pointer to the HW structure - * - * Calls the function to force speed and duplex for the m88 PHY, and - * if the PHY is not auto-negotiating and the speed is forced to 10Mbit, - * then call the function for polarity reversal workaround. - **/ -STATIC s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_phy_force_speed_duplex_82543"); - - ret_val = e1000_phy_force_speed_duplex_m88(hw); - if (ret_val) - goto out; - - if (!hw->mac.autoneg && (hw->mac.forced_speed_duplex & - E1000_ALL_10_SPEED)) - ret_val = e1000_polarity_reversal_workaround_82543(hw); - -out: - return ret_val; -} - -/** - * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal - * @hw: pointer to the HW structure - * - * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity - * inadvertently. To workaround the issue, we disable the transmitter on - * the PHY until we have established the link partner's link parameters. - **/ -STATIC s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 mii_status_reg; - u16 i; - bool link; - - if (!(hw->phy.ops.write_reg)) - goto out; - - /* Polarity reversal workaround for forced 10F/10H links. */ - - /* Disable the transmitter on the PHY */ - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - goto out; - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - goto out; - - /* - * This loop will early-out if the NO link condition has been met. - * In other words, DO NOT use e1000_phy_has_link_generic() here. - */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* - * Read the MII Status Register and wait for Link Status bit - * to be clear. - */ - - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - goto out; - - if (!(mii_status_reg & ~MII_SR_LINK_STATUS)) - break; - msec_delay_irq(100); - } - - /* Recommended delay time after link has been lost */ - msec_delay_irq(1000); - - /* Now we will re-enable the transmitter on the PHY */ - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - goto out; - msec_delay_irq(50); - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) - goto out; - msec_delay_irq(50); - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) - goto out; - msec_delay_irq(50); - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - goto out; - - /* - * Read the MII Status Register and wait for Link Status bit - * to be set. - */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link); - if (ret_val) - goto out; - -out: - return ret_val; -} - -/** - * e1000_phy_hw_reset_82543 - PHY hardware reset - * @hw: pointer to the HW structure - * - * Sets the PHY_RESET_DIR bit in the extended device control register - * to put the PHY into a reset and waits for completion. Once the reset - * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out - * of reset. - **/ -STATIC s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw) -{ - u32 ctrl_ext; - s32 ret_val; - - DEBUGFUNC("e1000_phy_hw_reset_82543"); - - /* - * Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset... - */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* ...then take it out of reset. */ - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - usec_delay(150); - - if (!(hw->phy.ops.get_cfg_done)) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.get_cfg_done(hw); - - return ret_val; -} - -/** - * e1000_reset_hw_82543 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82543(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_reset_hw_82543"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - e1000_set_tbi_sbp_82543(hw, false); - - /* - * Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n"); - if (hw->mac.type == e1000_82543) { - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - } else { - /* - * The 82544 can't ACK the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround. - */ - E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - } - - /* - * After MAC reset, force reload of NVM to restore power-on - * settings to device. - */ - hw->nvm.ops.reload(hw); - msec_delay(2); - - /* Masking off and clearing any pending interrupts */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - return ret_val; -} - -/** - * e1000_init_hw_82543 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -STATIC s32 e1000_init_hw_82543(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543; - u32 ctrl; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_init_hw_82543"); - - /* Disabling VLAN filtering */ - E1000_WRITE_REG(hw, E1000_VET, 0); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) { - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - E1000_WRITE_FLUSH(hw); - } - - /* - * Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. - */ - if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) { - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR); - } - - e1000_pcix_mmrbc_workaround_generic(hw); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82543(hw); - - return ret_val; -} - -/** - * e1000_setup_link_82543 - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Read the EEPROM to determine the initial polarity value and write the - * extended device control register with the information before calling - * the generic setup link function, which does the following: - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -STATIC s32 e1000_setup_link_82543(struct e1000_hw *hw) -{ - u32 ctrl_ext; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_setup_link_82543"); - - /* - * Take the 4 bits from NVM word 0xF that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before phy setup. - */ - if (hw->mac.type == e1000_82543) { - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) << - NVM_SWDPIO_EXT_SHIFT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - } - - ret_val = e1000_setup_link_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_setup_copper_link_82543 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - **/ -STATIC s32 e1000_setup_copper_link_82543(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_setup_copper_link_82543"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU; - /* - * With 82543, we need to force speed and duplex on the MAC - * equal to what the PHY speed and duplex configuration is. - * In addition, we need to perform a hardware reset on the - * PHY to take it out of reset. - */ - if (hw->mac.type == e1000_82543) { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - ret_val = hw->phy.ops.reset(hw); - if (ret_val) - goto out; - } else { - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - } - - /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */ - ret_val = e1000_copper_link_setup_m88(hw); - if (ret_val) - goto out; - - if (hw->mac.autoneg) { - /* - * Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - goto out; - } else { - /* - * PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - DEBUGOUT("Forcing Speed and Duplex\n"); - ret_val = e1000_phy_force_speed_duplex_82543(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - goto out; - } - } - - /* - * Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, - &link); - if (ret_val) - goto out; - - - if (link) { - DEBUGOUT("Valid link established!!!\n"); - /* Config the MAC and PHY after link is up */ - if (hw->mac.type == e1000_82544) { - hw->mac.ops.config_collision_dist(hw); - } else { - ret_val = e1000_config_mac_to_phy_82543(hw); - if (ret_val) - goto out; - } - ret_val = e1000_config_fc_after_link_up_generic(hw); - } else { - DEBUGOUT("Unable to establish link!!!\n"); - } - -out: - return ret_val; -} - -/** - * e1000_setup_fiber_link_82543 - Setup link for fiber - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber links. Upon - * successful setup, poll for link. - **/ -STATIC s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_fiber_link_82543"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - hw->mac.ops.config_collision_dist(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - goto out; - - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* - * For these adapters, the SW definable pin 1 is cleared when the - * optics detect a signal. If we have a signal, then poll for a - * "Link-Up" indication. - */ - if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - else - DEBUGOUT("No signal detected\n"); - -out: - return ret_val; -} - -/** - * e1000_check_for_copper_link_82543 - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks the phy for link, if link exists, do the following: - * - check for downshift - * - do polarity workaround (if necessary) - * - configure collision distance - * - configure flow control after link up - * - configure tbi compatibility - **/ -STATIC s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 icr, rctl; - s32 ret_val; - u16 speed, duplex; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link_82543"); - - if (!mac->get_link_status) { - ret_val = E1000_SUCCESS; - goto out; - } - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - goto out; - - if (!link) - goto out; /* No link detected */ - - mac->get_link_status = false; - - e1000_check_downshift_generic(hw); - - /* - * If we are forcing speed/duplex, then we can return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) { - /* - * If speed and duplex are forced to 10H or 10F, then we will - * implement the polarity reversal workaround. We disable - * interrupts first, and upon returning, place the devices - * interrupt state to its previous value except for the link - * status change interrupt which will happened due to the - * execution of this workaround. - */ - if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) { - E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF); - ret_val = e1000_polarity_reversal_workaround_82543(hw); - icr = E1000_READ_REG(hw, E1000_ICR); - E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC)); - E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); - } - - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if (mac->type == e1000_82544) - hw->mac.ops.config_collision_dist(hw); - else { - ret_val = e1000_config_mac_to_phy_82543(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - goto out; - } - } - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - - /* - * At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. - */ - if (e1000_tbi_compatibility_enabled_82543(hw)) { - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { - /* - * If link speed is not set to gigabit speed, - * we do not need to enable TBI compatibility. - */ - if (e1000_tbi_sbp_enabled_82543(hw)) { - /* - * If we previously were in the mode, - * turn it off. - */ - e1000_set_tbi_sbp_82543(hw, false); - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= ~E1000_RCTL_SBP; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - } - } else { - /* - * If TBI compatibility is was previously off, - * turn it on. For compatibility with a TBI link - * partner, we will store bad packets. Some - * frames have an additional byte on the end and - * will look like CRC errors to to the hardware. - */ - if (!e1000_tbi_sbp_enabled_82543(hw)) { - e1000_set_tbi_sbp_82543(hw, true); - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_SBP; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - } - } - } -out: - return ret_val; -} - -/** - * e1000_check_for_fiber_link_82543 - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -STATIC s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw, ctrl, status; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_fiber_link_82543"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* - * If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */ - if ((!(ctrl & E1000_CTRL_SWDPIN1)) && - (!(status & E1000_STATUS_LU)) && - (!(rxcw & E1000_RXCW_C))) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - ret_val = 0; - goto out; - } - DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - goto out; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* - * If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - -out: - return ret_val; -} - -/** - * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings - * @hw: pointer to the HW structure - * - * For the 82543 silicon, we need to set the MAC to match the settings - * of the PHY, even if the PHY is auto-negotiating. - **/ -STATIC s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_config_mac_to_phy_82543"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - /* Set the bits to force speed and duplex */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - /* - * Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - goto out; - - ctrl &= ~E1000_CTRL_FD; - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - - hw->mac.ops.config_collision_dist(hw); - - /* - * Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - -out: - return ret_val; -} - -/** - * e1000_write_vfta_82543 - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. - * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. - **/ -STATIC void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value) -{ - u32 temp; - - DEBUGFUNC("e1000_write_vfta_82543"); - - if ((hw->mac.type == e1000_82544) && (offset & 1)) { - temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1); - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp); - E1000_WRITE_FLUSH(hw); - } else { - e1000_write_vfta_generic(hw, offset, value); - } -} - -/** - * e1000_led_on_82543 - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. - **/ -STATIC s32 e1000_led_on_82543(struct e1000_hw *hw) -{ - u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGFUNC("e1000_led_on_82543"); - - if (hw->mac.type == e1000_82544 && - hw->phy.media_type == e1000_media_type_copper) { - /* Clear SW-definable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Fiber 82544 and all 82543 use this method */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_led_off_82543 - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. - **/ -STATIC s32 e1000_led_off_82543(struct e1000_hw *hw) -{ - u32 ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGFUNC("e1000_led_off_82543"); - - if (hw->mac.type == e1000_82544 && - hw->phy.media_type == e1000_media_type_copper) { - /* Set SW-definable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82543"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.h deleted file mode 100755 index 51056dbc..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82543.h +++ /dev/null @@ -1,56 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_82543_H_ -#define _E1000_82543_H_ - -#define PHY_PREAMBLE 0xFFFFFFFF -#define PHY_PREAMBLE_SIZE 32 -#define PHY_SOF 0x1 -#define PHY_OP_READ 0x2 -#define PHY_OP_WRITE 0x1 -#define PHY_TURNAROUND 0x2 - -#define TBI_COMPAT_ENABLED 0x1 /* Global "knob" for the workaround */ -/* If TBI_COMPAT_ENABLED, then this is the current state (on/off) */ -#define TBI_SBP_ENABLED 0x2 - -void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw, - struct e1000_hw_stats *stats, - u32 frame_len, u8 *mac_addr, - u32 max_frame_size); -void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, - bool state); -bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw); - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.c deleted file mode 100755 index 8ae1cb12..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.c +++ /dev/null @@ -1,2026 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* 82571EB Gigabit Ethernet Controller - * 82571EB Gigabit Ethernet Controller (Copper) - * 82571EB Gigabit Ethernet Controller (Fiber) - * 82571EB Dual Port Gigabit Mezzanine Adapter - * 82571EB Quad Port Gigabit Mezzanine Adapter - * 82571PT Gigabit PT Quad Port Server ExpressModule - * 82572EI Gigabit Ethernet Controller (Copper) - * 82572EI Gigabit Ethernet Controller (Fiber) - * 82572EI Gigabit Ethernet Controller - * 82573V Gigabit Ethernet Controller (Copper) - * 82573E Gigabit Ethernet Controller (Copper) - * 82573L Gigabit Ethernet Controller - * 82574L Gigabit Network Connection - * 82583V Gigabit Network Connection - */ - -#include "e1000_api.h" - -STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw); -STATIC void e1000_release_nvm_82571(struct e1000_hw *hw); -STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw); -STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw); -STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw); -STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw); -STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw); -STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw); -STATIC s32 e1000_led_on_82574(struct e1000_hw *hw); -STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); -STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw); -STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); -STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data); -STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); -STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw); -STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); -STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw); -STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw); -STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw); -STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw); -STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw); -STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, - bool active); -STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); -STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw); - -/** - * e1000_init_phy_params_82571 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - DEBUGFUNC("e1000_init_phy_params_82571"); - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - return E1000_SUCCESS; - } - - phy->addr = 1; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.reset = e1000_phy_hw_reset_generic; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82571; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82571; - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - phy->type = e1000_phy_igp_2; - phy->ops.get_cfg_done = e1000_get_cfg_done_82571; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.write_reg = e1000_write_phy_reg_igp; - phy->ops.acquire = e1000_get_hw_semaphore_82571; - phy->ops.release = e1000_put_hw_semaphore_82571; - break; - case e1000_82573: - phy->type = e1000_phy_m88; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.read_reg = e1000_read_phy_reg_m88; - phy->ops.write_reg = e1000_write_phy_reg_m88; - phy->ops.acquire = e1000_get_hw_semaphore_82571; - phy->ops.release = e1000_put_hw_semaphore_82571; - break; - case e1000_82574: - case e1000_82583: - E1000_MUTEX_INIT(&hw->dev_spec._82571.swflag_mutex); - - phy->type = e1000_phy_bm; - phy->ops.get_cfg_done = e1000_get_cfg_done_generic; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.read_reg = e1000_read_phy_reg_bm2; - phy->ops.write_reg = e1000_write_phy_reg_bm2; - phy->ops.acquire = e1000_get_hw_semaphore_82574; - phy->ops.release = e1000_put_hw_semaphore_82574; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574; - break; - default: - return -E1000_ERR_PHY; - break; - } - - /* This can only be done after all function pointers are setup. */ - ret_val = e1000_get_phy_id_82571(hw); - if (ret_val) { - DEBUGOUT("Error getting PHY ID\n"); - return ret_val; - } - - /* Verify phy id */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - if (phy->id != IGP01E1000_I_PHY_ID) - ret_val = -E1000_ERR_PHY; - break; - case e1000_82573: - if (phy->id != M88E1111_I_PHY_ID) - ret_val = -E1000_ERR_PHY; - break; - case e1000_82574: - case e1000_82583: - if (phy->id != BME1000_E_PHY_ID_R2) - ret_val = -E1000_ERR_PHY; - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - DEBUGOUT1("PHY ID unknown: type = 0x%08x\n", phy->id); - - return ret_val; -} - -/** - * e1000_init_nvm_params_82571 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82571"); - - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; - break; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (((eecd >> 15) & 0x3) == 0x3) { - nvm->type = e1000_nvm_flash_hw; - nvm->word_size = 2048; - /* Autonomous Flash update bit must be cleared due - * to Flash update issue. - */ - eecd &= ~E1000_EECD_AUPDEN; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - break; - } - /* Fall Through */ - default: - nvm->type = e1000_nvm_eeprom_spi; - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* EEPROM access above 16k is unsupported */ - if (size > 14) - size = 14; - nvm->word_size = 1 << size; - break; - } - - /* Function Pointers */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - nvm->ops.acquire = e1000_get_hw_semaphore_82574; - nvm->ops.release = e1000_put_hw_semaphore_82574; - break; - default: - nvm->ops.acquire = e1000_acquire_nvm_82571; - nvm->ops.release = e1000_release_nvm_82571; - break; - } - nvm->ops.read = e1000_read_nvm_eerd; - nvm->ops.update = e1000_update_nvm_checksum_82571; - nvm->ops.validate = e1000_validate_nvm_checksum_82571; - nvm->ops.valid_led_default = e1000_valid_led_default_82571; - nvm->ops.write = e1000_write_nvm_82571; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82571 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 swsm = 0; - u32 swsm2 = 0; - bool force_clear_smbi = false; - - DEBUGFUNC("e1000_init_mac_params_82571"); - - /* Set media type and media-dependent function pointers */ - switch (hw->device_id) { - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - hw->phy.media_type = e1000_media_type_fiber; - mac->ops.setup_physical_interface = - e1000_setup_fiber_serdes_link_82571; - mac->ops.check_for_link = e1000_check_for_fiber_link_generic; - mac->ops.get_link_up_info = - e1000_get_speed_and_duplex_fiber_serdes_generic; - break; - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82572EI_SERDES: - hw->phy.media_type = e1000_media_type_internal_serdes; - mac->ops.setup_physical_interface = - e1000_setup_fiber_serdes_link_82571; - mac->ops.check_for_link = e1000_check_for_serdes_link_82571; - mac->ops.get_link_up_info = - e1000_get_speed_and_duplex_fiber_serdes_generic; - break; - default: - hw->phy.media_type = e1000_media_type_copper; - mac->ops.setup_physical_interface = - e1000_setup_copper_link_82571; - mac->ops.check_for_link = e1000_check_for_copper_link_generic; - mac->ops.get_link_up_info = - e1000_get_speed_and_duplex_copper_generic; - break; - } - - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* Adaptive IFS supported */ - mac->adaptive_ifs = true; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_82571; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_82571; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_82571; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_82571; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82571; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn off LED */ - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82571; - - /* MAC-specific function pointers */ - switch (hw->mac.type) { - case e1000_82573: - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - mac->ops.check_mng_mode = e1000_check_mng_mode_generic; - mac->ops.led_on = e1000_led_on_generic; - mac->ops.blink_led = e1000_blink_led_generic; - - /* FWSM register */ - mac->has_fwsm = true; - /* ARC supported; valid only if manageability features are - * enabled. - */ - mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_FWSM_MODE_MASK); - break; - case e1000_82574: - case e1000_82583: - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - mac->ops.check_mng_mode = e1000_check_mng_mode_82574; - mac->ops.led_on = e1000_led_on_82574; - break; - default: - mac->ops.check_mng_mode = e1000_check_mng_mode_generic; - mac->ops.led_on = e1000_led_on_generic; - mac->ops.blink_led = e1000_blink_led_generic; - - /* FWSM register */ - mac->has_fwsm = true; - break; - } - - /* Ensure that the inter-port SWSM.SMBI lock bit is clear before - * first NVM or PHY access. This should be done for single-port - * devices, and for one port only on dual-port devices so that - * for those devices we can still use the SMBI lock to synchronize - * inter-port accesses to the PHY & NVM. - */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - swsm2 = E1000_READ_REG(hw, E1000_SWSM2); - - if (!(swsm2 & E1000_SWSM2_LOCK)) { - /* Only do this for the first interface on this card */ - E1000_WRITE_REG(hw, E1000_SWSM2, swsm2 | - E1000_SWSM2_LOCK); - force_clear_smbi = true; - } else { - force_clear_smbi = false; - } - break; - default: - force_clear_smbi = true; - break; - } - - if (force_clear_smbi) { - /* Make sure SWSM.SMBI is clear */ - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (swsm & E1000_SWSM_SMBI) { - /* This bit should not be set on a first interface, and - * indicates that the bootagent or EFI code has - * improperly left this bit enabled - */ - DEBUGOUT("Please update your 82571 Bootagent\n"); - } - E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_SMBI); - } - - /* Initialze device specific counter of SMBI acquisition timeouts. */ - hw->dev_spec._82571.smb_counter = 0; - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82571 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82571"); - - hw->mac.ops.init_params = e1000_init_mac_params_82571; - hw->nvm.ops.init_params = e1000_init_nvm_params_82571; - hw->phy.ops.init_params = e1000_init_phy_params_82571; -} - -/** - * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -STATIC s32 e1000_get_phy_id_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_id = 0; - - DEBUGFUNC("e1000_get_phy_id_82571"); - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* The 82571 firmware may still be configuring the PHY. - * In this case, we cannot access the PHY until the - * configuration is done. So we explicitly set the - * PHY ID. - */ - phy->id = IGP01E1000_I_PHY_ID; - break; - case e1000_82573: - return e1000_get_phy_id(hw); - break; - case e1000_82574: - case e1000_82583: - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - return ret_val; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - return ret_val; - - phy->id |= (u32)(phy_id); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - break; - default: - return -E1000_ERR_PHY; - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -STATIC s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - s32 sw_timeout = hw->nvm.word_size + 1; - s32 fw_timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_82571"); - - /* If we have timedout 3 times on trying to acquire - * the inter-port SMBI semaphore, there is old code - * operating on the other port, and it is not - * releasing SMBI. Modify the number of times that - * we try for the semaphore to interwork with this - * older code. - */ - if (hw->dev_spec._82571.smb_counter > 2) - sw_timeout = 1; - - /* Get the SW semaphore */ - while (i < sw_timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == sw_timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - hw->dev_spec._82571.smb_counter++; - } - /* Get the FW semaphore. */ - for (i = 0; i < fw_timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == fw_timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_82571(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_put_hw_semaphore_82571 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -STATIC void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/** - * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore during reset. - * - **/ -STATIC s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_82573"); - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - do { - extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) - break; - - msec_delay(2); - i++; - } while (i < MDIO_OWNERSHIP_TIMEOUT); - - if (i == MDIO_OWNERSHIP_TIMEOUT) { - /* Release semaphores */ - e1000_put_hw_semaphore_82573(hw); - DEBUGOUT("Driver can't access the PHY\n"); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/** - * e1000_put_hw_semaphore_82573 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used during reset. - * - **/ -STATIC void e1000_put_hw_semaphore_82573(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - - DEBUGFUNC("e1000_put_hw_semaphore_82573"); - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); -} - -/** - * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM. - * - **/ -STATIC s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_hw_semaphore_82574"); - - E1000_MUTEX_LOCK(&hw->dev_spec._82571.swflag_mutex); - ret_val = e1000_get_hw_semaphore_82573(hw); - if (ret_val) - E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); - return ret_val; -} - -/** - * e1000_put_hw_semaphore_82574 - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - * - **/ -STATIC void e1000_put_hw_semaphore_82574(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_put_hw_semaphore_82574"); - - e1000_put_hw_semaphore_82573(hw); - E1000_MUTEX_UNLOCK(&hw->dev_spec._82571.swflag_mutex); -} - -/** - * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. - * LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -STATIC s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active) -{ - u32 data = E1000_READ_REG(hw, E1000_POEMB); - - DEBUGFUNC("e1000_set_d0_lplu_state_82574"); - - if (active) - data |= E1000_PHY_CTRL_D0A_LPLU; - else - data &= ~E1000_PHY_CTRL_D0A_LPLU; - - E1000_WRITE_REG(hw, E1000_POEMB, data); - return E1000_SUCCESS; -} - -/** - * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * The low power link up (lplu) state is set to the power management level D3 - * when active is true, else clear lplu for D3. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -STATIC s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active) -{ - u32 data = E1000_READ_REG(hw, E1000_POEMB); - - DEBUGFUNC("e1000_set_d3_lplu_state_82574"); - - if (!active) { - data &= ~E1000_PHY_CTRL_NOND0A_LPLU; - } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) || - (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= E1000_PHY_CTRL_NOND0A_LPLU; - } - - E1000_WRITE_REG(hw, E1000_POEMB, data); - return E1000_SUCCESS; -} - -/** - * e1000_acquire_nvm_82571 - Request for access to the EEPROM - * @hw: pointer to the HW structure - * - * To gain access to the EEPROM, first we must obtain a hardware semaphore. - * Then for non-82573 hardware, set the EEPROM access request bit and wait - * for EEPROM access grant bit. If the access grant bit is not set, release - * hardware semaphore. - **/ -STATIC s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_82571"); - - ret_val = e1000_get_hw_semaphore_82571(hw); - if (ret_val) - return ret_val; - - switch (hw->mac.type) { - case e1000_82573: - break; - default: - ret_val = e1000_acquire_nvm_generic(hw); - break; - } - - if (ret_val) - e1000_put_hw_semaphore_82571(hw); - - return ret_val; -} - -/** - * e1000_release_nvm_82571 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -STATIC void e1000_release_nvm_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_82571"); - - e1000_release_nvm_generic(hw); - e1000_put_hw_semaphore_82571(hw); -} - -/** - * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * For non-82573 silicon, write data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - **/ -STATIC s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_write_nvm_82571"); - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); - break; - case e1000_82571: - case e1000_82572: - ret_val = e1000_write_nvm_spi(hw, offset, words, data); - break; - default: - ret_val = -E1000_ERR_NVM; - break; - } - - return ret_val; -} - -/** - * e1000_update_nvm_checksum_82571 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -STATIC s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) -{ - u32 eecd; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_update_nvm_checksum_82571"); - - ret_val = e1000_update_nvm_checksum_generic(hw); - if (ret_val) - return ret_val; - - /* If our nvm is an EEPROM, then we're done - * otherwise, commit the checksum to the flash NVM. - */ - if (hw->nvm.type != e1000_nvm_flash_hw) - return E1000_SUCCESS; - - /* Check for pending operations. */ - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - msec_delay(1); - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) - break; - } - - if (i == E1000_FLASH_UPDATES) - return -E1000_ERR_NVM; - - /* Reset the firmware if using STM opcode. */ - if ((E1000_READ_REG(hw, E1000_FLOP) & 0xFF00) == E1000_STM_OPCODE) { - /* The enabling of and the actual reset must be done - * in two write cycles. - */ - E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET_ENABLE); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_HICR, E1000_HICR_FW_RESET); - } - - /* Commit the write to flash */ - eecd = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - - for (i = 0; i < E1000_FLASH_UPDATES; i++) { - msec_delay(1); - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_FLUPD)) - break; - } - - if (i == E1000_FLASH_UPDATES) - return -E1000_ERR_NVM; - - return E1000_SUCCESS; -} - -/** - * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -STATIC s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_nvm_checksum_82571"); - - if (hw->nvm.type == e1000_nvm_flash_hw) - e1000_fix_nvm_checksum_82571(hw); - - return e1000_validate_nvm_checksum_generic(hw); -} - -/** - * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * After checking for invalid values, poll the EEPROM to ensure the previous - * command has completed before trying to write the next word. After write - * poll for completion. - * - * If e1000_update_nvm_checksum is not called after this function, the - * EEPROM will most likely contain an invalid checksum. - **/ -STATIC s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eewr = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_nvm_eewr_82571"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eewr = ((data[i] << E1000_NVM_RW_REG_DATA) | - ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) | - E1000_NVM_RW_REG_START); - - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - - E1000_WRITE_REG(hw, E1000_EEWR, eewr); - - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); - if (ret_val) - break; - } - - return ret_val; -} - -/** - * e1000_get_cfg_done_82571 - Poll for configuration done - * @hw: pointer to the HW structure - * - * Reads the management control register for the config done bit to be set. - **/ -STATIC s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - - DEBUGFUNC("e1000_get_cfg_done_82571"); - - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & - E1000_NVM_CFG_DONE_PORT_0) - break; - msec_delay(1); - timeout--; - } - if (!timeout) { - DEBUGOUT("MNG configuration cycle has not completed.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When activating LPLU - * this function also disables smart speed and vice versa. LPLU will not be - * activated unless the device autonegotiation advertisement meets standards - * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function - * pointer entry point only called by PHY setup routines. - **/ -STATIC s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82571"); - - if (!(phy->ops.read_reg)) - return E1000_SUCCESS; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_reset_hw_82571 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82571(struct e1000_hw *hw) -{ - u32 ctrl, ctrl_ext, eecd, tctl; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_82571"); - - /* Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_EN; - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Must acquire the MDIO ownership before MAC reset. - * Ownership defaults to firmware after a reset. - */ - switch (hw->mac.type) { - case e1000_82573: - ret_val = e1000_get_hw_semaphore_82573(hw); - break; - case e1000_82574: - case e1000_82583: - ret_val = e1000_get_hw_semaphore_82574(hw); - break; - default: - break; - } - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - /* Must release MDIO ownership and mutex after MAC reset. */ - switch (hw->mac.type) { - case e1000_82573: - /* Release mutex only if the hw semaphore is acquired */ - if (!ret_val) - e1000_put_hw_semaphore_82573(hw); - break; - case e1000_82574: - case e1000_82583: - /* Release mutex only if the hw semaphore is acquired */ - if (!ret_val) - e1000_put_hw_semaphore_82574(hw); - break; - default: - break; - } - - if (hw->nvm.type == e1000_nvm_flash_hw) { - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - } - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) - /* We don't want to continue accessing MAC registers. */ - return ret_val; - - /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. - * Need to wait for Phy configuration completion before accessing - * NVM and Phy. - */ - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* REQ and GNT bits need to be cleared when using AUTO_RD - * to access the EEPROM. - */ - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - break; - case e1000_82573: - case e1000_82574: - case e1000_82583: - msec_delay(25); - break; - default: - break; - } - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - if (hw->mac.type == e1000_82571) { - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - return ret_val; - - e1000_set_laa_state_82571(hw, true); - } - - /* Reinitialize the 82571 serdes link state machine */ - if (hw->phy.media_type == e1000_media_type_internal_serdes) - hw->mac.serdes_link_state = e1000_serdes_link_down; - - return E1000_SUCCESS; -} - -/** - * e1000_init_hw_82571 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -STATIC s32 e1000_init_hw_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 reg_data; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - DEBUGFUNC("e1000_init_hw_82571"); - - e1000_initialize_hw_bits_82571(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - /* An error is not fatal and we should not stop init due to this */ - if (ret_val) - DEBUGOUT("Error initializing identification LED\n"); - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address. - * If, however, a locally administered address was assigned to the - * 82571, we must reserve a RAR for it to work around an issue where - * resetting one port will reload the MAC on the other port. - */ - if (e1000_get_laa_state_82571(hw)) - rar_count--; - e1000_init_rx_addrs_generic(hw, rar_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data); - - /* ...for both queues. */ - switch (mac->type) { - case e1000_82573: - e1000_enable_tx_pkt_filtering_generic(hw); - /* fall through */ - case e1000_82574: - case e1000_82583: - reg_data = E1000_READ_REG(hw, E1000_GCR); - reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; - E1000_WRITE_REG(hw, E1000_GCR, reg_data); - break; - default: - reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB | - E1000_TXDCTL_COUNT_DESC); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data); - break; - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82571(hw); - - return ret_val; -} - -/** - * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits - * @hw: pointer to the HW structure - * - * Initializes required hardware-dependent bits needed for normal operation. - **/ -STATIC void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_initialize_hw_bits_82571"); - - /* Transmit Descriptor Control 0 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = E1000_READ_REG(hw, E1000_TARC(0)); - reg &= ~(0xF << 27); /* 30:27 */ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); - break; - case e1000_82574: - case e1000_82583: - reg |= (1 << 26); - break; - default: - break; - } - E1000_WRITE_REG(hw, E1000_TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = E1000_READ_REG(hw, E1000_TARC(1)); - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - reg &= ~((1 << 29) | (1 << 30)); - reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); - if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - E1000_WRITE_REG(hw, E1000_TARC(1), reg); - break; - default: - break; - } - - /* Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_CTRL); - reg &= ~(1 << 29); - E1000_WRITE_REG(hw, E1000_CTRL, reg); - break; - default: - break; - } - - /* Extended Device Control */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~(1 << 23); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - break; - default: - break; - } - - if (hw->mac.type == e1000_82571) { - reg = E1000_READ_REG(hw, E1000_PBA_ECC); - reg |= E1000_PBA_ECC_CORR_EN; - E1000_WRITE_REG(hw, E1000_PBA_ECC, reg); - } - - /* Workaround for hardware errata. - * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572 - */ - if ((hw->mac.type == e1000_82571) || - (hw->mac.type == e1000_82572)) { - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - } - - /* Disable IPv6 extension header parsing because some malformed - * IPv6 headers can hang the Rx. - */ - if (hw->mac.type <= e1000_82573) { - reg = E1000_READ_REG(hw, E1000_RFCTL); - reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); - E1000_WRITE_REG(hw, E1000_RFCTL, reg); - } - - /* PCI-Ex Control Registers */ - switch (hw->mac.type) { - case e1000_82574: - case e1000_82583: - reg = E1000_READ_REG(hw, E1000_GCR); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_GCR, reg); - - /* Workaround for hardware errata. - * apply workaround for hardware errata documented in errata - * docs Fixes issue where some error prone or unreliable PCIe - * completions are occurring, particularly with ASPM enabled. - * Without fix, issue can cause Tx timeouts. - */ - reg = E1000_READ_REG(hw, E1000_GCR2); - reg |= 1; - E1000_WRITE_REG(hw, E1000_GCR2, reg); - break; - default: - break; - } - - return; -} - -/** - * e1000_clear_vfta_82571 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -STATIC void e1000_clear_vfta_82571(struct e1000_hw *hw) -{ - u32 offset; - u32 vfta_value = 0; - u32 vfta_offset = 0; - u32 vfta_bit_in_reg = 0; - - DEBUGFUNC("e1000_clear_vfta_82571"); - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->mng_cookie.vlan_id != 0) { - /* The VFTA is a 4096b bit-field, each identifying - * a single VLAN ID. The following operations - * determine which 32b entry (i.e. offset) into the - * array we want to set the VLAN ID (i.e. bit) of - * the manageability unit. - */ - vfta_offset = (hw->mng_cookie.vlan_id >> - E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK; - vfta_bit_in_reg = - 1 << (hw->mng_cookie.vlan_id & - E1000_VFTA_ENTRY_BIT_SHIFT_MASK); - } - break; - default: - break; - } - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of - * the manageability unit. - */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_check_mng_mode_82574 - Check manageability is enabled - * @hw: pointer to the HW structure - * - * Reads the NVM Initialization Control Word 2 and returns true - * (>0) if any manageability is enabled, else false (0). - **/ -STATIC bool e1000_check_mng_mode_82574(struct e1000_hw *hw) -{ - u16 data; - - DEBUGFUNC("e1000_check_mng_mode_82574"); - - hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data); - return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0; -} - -/** - * e1000_led_on_82574 - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -STATIC s32 e1000_led_on_82574(struct e1000_hw *hw) -{ - u32 ctrl; - u32 i; - - DEBUGFUNC("e1000_led_on_82574"); - - ctrl = hw->mac.ledctl_mode2; - if (!(E1000_STATUS_LU & E1000_READ_REG(hw, E1000_STATUS))) { - /* If no link, then turn LED on by setting the invert bit - * for each LED that's "on" (0x0E) in ledctl_mode2. - */ - for (i = 0; i < 4; i++) - if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == - E1000_LEDCTL_MODE_LED_ON) - ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8)); - } - E1000_WRITE_REG(hw, E1000_LEDCTL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_check_phy_82574 - check 82574 phy hung state - * @hw: pointer to the HW structure - * - * Returns whether phy is hung or not - **/ -bool e1000_check_phy_82574(struct e1000_hw *hw) -{ - u16 status_1kbt = 0; - u16 receive_errors = 0; - s32 ret_val; - - DEBUGFUNC("e1000_check_phy_82574"); - - /* Read PHY Receive Error counter first, if its is max - all F's then - * read the Base1000T status register If both are max then PHY is hung. - */ - ret_val = hw->phy.ops.read_reg(hw, E1000_RECEIVE_ERROR_COUNTER, - &receive_errors); - if (ret_val) - return false; - if (receive_errors == E1000_RECEIVE_ERROR_MAX) { - ret_val = hw->phy.ops.read_reg(hw, E1000_BASE1000T_STATUS, - &status_1kbt); - if (ret_val) - return false; - if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) == - E1000_IDLE_ERROR_COUNT_MASK) - return true; - } - - return false; -} - - -/** - * e1000_setup_link_82571 - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -STATIC s32 e1000_setup_link_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_link_82571"); - - /* 82573 does not have a word in the NVM to determine - * the default flow control setting, so we explicitly - * set it to full. - */ - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (hw->fc.requested_mode == e1000_fc_default) - hw->fc.requested_mode = e1000_fc_full; - break; - default: - break; - } - - return e1000_setup_link_generic(hw); -} - -/** - * e1000_setup_copper_link_82571 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - **/ -STATIC s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_copper_link_82571"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - switch (hw->phy.type) { - case e1000_phy_m88: - case e1000_phy_bm: - ret_val = e1000_copper_link_setup_m88(hw); - break; - case e1000_phy_igp_2: - ret_val = e1000_copper_link_setup_igp(hw); - break; - default: - return -E1000_ERR_PHY; - break; - } - - if (ret_val) - return ret_val; - - return e1000_setup_copper_link_generic(hw); -} - -/** - * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes links. - * Upon successful setup, poll for link. - **/ -STATIC s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); - - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - /* If SerDes loopback mode is entered, there is no form - * of reset to take the adapter out of that mode. So we - * have to explicitly take the adapter out of loopback - * mode. This prevents drivers from twiddling their thumbs - * if another tool failed to take it out of loopback mode. - */ - E1000_WRITE_REG(hw, E1000_SCTL, - E1000_SCTL_DISABLE_SERDES_LOOPBACK); - break; - default: - break; - } - - return e1000_setup_fiber_serdes_link_generic(hw); -} - -/** - * e1000_check_for_serdes_link_82571 - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Reports the link state as up or down. - * - * If autonegotiation is supported by the link partner, the link state is - * determined by the result of autonegotiation. This is the most likely case. - * If autonegotiation is not supported by the link partner, and the link - * has a valid signal, force the link up. - * - * The link state is represented internally here by 4 states: - * - * 1) down - * 2) autoneg_progress - * 3) autoneg_complete (the link successfully autonegotiated) - * 4) forced_up (the link has been forced up, it did not autonegotiate) - * - **/ -STATIC s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - u32 txcw; - u32 i; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_check_for_serdes_link_82571"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - E1000_READ_REG(hw, E1000_RXCW); - /* SYNCH bit and IV bit are sticky */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) { - /* Receiver is synchronized with no invalid bits. */ - switch (mac->serdes_link_state) { - case e1000_serdes_link_autoneg_complete: - if (!(status & E1000_STATUS_LU)) { - /* We have lost link, retry autoneg before - * reporting link failure - */ - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("AN_UP -> AN_PROG\n"); - } else { - mac->serdes_has_link = true; - } - break; - - case e1000_serdes_link_forced_up: - /* If we are receiving /C/ ordered sets, re-enable - * auto-negotiation in the TXCW register and disable - * forced link in the Device Control register in an - * attempt to auto-negotiate with our link partner. - */ - if (rxcw & E1000_RXCW_C) { - /* Enable autoneg, and unforce link up */ - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, - (ctrl & ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("FORCED_UP -> AN_PROG\n"); - } else { - mac->serdes_has_link = true; - } - break; - - case e1000_serdes_link_autoneg_progress: - if (rxcw & E1000_RXCW_C) { - /* We received /C/ ordered sets, meaning the - * link partner has autonegotiated, and we can - * trust the Link Up (LU) status bit. - */ - if (status & E1000_STATUS_LU) { - mac->serdes_link_state = - e1000_serdes_link_autoneg_complete; - DEBUGOUT("AN_PROG -> AN_UP\n"); - mac->serdes_has_link = true; - } else { - /* Autoneg completed, but failed. */ - mac->serdes_link_state = - e1000_serdes_link_down; - DEBUGOUT("AN_PROG -> DOWN\n"); - } - } else { - /* The link partner did not autoneg. - * Force link up and full duplex, and change - * state to forced. - */ - E1000_WRITE_REG(hw, E1000_TXCW, - (mac->txcw & ~E1000_TXCW_ANE)); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after link up. */ - ret_val = - e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error config flow control\n"); - break; - } - mac->serdes_link_state = - e1000_serdes_link_forced_up; - mac->serdes_has_link = true; - DEBUGOUT("AN_PROG -> FORCED_UP\n"); - } - break; - - case e1000_serdes_link_down: - default: - /* The link was down but the receiver has now gained - * valid sync, so lets see if we can bring the link - * up. - */ - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & - ~E1000_CTRL_SLU)); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("DOWN -> AN_PROG\n"); - break; - } - } else { - if (!(rxcw & E1000_RXCW_SYNCH)) { - mac->serdes_has_link = false; - mac->serdes_link_state = e1000_serdes_link_down; - DEBUGOUT("ANYSTATE -> DOWN\n"); - } else { - /* Check several times, if SYNCH bit and CONFIG - * bit both are consistently 1 then simply ignore - * the IV bit and restart Autoneg - */ - for (i = 0; i < AN_RETRY_COUNT; i++) { - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if ((rxcw & E1000_RXCW_SYNCH) && - (rxcw & E1000_RXCW_C)) - continue; - - if (rxcw & E1000_RXCW_IV) { - mac->serdes_has_link = false; - mac->serdes_link_state = - e1000_serdes_link_down; - DEBUGOUT("ANYSTATE -> DOWN\n"); - break; - } - } - - if (i == AN_RETRY_COUNT) { - txcw = E1000_READ_REG(hw, E1000_TXCW); - txcw |= E1000_TXCW_ANE; - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->serdes_link_state = - e1000_serdes_link_autoneg_progress; - mac->serdes_has_link = false; - DEBUGOUT("ANYSTATE -> AN_PROG\n"); - } - } - } - - return ret_val; -} - -/** - * e1000_valid_led_default_82571 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -STATIC s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_82571"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - switch (hw->mac.type) { - case e1000_82573: - case e1000_82574: - case e1000_82583: - if (*data == ID_LED_RESERVED_F746) - *data = ID_LED_DEFAULT_82573; - break; - default: - if (*data == ID_LED_RESERVED_0000 || - *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_laa_state_82571 - Get locally administered address state - * @hw: pointer to the HW structure - * - * Retrieve and return the current locally administered address state. - **/ -bool e1000_get_laa_state_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_get_laa_state_82571"); - - if (hw->mac.type != e1000_82571) - return false; - - return hw->dev_spec._82571.laa_is_present; -} - -/** - * e1000_set_laa_state_82571 - Set locally administered address state - * @hw: pointer to the HW structure - * @state: enable/disable locally administered address - * - * Enable/Disable the current locally administered address state. - **/ -void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state) -{ - DEBUGFUNC("e1000_set_laa_state_82571"); - - if (hw->mac.type != e1000_82571) - return; - - hw->dev_spec._82571.laa_is_present = state; - - /* If workaround is activated... */ - if (state) - /* Hold a copy of the LAA in RAR[14] This is done so that - * between the time RAR[0] gets clobbered and the time it - * gets fixed, the actual LAA is in one of the RARs and no - * incoming packets directed to this port are dropped. - * Eventually the LAA will be in RAR[0] and RAR[14]. - */ - hw->mac.ops.rar_set(hw, hw->mac.addr, - hw->mac.rar_entry_count - 1); - return; -} - -/** - * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum - * @hw: pointer to the HW structure - * - * Verifies that the EEPROM has completed the update. After updating the - * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If - * the checksum fix is not implemented, we need to set the bit and update - * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, - * we need to return bad checksum. - **/ -STATIC s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_fix_nvm_checksum_82571"); - - if (nvm->type != e1000_nvm_flash_hw) - return E1000_SUCCESS; - - /* Check bit 4 of word 10h. If it is 0, firmware is done updating - * 10h-12h. Checksum may need to be fixed. - */ - ret_val = nvm->ops.read(hw, 0x10, 1, &data); - if (ret_val) - return ret_val; - - if (!(data & 0x10)) { - /* Read 0x23 and check bit 15. This bit is a 1 - * when the checksum has already been fixed. If - * the checksum is still wrong and this bit is a - * 1, we need to return bad checksum. Otherwise, - * we need to set this bit to a 1 and update the - * checksum. - */ - ret_val = nvm->ops.read(hw, 0x23, 1, &data); - if (ret_val) - return ret_val; - - if (!(data & 0x8000)) { - data |= 0x8000; - ret_val = nvm->ops.write(hw, 0x23, 1, &data); - if (ret_val) - return ret_val; - ret_val = nvm->ops.update(hw); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} - - -/** - * e1000_read_mac_addr_82571 - Read device MAC address - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_read_mac_addr_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_read_mac_addr_82571"); - - if (hw->mac.type == e1000_82571) { - s32 ret_val; - - /* If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - return ret_val; - } - - return e1000_read_mac_addr_generic(hw); -} - -/** - * e1000_power_down_phy_copper_82571 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_82571(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - struct e1000_mac_info *mac = &hw->mac; - - if (!phy->ops.check_reset_block) - return; - - /* If the management interface is not enabled, then power down */ - if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82571"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); - - E1000_READ_REG(hw, E1000_IAC); - E1000_READ_REG(hw, E1000_ICRXOC); - - E1000_READ_REG(hw, E1000_ICRXPTC); - E1000_READ_REG(hw, E1000_ICRXATC); - E1000_READ_REG(hw, E1000_ICTXPTC); - E1000_READ_REG(hw, E1000_ICTXATC); - E1000_READ_REG(hw, E1000_ICTXQEC); - E1000_READ_REG(hw, E1000_ICTXQMTC); - E1000_READ_REG(hw, E1000_ICRXDMTC); -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.h deleted file mode 100755 index bdf64469..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82571.h +++ /dev/null @@ -1,65 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_82571_H_ -#define _E1000_82571_H_ - -#define ID_LED_RESERVED_F746 0xF746 -#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 -#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */ - -/* Intr Throttling - RW */ -#define E1000_EITR_82574(_n) (0x000E8 + (0x4 * (_n))) - -#define E1000_EIAC_82574 0x000DC /* Ext. Interrupt Auto Clear - RW */ -#define E1000_EIAC_MASK_82574 0x01F00000 - -#define E1000_IVAR_INT_ALLOC_VALID 0x8 - -/* Manageability Operation Mode mask */ -#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 - -#define E1000_BASE1000T_STATUS 10 -#define E1000_IDLE_ERROR_COUNT_MASK 0xFF -#define E1000_RECEIVE_ERROR_COUNTER 21 -#define E1000_RECEIVE_ERROR_MAX 0xFFFF -bool e1000_check_phy_82574(struct e1000_hw *hw); -bool e1000_get_laa_state_82571(struct e1000_hw *hw); -void e1000_set_laa_state_82571(struct e1000_hw *hw, bool state); - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.c deleted file mode 100755 index 25fa6727..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.c +++ /dev/null @@ -1,3639 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* - * 82575EB Gigabit Network Connection - * 82575EB Gigabit Backplane Connection - * 82575GB Gigabit Network Connection - * 82576 Gigabit Network Connection - * 82576 Quad Port Gigabit Mezzanine Adapter - * 82580 Gigabit Network Connection - * I350 Gigabit Network Connection - */ - -#include "e1000_api.h" -#include "e1000_i210.h" - -STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw); -STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw); -STATIC void e1000_release_phy_82575(struct e1000_hw *hw); -STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw); -STATIC void e1000_release_nvm_82575(struct e1000_hw *hw); -STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw); -STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw); -STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw); -STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw); -STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 *data); -STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw); -STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, - u32 offset, u16 *data); -STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, - u32 offset, u16 data); -STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw); -STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw); -STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw); -STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw); -STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data); -STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, - u32 offset, u16 data); -STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw); -STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw); -STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask); -STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw); -STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw); -STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw); -STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw); -STATIC void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw); -STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw); -STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw); -STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw); -STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw); -STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw); -STATIC s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -STATIC s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, - u16 offset); -STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw); -STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw); -STATIC void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value); -STATIC void e1000_clear_vfta_i350(struct e1000_hw *hw); - -STATIC void e1000_i2c_start(struct e1000_hw *hw); -STATIC void e1000_i2c_stop(struct e1000_hw *hw); -STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data); -STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data); -STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw); -STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data); -STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data); -STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); -STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl); -STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data); -STATIC bool e1000_get_i2c_data(u32 *i2cctl); - -STATIC const u16 e1000_82580_rxpbs_table[] = { - 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; -#define E1000_82580_RXPBS_TABLE_SIZE \ - (sizeof(e1000_82580_rxpbs_table) / \ - sizeof(e1000_82580_rxpbs_table[0])) - - -/** - * e1000_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO - * @hw: pointer to the HW structure - * - * Called to determine if the I2C pins are being used for I2C or as an - * external MDIO interface since the two options are mutually exclusive. - **/ -STATIC bool e1000_sgmii_uses_mdio_82575(struct e1000_hw *hw) -{ - u32 reg = 0; - bool ext_mdio = false; - - DEBUGFUNC("e1000_sgmii_uses_mdio_82575"); - - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - reg = E1000_READ_REG(hw, E1000_MDIC); - ext_mdio = !!(reg & E1000_MDIC_DEST); - break; - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - reg = E1000_READ_REG(hw, E1000_MDICNFG); - ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); - break; - default: - break; - } - return ext_mdio; -} - -/** - * e1000_init_phy_params_82575 - Init PHY func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_phy_params_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext; - - DEBUGFUNC("e1000_init_phy_params_82575"); - - phy->ops.read_i2c_byte = e1000_read_i2c_byte_generic; - phy->ops.write_i2c_byte = e1000_write_i2c_byte_generic; - - if (hw->phy.media_type != e1000_media_type_copper) { - phy->type = e1000_phy_none; - goto out; - } - - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_82575; - - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_phy_82575; - phy->ops.check_reset_block = e1000_check_reset_block_generic; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_cfg_done = e1000_get_cfg_done_82575; - phy->ops.release = e1000_release_phy_82575; - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - - if (e1000_sgmii_active_82575(hw)) { - phy->ops.reset = e1000_phy_hw_reset_sgmii_82575; - ctrl_ext |= E1000_CTRL_I2C_ENA; - } else { - phy->ops.reset = e1000_phy_hw_reset_generic; - ctrl_ext &= ~E1000_CTRL_I2C_ENA; - } - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - e1000_reset_mdicnfg_82580(hw); - - if (e1000_sgmii_active_82575(hw) && !e1000_sgmii_uses_mdio_82575(hw)) { - phy->ops.read_reg = e1000_read_phy_reg_sgmii_82575; - phy->ops.write_reg = e1000_write_phy_reg_sgmii_82575; - } else { - switch (hw->mac.type) { - case e1000_82580: - case e1000_i350: - case e1000_i354: - phy->ops.read_reg = e1000_read_phy_reg_82580; - phy->ops.write_reg = e1000_write_phy_reg_82580; - break; - case e1000_i210: - case e1000_i211: - phy->ops.read_reg = e1000_read_phy_reg_gs40g; - phy->ops.write_reg = e1000_write_phy_reg_gs40g; - break; - default: - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.write_reg = e1000_write_phy_reg_igp; - } - } - - /* Set phy->phy_addr and phy->id. */ - ret_val = e1000_get_phy_id_82575(hw); - - /* Verify phy id and set remaining function pointers */ - switch (phy->id) { - case M88E1543_E_PHY_ID: - case M88E1512_E_PHY_ID: - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1111_I_PHY_ID: - phy->type = e1000_phy_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - if (phy->id == I347AT4_E_PHY_ID || - phy->id == M88E1112_E_PHY_ID || - phy->id == M88E1340M_E_PHY_ID) - phy->ops.get_cable_length = - e1000_get_cable_length_m88_gen2; - else if (phy->id == M88E1543_E_PHY_ID || - phy->id == M88E1512_E_PHY_ID) - phy->ops.get_cable_length = - e1000_get_cable_length_m88_gen2; - else - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - /* Check if this PHY is confgured for media swap. */ - if (phy->id == M88E1112_E_PHY_ID) { - u16 data; - - ret_val = phy->ops.write_reg(hw, - E1000_M88E1112_PAGE_ADDR, - 2); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, - E1000_M88E1112_MAC_CTRL_1, - &data); - if (ret_val) - goto out; - - data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> - E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; - if (data == E1000_M88E1112_AUTO_COPPER_SGMII || - data == E1000_M88E1112_AUTO_COPPER_BASEX) - hw->mac.ops.check_for_link = - e1000_check_for_link_media_swap; - } - if (phy->id == M88E1512_E_PHY_ID) { - ret_val = e1000_initialize_M88E1512_phy(hw); - if (ret_val) - goto out; - } - break; - case IGP03E1000_E_PHY_ID: - case IGP04E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82575; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic; - break; - case I82580_I_PHY_ID: - case I350_I_PHY_ID: - phy->type = e1000_phy_82580; - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; - break; - case I210_I_PHY_ID: - phy->type = e1000_phy_i210; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88_gen2; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82580; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82580; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params_82575 - Init NVM func ptrs. - * @hw: pointer to the HW structure - **/ -s32 e1000_init_nvm_params_82575(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u16 size; - - DEBUGFUNC("e1000_init_nvm_params_82575"); - - size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> - E1000_EECD_SIZE_EX_SHIFT); - /* - * Added to a constant, "size" becomes the left-shift value - * for setting word_size. - */ - size += NVM_WORD_SIZE_BASE_SHIFT; - - /* Just in case size is out of range, cap it to the largest - * EEPROM size supported - */ - if (size > 15) - size = 15; - - nvm->word_size = 1 << size; - if (hw->mac.type < e1000_i210) { - nvm->opcode_bits = 8; - nvm->delay_usec = 1; - - switch (nvm->override) { - case e1000_nvm_override_spi_large: - nvm->page_size = 32; - nvm->address_bits = 16; - break; - case e1000_nvm_override_spi_small: - nvm->page_size = 8; - nvm->address_bits = 8; - break; - default: - nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; - nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? - 16 : 8; - break; - } - if (nvm->word_size == (1 << 15)) - nvm->page_size = 128; - - nvm->type = e1000_nvm_eeprom_spi; - } else { - nvm->type = e1000_nvm_flash_hw; - } - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_82575; - nvm->ops.release = e1000_release_nvm_82575; - if (nvm->word_size < (1 << 15)) - nvm->ops.read = e1000_read_nvm_eerd; - else - nvm->ops.read = e1000_read_nvm_spi; - - nvm->ops.write = e1000_write_nvm_spi; - nvm->ops.validate = e1000_validate_nvm_checksum_generic; - nvm->ops.update = e1000_update_nvm_checksum_generic; - nvm->ops.valid_led_default = e1000_valid_led_default_82575; - - /* override generic family function pointers for specific descendants */ - switch (hw->mac.type) { - case e1000_82580: - nvm->ops.validate = e1000_validate_nvm_checksum_82580; - nvm->ops.update = e1000_update_nvm_checksum_82580; - break; - case e1000_i350: - case e1000_i354: - nvm->ops.validate = e1000_validate_nvm_checksum_i350; - nvm->ops.update = e1000_update_nvm_checksum_i350; - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_82575 - Init MAC func ptrs. - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - - DEBUGFUNC("e1000_init_mac_params_82575"); - - /* Derives media type */ - e1000_get_media_type_82575(hw); - /* Set mta register count */ - mac->mta_reg_count = 128; - /* Set uta register count */ - mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; - /* Set rar entry count */ - mac->rar_entry_count = E1000_RAR_ENTRIES_82575; - if (mac->type == e1000_82576) - mac->rar_entry_count = E1000_RAR_ENTRIES_82576; - if (mac->type == e1000_82580) - mac->rar_entry_count = E1000_RAR_ENTRIES_82580; - if (mac->type == e1000_i350 || mac->type == e1000_i354) - mac->rar_entry_count = E1000_RAR_ENTRIES_I350; - - /* Enable EEE default settings for EEE supported devices */ - if (mac->type >= e1000_i350) - dev_spec->eee_disable = false; - - /* Allow a single clear of the SW semaphore on I210 and newer */ - if (mac->type >= e1000_i210) - dev_spec->clear_semaphore_once = true; - - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC supported; valid only if manageability features are enabled. */ - mac->arc_subsystem_valid = - !!(E1000_READ_REG(hw, E1000_FWSM) & E1000_FWSM_MODE_MASK); - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic; - /* reset */ - if (mac->type >= e1000_82580) - mac->ops.reset_hw = e1000_reset_hw_82580; - else - mac->ops.reset_hw = e1000_reset_hw_82575; - /* hw initialization */ - if ((mac->type == e1000_i210) || (mac->type == e1000_i211)) - mac->ops.init_hw = e1000_init_hw_i210; - else - mac->ops.init_hw = e1000_init_hw_82575; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_generic; - /* physical interface link setup */ - mac->ops.setup_physical_interface = - (hw->phy.media_type == e1000_media_type_copper) - ? e1000_setup_copper_link_82575 : e1000_setup_serdes_link_82575; - /* physical interface shutdown */ - mac->ops.shutdown_serdes = e1000_shutdown_serdes_link_82575; - /* physical interface power up */ - mac->ops.power_up_serdes = e1000_power_up_serdes_link_82575; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_link_82575; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_82575; - /* configure collision distance */ - mac->ops.config_collision_dist = e1000_config_collision_dist_82575; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - if (hw->mac.type == e1000_i350 || mac->type == e1000_i354) { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_i350; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_i350; - } else { - /* writing VFTA */ - mac->ops.write_vfta = e1000_write_vfta_generic; - /* clearing VFTA */ - mac->ops.clear_vfta = e1000_clear_vfta_generic; - } - if (hw->mac.type >= e1000_82580) - mac->ops.validate_mdi_setting = - e1000_validate_mdi_setting_crossover_generic; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_generic; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_generic; - mac->ops.led_off = e1000_led_off_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82575; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_82575; - /* acquire SW_FW sync */ - mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_82575; - mac->ops.release_swfw_sync = e1000_release_swfw_sync_82575; - if (mac->type >= e1000_i210) { - mac->ops.acquire_swfw_sync = e1000_acquire_swfw_sync_i210; - mac->ops.release_swfw_sync = e1000_release_swfw_sync_i210; - } - - /* set lan id for port to determine which phy lock to use */ - hw->mac.ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_82575 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_82575"); - - hw->mac.ops.init_params = e1000_init_mac_params_82575; - hw->nvm.ops.init_params = e1000_init_nvm_params_82575; - hw->phy.ops.init_params = e1000_init_phy_params_82575; - hw->mbx.ops.init_params = e1000_init_mbx_params_pf; -} - -/** - * e1000_acquire_phy_82575 - Acquire rights to access PHY - * @hw: pointer to the HW structure - * - * Acquire access rights to the correct PHY. - **/ -STATIC s32 e1000_acquire_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_acquire_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - return hw->mac.ops.acquire_swfw_sync(hw, mask); -} - -/** - * e1000_release_phy_82575 - Release rights to access PHY - * @hw: pointer to the HW structure - * - * A wrapper to release access rights to the correct PHY. - **/ -STATIC void e1000_release_phy_82575(struct e1000_hw *hw) -{ - u16 mask = E1000_SWFW_PHY0_SM; - - DEBUGFUNC("e1000_release_phy_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_SWFW_PHY1_SM; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_SWFW_PHY2_SM; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_SWFW_PHY3_SM; - - hw->mac.ops.release_swfw_sync(hw, mask); -} - -/** - * e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the serial gigabit media independent - * interface and stores the retrieved information in data. - **/ -STATIC s32 e1000_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_read_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %u is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the serial gigabit - * media independent interface. - **/ -STATIC s32 e1000_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, - u16 data) -{ - s32 ret_val = -E1000_ERR_PARAM; - - DEBUGFUNC("e1000_write_phy_reg_sgmii_82575"); - - if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_i2c(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_get_phy_id_82575 - Retrieve PHY addr and id - * @hw: pointer to the HW structure - * - * Retrieves the PHY address and ID for both PHY's which do and do not use - * sgmi interface. - **/ -STATIC s32 e1000_get_phy_id_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - u32 ctrl_ext; - u32 mdic; - - DEBUGFUNC("e1000_get_phy_id_82575"); - - /* some i354 devices need an extra read for phy id */ - if (hw->mac.type == e1000_i354) - e1000_get_phy_id(hw); - - /* - * For SGMII PHYs, we try the list of possible addresses until - * we find one that works. For non-SGMII PHYs - * (e.g. integrated copper PHYs), an address of 1 should - * work. The result of this function should mean phy->phy_addr - * and phy->id are set correctly. - */ - if (!e1000_sgmii_active_82575(hw)) { - phy->addr = 1; - ret_val = e1000_get_phy_id(hw); - goto out; - } - - if (e1000_sgmii_uses_mdio_82575(hw)) { - switch (hw->mac.type) { - case e1000_82575: - case e1000_82576: - mdic = E1000_READ_REG(hw, E1000_MDIC); - mdic &= E1000_MDIC_PHY_MASK; - phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; - break; - case e1000_82580: - case e1000_i350: - case e1000_i354: - case e1000_i210: - case e1000_i211: - mdic = E1000_READ_REG(hw, E1000_MDICNFG); - mdic &= E1000_MDICNFG_PHY_MASK; - phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; - break; - default: - ret_val = -E1000_ERR_PHY; - goto out; - break; - } - ret_val = e1000_get_phy_id(hw); - goto out; - } - - /* Power on sgmii phy if it is disabled */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); - E1000_WRITE_FLUSH(hw); - msec_delay(300); - - /* - * The address field in the I2CCMD register is 3 bits and 0 is invalid. - * Therefore, we need to test 1-7 - */ - for (phy->addr = 1; phy->addr < 8; phy->addr++) { - ret_val = e1000_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); - if (ret_val == E1000_SUCCESS) { - DEBUGOUT2("Vendor ID 0x%08X read at address %u\n", - phy_id, phy->addr); - /* - * At the time of this writing, The M88 part is - * the only supported SGMII PHY product. - */ - if (phy_id == M88_VENDOR) - break; - } else { - DEBUGOUT1("PHY address %u was unreadable\n", - phy->addr); - } - } - - /* A valid PHY type couldn't be found. */ - if (phy->addr == 8) { - phy->addr = 0; - ret_val = -E1000_ERR_PHY; - } else { - ret_val = e1000_get_phy_id(hw); - } - - /* restore previous sfp cage power state */ - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - -out: - return ret_val; -} - -/** - * e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY using the serial gigabit media independent interface. - **/ -STATIC s32 e1000_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - struct e1000_phy_info *phy = &hw->phy; - - DEBUGFUNC("e1000_phy_hw_reset_sgmii_82575"); - - /* - * This isn't a true "hard" reset, but is the only reset - * available to us at this time. - */ - - DEBUGOUT("Soft resetting SGMII attached PHY...\n"); - - if (!(hw->phy.ops.write_reg)) - goto out; - - /* - * SFP documentation requires the following to configure the SPF module - * to work on SGMII. No further documentation is given. - */ - ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); - if (ret_val) - goto out; - - ret_val = hw->phy.ops.commit(hw); - if (ret_val) - goto out; - - if (phy->id == M88E1512_E_PHY_ID) - ret_val = e1000_initialize_M88E1512_phy(hw); -out: - return ret_val; -} - -/** - * e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -STATIC s32 e1000_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82575"); - - if (!(hw->phy.ops.read_reg)) - goto out; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - goto out; - - if (active) { - data |= IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - goto out; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else { - data &= ~IGP02E1000_PM_D0_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - goto out; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - goto out; - } - } - -out: - return ret_val; -} - -/** - * e1000_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -STATIC s32 e1000_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_82580"); - - data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - - if (active) { - data |= E1000_82580_PM_D0_LPLU; - - /* When LPLU is enabled, we should disable SmartSpeed */ - data &= ~E1000_82580_PM_SPD; - } else { - data &= ~E1000_82580_PM_D0_LPLU; - - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) - data |= E1000_82580_PM_SPD; - else if (phy->smart_speed == e1000_smart_speed_off) - data &= ~E1000_82580_PM_SPD; - } - - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); - return ret_val; -} - -/** - * e1000_set_d3_lplu_state_82580 - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u32 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_82580"); - - data = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - - if (!active) { - data &= ~E1000_82580_PM_D3_LPLU; - /* - * LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) - data |= E1000_82580_PM_SPD; - else if (phy->smart_speed == e1000_smart_speed_off) - data &= ~E1000_82580_PM_SPD; - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= E1000_82580_PM_D3_LPLU; - /* When LPLU is enabled, we should disable SmartSpeed */ - data &= ~E1000_82580_PM_SPD; - } - - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, data); - return ret_val; -} - -/** - * e1000_acquire_nvm_82575 - Request for access to EEPROM - * @hw: pointer to the HW structure - * - * Acquire the necessary semaphores for exclusive access to the EEPROM. - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -STATIC s32 e1000_acquire_nvm_82575(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_82575"); - - ret_val = e1000_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - if (ret_val) - goto out; - - /* - * Check if there is some access - * error this access may hook on - */ - if (hw->mac.type == e1000_i350) { - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & (E1000_EECD_BLOCKED | E1000_EECD_ABORT | - E1000_EECD_TIMEOUT)) { - /* Clear all access error flags */ - E1000_WRITE_REG(hw, E1000_EECD, eecd | - E1000_EECD_ERROR_CLR); - DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); - } - } - if (hw->mac.type == e1000_82580) { - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_BLOCKED) { - /* Clear access error flag */ - E1000_WRITE_REG(hw, E1000_EECD, eecd | - E1000_EECD_BLOCKED); - DEBUGOUT("Nvm bit banging access error detected and cleared.\n"); - } - } - - - ret_val = e1000_acquire_nvm_generic(hw); - if (ret_val) - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); - -out: - return ret_val; -} - -/** - * e1000_release_nvm_82575 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit, - * then release the semaphores acquired. - **/ -STATIC void e1000_release_nvm_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_82575"); - - e1000_release_nvm_generic(hw); - - e1000_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -STATIC s32 e1000_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 ret_val = E1000_SUCCESS; - s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ - - DEBUGFUNC("e1000_acquire_swfw_sync_82575"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_generic(hw)) { - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_release_swfw_sync_82575 - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -STATIC void e1000_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_82575"); - - while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS) - ; /* Empty */ - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/** - * e1000_get_cfg_done_82575 - Read config done bit - * @hw: pointer to the HW structure - * - * Read the management control register for the config done bit for - * completion status. NOTE: silicon which is EEPROM-less will fail trying - * to read the config done bit, so an error is *ONLY* logged and returns - * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon - * would not be able to be reset or change link. - **/ -STATIC s32 e1000_get_cfg_done_82575(struct e1000_hw *hw) -{ - s32 timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - u32 mask = E1000_NVM_CFG_DONE_PORT_0; - - DEBUGFUNC("e1000_get_cfg_done_82575"); - - if (hw->bus.func == E1000_FUNC_1) - mask = E1000_NVM_CFG_DONE_PORT_1; - else if (hw->bus.func == E1000_FUNC_2) - mask = E1000_NVM_CFG_DONE_PORT_2; - else if (hw->bus.func == E1000_FUNC_3) - mask = E1000_NVM_CFG_DONE_PORT_3; - while (timeout) { - if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask) - break; - msec_delay(1); - timeout--; - } - if (!timeout) - DEBUGOUT("MNG configuration cycle has not completed.\n"); - - /* If EEPROM is not marked present, init the PHY manually */ - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && - (hw->phy.type == e1000_phy_igp_3)) - e1000_phy_init_script_igp3(hw); - - return ret_val; -} - -/** - * e1000_get_link_up_info_82575 - Get link speed/duplex info - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * This is a wrapper function, if using the serial gigabit media independent - * interface, use PCS to retrieve the link speed and duplex information. - * Otherwise, use the generic function to get the link speed and duplex info. - **/ -STATIC s32 e1000_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, speed, - duplex); - else - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, - duplex); - - return ret_val; -} - -/** - * e1000_check_for_link_82575 - Check for link - * @hw: pointer to the HW structure - * - * If sgmii is enabled, then use the pcs register to determine link, otherwise - * use the generic interface for determining link. - **/ -STATIC s32 e1000_check_for_link_82575(struct e1000_hw *hw) -{ - s32 ret_val; - u16 speed, duplex; - - DEBUGFUNC("e1000_check_for_link_82575"); - - if (hw->phy.media_type != e1000_media_type_copper) { - ret_val = e1000_get_pcs_speed_and_duplex_82575(hw, &speed, - &duplex); - /* - * Use this flag to determine if link needs to be checked or - * not. If we have link clear the flag so that we do not - * continue to check for link. - */ - hw->mac.get_link_status = !hw->mac.serdes_has_link; - - /* - * Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - } else { - ret_val = e1000_check_for_copper_link_generic(hw); - } - - return ret_val; -} - -/** - * e1000_check_for_link_media_swap - Check which M88E1112 interface linked - * @hw: pointer to the HW structure - * - * Poll the M88E1112 interfaces to see which interface achieved link. - */ -STATIC s32 e1000_check_for_link_media_swap(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - u8 port = 0; - - DEBUGFUNC("e1000_check_for_link_media_swap"); - - /* Check the copper medium. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); - if (ret_val) - return ret_val; - - if (data & E1000_M88E1112_STATUS_LINK) - port = E1000_MEDIA_PORT_COPPER; - - /* Check the other medium. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); - if (ret_val) - return ret_val; - - /* reset page to 0 */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); - if (ret_val) - return ret_val; - - if (data & E1000_M88E1112_STATUS_LINK) - port = E1000_MEDIA_PORT_OTHER; - - /* Determine if a swap needs to happen. */ - if (port && (hw->dev_spec._82575.media_port != port)) { - hw->dev_spec._82575.media_port = port; - hw->dev_spec._82575.media_changed = true; - } else { - ret_val = e1000_check_for_link_82575(hw); - } - - return E1000_SUCCESS; -} - -/** - * e1000_power_up_serdes_link_82575 - Power up the serdes link after shutdown - * @hw: pointer to the HW structure - **/ -STATIC void e1000_power_up_serdes_link_82575(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_power_up_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return; - - /* Enable PCS to turn on link */ - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg |= E1000_PCS_CFG_PCS_EN; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - - /* Power up the laser */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* flush the write to verify completion */ - E1000_WRITE_FLUSH(hw); - msec_delay(1); -} - -/** - * e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Using the physical coding sub-layer (PCS), retrieve the current speed and - * duplex, then store the values in the pointers provided. - **/ -STATIC s32 e1000_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, - u16 *speed, u16 *duplex) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 pcs; - u32 status; - - DEBUGFUNC("e1000_get_pcs_speed_and_duplex_82575"); - - /* - * Read the PCS Status register for link state. For non-copper mode, - * the status register is not accurate. The PCS status register is - * used instead. - */ - pcs = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - /* - * The link up bit determines when link is up on autoneg. - */ - if (pcs & E1000_PCS_LSTS_LINK_OK) { - mac->serdes_has_link = true; - - /* Detect and store PCS speed */ - if (pcs & E1000_PCS_LSTS_SPEED_1000) - *speed = SPEED_1000; - else if (pcs & E1000_PCS_LSTS_SPEED_100) - *speed = SPEED_100; - else - *speed = SPEED_10; - - /* Detect and store PCS duplex */ - if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) - *duplex = FULL_DUPLEX; - else - *duplex = HALF_DUPLEX; - - /* Check if it is an I354 2.5Gb backplane connection. */ - if (mac->type == e1000_i354) { - status = E1000_READ_REG(hw, E1000_STATUS); - if ((status & E1000_STATUS_2P5_SKU) && - !(status & E1000_STATUS_2P5_SKU_OVER)) { - *speed = SPEED_2500; - *duplex = FULL_DUPLEX; - DEBUGOUT("2500 Mbs, "); - DEBUGOUT("Full Duplex\n"); - } - } - - } else { - mac->serdes_has_link = false; - *speed = 0; - *duplex = 0; - } - - return E1000_SUCCESS; -} - -/** - * e1000_shutdown_serdes_link_82575 - Remove link during power down - * @hw: pointer to the HW structure - * - * In the case of serdes shut down sfp and PCS on driver unload - * when management pass thru is not enabled. - **/ -void e1000_shutdown_serdes_link_82575(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_shutdown_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return; - - if (!e1000_enable_mng_pass_thru(hw)) { - /* Disable PCS to turn off link */ - reg = E1000_READ_REG(hw, E1000_PCS_CFG0); - reg &= ~E1000_PCS_CFG_PCS_EN; - E1000_WRITE_REG(hw, E1000_PCS_CFG0, reg); - - /* shutdown the laser */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* flush the write to verify completion */ - E1000_WRITE_FLUSH(hw); - msec_delay(1); - } - - return; -} - -/** - * e1000_reset_hw_82575 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. - **/ -STATIC s32 e1000_reset_hw_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_82575"); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - /* set the completion timeout for interface */ - ret_val = e1000_set_pcie_completion_timeout(hw); - if (ret_val) - DEBUGOUT("PCI-E Set completion timeout has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - DEBUGOUT("Issuing a global reset to MAC\n"); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* If EEPROM is not present, run manual init scripts */ - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES)) - e1000_reset_init_script_82575(hw); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - return ret_val; -} - -/** - * e1000_init_hw_82575 - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. - **/ -s32 e1000_init_hw_82575(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - u16 i, rar_count = mac->rar_entry_count; - - DEBUGFUNC("e1000_init_hw_82575"); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error initializing identification LED\n"); - /* This is not fatal and we should not stop init due to this */ - } - - /* Disabling VLAN filtering */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - mac->ops.clear_vfta(hw); - - /* Setup the receive address */ - e1000_init_rx_addrs_generic(hw, rar_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* Zero out the Unicast HASH table */ - DEBUGOUT("Zeroing the UTA\n"); - for (i = 0; i < mac->uta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_UTA, i, 0); - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the default MTU size */ - hw->dev_spec._82575.mtu = 1500; - - /* - * Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_82575(hw); - - return ret_val; -} - -/** - * e1000_setup_copper_link_82575 - Configure copper link settings - * @hw: pointer to the HW structure - * - * Configures the link for auto-neg or forced speed and duplex. Then we check - * for link, once link is established calls to configure collision distance - * and flow control are called. - **/ -STATIC s32 e1000_setup_copper_link_82575(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u32 phpm_reg; - - DEBUGFUNC("e1000_setup_copper_link_82575"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Clear Go Link Disconnect bit on supported devices */ - switch (hw->mac.type) { - case e1000_82580: - case e1000_i350: - case e1000_i210: - case e1000_i211: - phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - phpm_reg &= ~E1000_82580_PM_GO_LINKD; - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); - break; - default: - break; - } - - ret_val = e1000_setup_serdes_link_82575(hw); - if (ret_val) - goto out; - - if (e1000_sgmii_active_82575(hw)) { - /* allow time for SFP cage time to power up phy */ - msec_delay(300); - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - goto out; - } - } - switch (hw->phy.type) { - case e1000_phy_i210: - case e1000_phy_m88: - switch (hw->phy.id) { - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1543_E_PHY_ID: - case M88E1512_E_PHY_ID: - case I210_I_PHY_ID: - ret_val = e1000_copper_link_setup_m88_gen2(hw); - break; - default: - ret_val = e1000_copper_link_setup_m88(hw); - break; - } - break; - case e1000_phy_igp_3: - ret_val = e1000_copper_link_setup_igp(hw); - break; - case e1000_phy_82580: - ret_val = e1000_copper_link_setup_82577(hw); - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - if (ret_val) - goto out; - - ret_val = e1000_setup_copper_link_generic(hw); -out: - return ret_val; -} - -/** - * e1000_setup_serdes_link_82575 - Setup link for serdes - * @hw: pointer to the HW structure - * - * Configure the physical coding sub-layer (PCS) link. The PCS link is - * used on copper connections where the serialized gigabit media independent - * interface (sgmii), or serdes fiber is being used. Configures the link - * for auto-negotiation or forces speed/duplex. - **/ -STATIC s32 e1000_setup_serdes_link_82575(struct e1000_hw *hw) -{ - u32 ctrl_ext, ctrl_reg, reg, anadv_reg; - bool pcs_autoneg; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_setup_serdes_link_82575"); - - if ((hw->phy.media_type != e1000_media_type_internal_serdes) && - !e1000_sgmii_active_82575(hw)) - return ret_val; - - /* - * On the 82575, SerDes loopback mode persists until it is - * explicitly turned off or a power cycle is performed. A read to - * the register does not indicate its status. Therefore, we ensure - * loopback mode is disabled during initialization. - */ - E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); - - /* power on the sfp cage if present */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - ctrl_reg |= E1000_CTRL_SLU; - - /* set both sw defined pins on 82575/82576*/ - if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) - ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; - - reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - - /* default pcs_autoneg to the same setting as mac autoneg */ - pcs_autoneg = hw->mac.autoneg; - - switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { - case E1000_CTRL_EXT_LINK_MODE_SGMII: - /* sgmii mode lets the phy handle forcing speed/duplex */ - pcs_autoneg = true; - /* autoneg time out should be disabled for SGMII mode */ - reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); - break; - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - /* disable PCS autoneg and support parallel detect only */ - pcs_autoneg = false; - /* fall through to default case */ - default: - if (hw->mac.type == e1000_82575 || - hw->mac.type == e1000_82576) { - ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) - pcs_autoneg = false; - } - - /* - * non-SGMII modes only supports a speed of 1000/Full for the - * link so it is best to just force the MAC and let the pcs - * link either autoneg or be forced to 1000/Full - */ - ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | - E1000_CTRL_FD | E1000_CTRL_FRCDPX; - - /* set speed of 1000/Full if speed/duplex is forced */ - reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; - break; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - - /* - * New SerDes mode allows for forcing speed or autonegotiating speed - * at 1gb. Autoneg should be default set by most drivers. This is the - * mode that will be compatible with older link partners and switches. - * However, both are supported by the hardware and some drivers/tools. - */ - reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | - E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); - - if (pcs_autoneg) { - /* Set PCS register for autoneg */ - reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ - E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ - - /* Disable force flow control for autoneg */ - reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; - - /* Configure flow control advertisement for autoneg */ - anadv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); - anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); - - switch (hw->fc.requested_mode) { - case e1000_fc_full: - case e1000_fc_rx_pause: - anadv_reg |= E1000_TXCW_ASM_DIR; - anadv_reg |= E1000_TXCW_PAUSE; - break; - case e1000_fc_tx_pause: - anadv_reg |= E1000_TXCW_ASM_DIR; - break; - default: - break; - } - - E1000_WRITE_REG(hw, E1000_PCS_ANADV, anadv_reg); - - DEBUGOUT1("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); - } else { - /* Set PCS register for forced link */ - reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ - - /* Force flow control for forced link */ - reg |= E1000_PCS_LCTL_FORCE_FCTRL; - - DEBUGOUT1("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); - } - - E1000_WRITE_REG(hw, E1000_PCS_LCTL, reg); - - if (!pcs_autoneg && !e1000_sgmii_active_82575(hw)) - e1000_force_mac_fc_generic(hw); - - return ret_val; -} - -/** - * e1000_get_media_type_82575 - derives current media type. - * @hw: pointer to the HW structure - * - * The media type is chosen reflecting few settings. - * The following are taken into account: - * - link mode set in the current port Init Control Word #3 - * - current link mode settings in CSR register - * - MDIO vs. I2C PHY control interface chosen - * - SFP module media type - **/ -STATIC s32 e1000_get_media_type_82575(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext = 0; - u32 link_mode = 0; - - /* Set internal phy as default */ - dev_spec->sgmii_active = false; - dev_spec->module_plugged = false; - - /* Get CSR setting */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - - /* extract link mode setting */ - link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; - - switch (link_mode) { - case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: - hw->phy.media_type = e1000_media_type_internal_serdes; - break; - case E1000_CTRL_EXT_LINK_MODE_GMII: - hw->phy.media_type = e1000_media_type_copper; - break; - case E1000_CTRL_EXT_LINK_MODE_SGMII: - /* Get phy control interface type set (MDIO vs. I2C)*/ - if (e1000_sgmii_uses_mdio_82575(hw)) { - hw->phy.media_type = e1000_media_type_copper; - dev_spec->sgmii_active = true; - break; - } - /* fall through for I2C based SGMII */ - case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: - /* read media type from SFP EEPROM */ - ret_val = e1000_set_sfp_media_type_82575(hw); - if ((ret_val != E1000_SUCCESS) || - (hw->phy.media_type == e1000_media_type_unknown)) { - /* - * If media type was not identified then return media - * type defined by the CTRL_EXT settings. - */ - hw->phy.media_type = e1000_media_type_internal_serdes; - - if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { - hw->phy.media_type = e1000_media_type_copper; - dev_spec->sgmii_active = true; - } - - break; - } - - /* do not change link mode for 100BaseFX */ - if (dev_spec->eth_flags.e100_base_fx) - break; - - /* change current link mode setting */ - ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; - - if (hw->phy.media_type == e1000_media_type_copper) - ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; - else - ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - break; - } - - return ret_val; -} - -/** - * e1000_set_sfp_media_type_82575 - derives SFP module media type. - * @hw: pointer to the HW structure - * - * The media type is chosen based on SFP module. - * compatibility flags retrieved from SFP ID EEPROM. - **/ -STATIC s32 e1000_set_sfp_media_type_82575(struct e1000_hw *hw) -{ - s32 ret_val = E1000_ERR_CONFIG; - u32 ctrl_ext = 0; - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - struct sfp_e1000_flags *eth_flags = &dev_spec->eth_flags; - u8 tranceiver_type = 0; - s32 timeout = 3; - - /* Turn I2C interface ON and power on sfp cage */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); - - E1000_WRITE_FLUSH(hw); - - /* Read SFP module data */ - while (timeout) { - ret_val = e1000_read_sfp_data_byte(hw, - E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), - &tranceiver_type); - if (ret_val == E1000_SUCCESS) - break; - msec_delay(100); - timeout--; - } - if (ret_val != E1000_SUCCESS) - goto out; - - ret_val = e1000_read_sfp_data_byte(hw, - E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), - (u8 *)eth_flags); - if (ret_val != E1000_SUCCESS) - goto out; - - /* Check if there is some SFP module plugged and powered */ - if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || - (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { - dev_spec->module_plugged = true; - if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { - hw->phy.media_type = e1000_media_type_internal_serdes; - } else if (eth_flags->e100_base_fx) { - dev_spec->sgmii_active = true; - hw->phy.media_type = e1000_media_type_internal_serdes; - } else if (eth_flags->e1000_base_t) { - dev_spec->sgmii_active = true; - hw->phy.media_type = e1000_media_type_copper; - } else { - hw->phy.media_type = e1000_media_type_unknown; - DEBUGOUT("PHY module has not been recognized\n"); - goto out; - } - } else { - hw->phy.media_type = e1000_media_type_unknown; - } - ret_val = E1000_SUCCESS; -out: - /* Restore I2C interface setting */ - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - return ret_val; -} - -/** - * e1000_valid_led_default_82575 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -STATIC s32 e1000_valid_led_default_82575(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_82575"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch (hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_82575_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT; - break; - } - } -out: - return ret_val; -} - -/** - * e1000_sgmii_active_82575 - Return sgmii state - * @hw: pointer to the HW structure - * - * 82575 silicon has a serialized gigabit media independent interface (sgmii) - * which can be enabled for use in the embedded applications. Simply - * return the current state of the sgmii interface. - **/ -STATIC bool e1000_sgmii_active_82575(struct e1000_hw *hw) -{ - struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; - return dev_spec->sgmii_active; -} - -/** - * e1000_reset_init_script_82575 - Inits HW defaults after reset - * @hw: pointer to the HW structure - * - * Inits recommended HW defaults after a reset when there is no EEPROM - * detected. This is only for the 82575. - **/ -STATIC s32 e1000_reset_init_script_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_reset_init_script_82575"); - - if (hw->mac.type == e1000_82575) { - DEBUGOUT("Running reset init script for 82575\n"); - /* SerDes configuration via SERDESCTRL */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x00, 0x0C); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x01, 0x78); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x1B, 0x23); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCTL, 0x23, 0x15); - - /* CCM configuration via CCMCTL register */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x14, 0x00); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_CCMCTL, 0x10, 0x00); - - /* PCIe lanes configuration */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x00, 0xEC); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x61, 0xDF); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x34, 0x05); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_GIOCTL, 0x2F, 0x81); - - /* PCIe PLL Configuration */ - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x02, 0x47); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x14, 0x00); - e1000_write_8bit_ctrl_reg_generic(hw, E1000_SCCTL, 0x10, 0x00); - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr_82575 - Read device MAC address - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_read_mac_addr_82575(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_mac_addr_82575"); - - /* - * If there's an alternate MAC address place it in RAR0 - * so that it will override the Si installed default perm - * address. - */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_mac_addr_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_config_collision_dist_82575 - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -STATIC void e1000_config_collision_dist_82575(struct e1000_hw *hw) -{ - u32 tctl_ext; - - DEBUGFUNC("e1000_config_collision_dist_82575"); - - tctl_ext = E1000_READ_REG(hw, E1000_TCTL_EXT); - - tctl_ext &= ~E1000_TCTL_EXT_COLD; - tctl_ext |= E1000_COLLISION_DISTANCE << E1000_TCTL_EXT_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL_EXT, tctl_ext); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_power_down_phy_copper_82575 - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_82575(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - - if (!(phy->ops.check_reset_block)) - return; - - /* If the management interface is not enabled, then power down */ - if (!(e1000_enable_mng_pass_thru(hw) || phy->ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters - * @hw: pointer to the HW structure - * - * Clears the hardware counters by reading the counter registers. - **/ -STATIC void e1000_clear_hw_cntrs_82575(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_82575"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_PRC64); - E1000_READ_REG(hw, E1000_PRC127); - E1000_READ_REG(hw, E1000_PRC255); - E1000_READ_REG(hw, E1000_PRC511); - E1000_READ_REG(hw, E1000_PRC1023); - E1000_READ_REG(hw, E1000_PRC1522); - E1000_READ_REG(hw, E1000_PTC64); - E1000_READ_REG(hw, E1000_PTC127); - E1000_READ_REG(hw, E1000_PTC255); - E1000_READ_REG(hw, E1000_PTC511); - E1000_READ_REG(hw, E1000_PTC1023); - E1000_READ_REG(hw, E1000_PTC1522); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); - - E1000_READ_REG(hw, E1000_IAC); - E1000_READ_REG(hw, E1000_ICRXOC); - - E1000_READ_REG(hw, E1000_ICRXPTC); - E1000_READ_REG(hw, E1000_ICRXATC); - E1000_READ_REG(hw, E1000_ICTXPTC); - E1000_READ_REG(hw, E1000_ICTXATC); - E1000_READ_REG(hw, E1000_ICTXQEC); - E1000_READ_REG(hw, E1000_ICTXQMTC); - E1000_READ_REG(hw, E1000_ICRXDMTC); - - E1000_READ_REG(hw, E1000_CBTMPC); - E1000_READ_REG(hw, E1000_HTDPMC); - E1000_READ_REG(hw, E1000_CBRMPC); - E1000_READ_REG(hw, E1000_RPTHC); - E1000_READ_REG(hw, E1000_HGPTC); - E1000_READ_REG(hw, E1000_HTCBDPC); - E1000_READ_REG(hw, E1000_HGORCL); - E1000_READ_REG(hw, E1000_HGORCH); - E1000_READ_REG(hw, E1000_HGOTCL); - E1000_READ_REG(hw, E1000_HGOTCH); - E1000_READ_REG(hw, E1000_LENERRS); - - /* This register should not be read in copper configurations */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) || - e1000_sgmii_active_82575(hw)) - E1000_READ_REG(hw, E1000_SCVPC); -} - -/** - * e1000_rx_fifo_flush_82575 - Clean rx fifo after Rx enable - * @hw: pointer to the HW structure - * - * After rx enable if managability is enabled then there is likely some - * bad data at the start of the fifo and possibly in the DMA fifo. This - * function clears the fifos and flushes any packets that came in as rx was - * being enabled. - **/ -void e1000_rx_fifo_flush_82575(struct e1000_hw *hw) -{ - u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; - int i, ms_wait; - - DEBUGFUNC("e1000_rx_fifo_workaround_82575"); - if (hw->mac.type != e1000_82575 || - !(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) - return; - - /* Disable all Rx queues */ - for (i = 0; i < 4; i++) { - rxdctl[i] = E1000_READ_REG(hw, E1000_RXDCTL(i)); - E1000_WRITE_REG(hw, E1000_RXDCTL(i), - rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); - } - /* Poll all queues to verify they have shut down */ - for (ms_wait = 0; ms_wait < 10; ms_wait++) { - msec_delay(1); - rx_enabled = 0; - for (i = 0; i < 4; i++) - rx_enabled |= E1000_READ_REG(hw, E1000_RXDCTL(i)); - if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) - break; - } - - if (ms_wait == 10) - DEBUGOUT("Queue disable timed out after 10ms\n"); - - /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all - * incoming packets are rejected. Set enable and wait 2ms so that - * any packet that was coming in as RCTL.EN was set is flushed - */ - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); - - rlpml = E1000_READ_REG(hw, E1000_RLPML); - E1000_WRITE_REG(hw, E1000_RLPML, 0); - - rctl = E1000_READ_REG(hw, E1000_RCTL); - temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); - temp_rctl |= E1000_RCTL_LPE; - - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl); - E1000_WRITE_REG(hw, E1000_RCTL, temp_rctl | E1000_RCTL_EN); - E1000_WRITE_FLUSH(hw); - msec_delay(2); - - /* Enable Rx queues that were previously enabled and restore our - * previous state - */ - for (i = 0; i < 4; i++) - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl[i]); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - E1000_WRITE_REG(hw, E1000_RLPML, rlpml); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); - - /* Flush receive errors generated by workaround */ - E1000_READ_REG(hw, E1000_ROC); - E1000_READ_REG(hw, E1000_RNBC); - E1000_READ_REG(hw, E1000_MPC); -} - -/** - * e1000_set_pcie_completion_timeout - set pci-e completion timeout - * @hw: pointer to the HW structure - * - * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, - * however the hardware default for these parts is 500us to 1ms which is less - * than the 10ms recommended by the pci-e spec. To address this we need to - * increase the value to either 10ms to 200ms for capability version 1 config, - * or 16ms to 55ms for version 2. - **/ -STATIC s32 e1000_set_pcie_completion_timeout(struct e1000_hw *hw) -{ - u32 gcr = E1000_READ_REG(hw, E1000_GCR); - s32 ret_val = E1000_SUCCESS; - u16 pcie_devctl2; - - /* only take action if timeout value is defaulted to 0 */ - if (gcr & E1000_GCR_CMPL_TMOUT_MASK) - goto out; - - /* - * if capababilities version is type 1 we can write the - * timeout of 10ms to 200ms through the GCR register - */ - if (!(gcr & E1000_GCR_CAP_VER2)) { - gcr |= E1000_GCR_CMPL_TMOUT_10ms; - goto out; - } - - /* - * for version 2 capabilities we need to write the config space - * directly in order to set the completion timeout value for - * 16ms to 55ms - */ - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); - if (ret_val) - goto out; - - pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; - - ret_val = e1000_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, - &pcie_devctl2); -out: - /* disable completion timeout resend */ - gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; - - E1000_WRITE_REG(hw, E1000_GCR, gcr); - return ret_val; -} - -/** - * e1000_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * @pf: Physical Function pool - do not set anti-spoofing for the PF - * - * enables/disables L2 switch anti-spoofing functionality. - **/ -void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) -{ - u32 reg_val, reg_offset; - - switch (hw->mac.type) { - case e1000_82576: - reg_offset = E1000_DTXSWC; - break; - case e1000_i350: - case e1000_i354: - reg_offset = E1000_TXSWC; - break; - default: - return; - } - - reg_val = E1000_READ_REG(hw, reg_offset); - if (enable) { - reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - /* The PF can spoof - it has to in order to - * support emulation mode NICs - */ - reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); - } else { - reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | - E1000_DTXSWC_VLAN_SPOOF_MASK); - } - E1000_WRITE_REG(hw, reg_offset, reg_val); -} - -/** - * e1000_vmdq_set_loopback_pf - enable or disable vmdq loopback - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables L2 switch loopback functionality. - **/ -void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) -{ - u32 dtxswc; - - switch (hw->mac.type) { - case e1000_82576: - dtxswc = E1000_READ_REG(hw, E1000_DTXSWC); - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - E1000_WRITE_REG(hw, E1000_DTXSWC, dtxswc); - break; - case e1000_i350: - case e1000_i354: - dtxswc = E1000_READ_REG(hw, E1000_TXSWC); - if (enable) - dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; - else - dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; - E1000_WRITE_REG(hw, E1000_TXSWC, dtxswc); - break; - default: - /* Currently no other hardware supports loopback */ - break; - } - - -} - -/** - * e1000_vmdq_set_replication_pf - enable or disable vmdq replication - * @hw: pointer to the hardware struct - * @enable: state to enter, either enabled or disabled - * - * enables/disables replication of packets across multiple pools. - **/ -void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) -{ - u32 vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); - - if (enable) - vt_ctl |= E1000_VT_CTL_VM_REPL_EN; - else - vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; - - E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); -} - -/** - * e1000_read_phy_reg_82580 - Read 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -STATIC s32 e1000_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_read_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_write_phy_reg_82580 - Write 82580 MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -STATIC s32 e1000_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_write_phy_reg_82580"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - ret_val = e1000_write_phy_reg_mdic(hw, offset, data); - - hw->phy.ops.release(hw); - -out: - return ret_val; -} - -/** - * e1000_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits - * @hw: pointer to the HW structure - * - * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on - * the values found in the EEPROM. This addresses an issue in which these - * bits are not restored from EEPROM after reset. - **/ -STATIC s32 e1000_reset_mdicnfg_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 mdicnfg; - u16 nvm_data = 0; - - DEBUGFUNC("e1000_reset_mdicnfg_82580"); - - if (hw->mac.type != e1000_82580) - goto out; - if (!e1000_sgmii_active_82575(hw)) - goto out; - - ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + - NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, - &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); - if (nvm_data & NVM_WORD24_EXT_MDIO) - mdicnfg |= E1000_MDICNFG_EXT_MDIO; - if (nvm_data & NVM_WORD24_COM_MDIO) - mdicnfg |= E1000_MDICNFG_COM_MDIO; - E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); -out: - return ret_val; -} - -/** - * e1000_reset_hw_82580 - Reset hardware - * @hw: pointer to the HW structure - * - * This resets function or entire device (all ports, etc.) - * to a known state. - **/ -STATIC s32 e1000_reset_hw_82580(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - /* BH SW mailbox bit in SW_FW_SYNC */ - u16 swmbsw_mask = E1000_SW_SYNCH_MB; - u32 ctrl; - bool global_device_reset = hw->dev_spec._82575.global_device_reset; - - DEBUGFUNC("e1000_reset_hw_82580"); - - hw->dev_spec._82575.global_device_reset = false; - - /* 82580 does not reliably do global_device_reset due to hw errata */ - if (hw->mac.type == e1000_82580) - global_device_reset = false; - - /* Get current control state. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* - * Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Determine whether or not a global dev reset is requested */ - if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, - swmbsw_mask)) - global_device_reset = false; - - if (global_device_reset && !(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STAT_DEV_RST_SET)) - ctrl |= E1000_CTRL_DEV_RST; - else - ctrl |= E1000_CTRL_RST; - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - /* Add delay to insure DEV_RST has time to complete */ - if (global_device_reset) - msec_delay(5); - - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* - * When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - } - - /* clear global device reset status bit */ - E1000_WRITE_REG(hw, E1000_STATUS, E1000_STAT_DEV_RST_SET); - - /* Clear any pending interrupt events. */ - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - ret_val = e1000_reset_mdicnfg_82580(hw); - if (ret_val) - DEBUGOUT("Could not reset MDICNFG based on EEPROM\n"); - - /* Install any alternate MAC address into RAR0 */ - ret_val = e1000_check_alt_mac_addr_generic(hw); - - /* Release semaphore */ - if (global_device_reset) - hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); - - return ret_val; -} - -/** - * e1000_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual Rx PBA size - * @data: data received by reading RXPBS register - * - * The 82580 uses a table based approach for packet buffer allocation sizes. - * This function converts the retrieved value into the correct table value - * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 - * 0x0 36 72 144 1 2 4 8 16 - * 0x8 35 70 140 rsv rsv rsv rsv rsv - */ -u16 e1000_rxpbs_adjust_82580(u32 data) -{ - u16 ret_val = 0; - - if (data < E1000_82580_RXPBS_TABLE_SIZE) - ret_val = e1000_82580_rxpbs_table[data]; - - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_with_offset - Validate EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val = E1000_SUCCESS; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_with_offset"); - - for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_with_offset - Update EEPROM - * checksum - * @hw: pointer to the HW structure - * @offset: offset in words of the checksum protected region - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum_with_offset"); - - for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, - &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - -out: - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_82580 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM section checksum by reading/adding each word of - * the EEPROM and then verifies that the sum of the EEPROM is - * equal to 0xBABA. - **/ -STATIC s32 e1000_validate_nvm_checksum_82580(struct e1000_hw *hw) -{ - s32 ret_val; - u16 eeprom_regions_count = 1; - u16 j, nvm_data; - u16 nvm_offset; - - DEBUGFUNC("e1000_validate_nvm_checksum_82580"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { - /* if chekcsums compatibility bit is set validate checksums - * for all 4 ports. */ - eeprom_regions_count = 4; - } - - for (j = 0; j < eeprom_regions_count; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_82580 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM section checksums for all 4 ports by reading/adding - * each word of the EEPROM up to the checksum. Then calculates the EEPROM - * checksum and writes the value to the EEPROM. - **/ -STATIC s32 e1000_update_nvm_checksum_82580(struct e1000_hw *hw) -{ - s32 ret_val; - u16 j, nvm_data; - u16 nvm_offset; - - DEBUGFUNC("e1000_update_nvm_checksum_82580"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum compatibility bit.\n"); - goto out; - } - - if (!(nvm_data & NVM_COMPATIBILITY_BIT_MASK)) { - /* set compatibility bit to validate checksums appropriately */ - nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; - ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, - &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Write Error while updating checksum compatibility bit.\n"); - goto out; - } - } - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_i350 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM section checksum by reading/adding each word of - * the EEPROM and then verifies that the sum of the EEPROM is - * equal to 0xBABA. - **/ -STATIC s32 e1000_validate_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_validate_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_validate_nvm_checksum_with_offset(hw, - nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_update_nvm_checksum_i350 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM section checksums for all 4 ports by reading/adding - * each word of the EEPROM up to the checksum. Then calculates the EEPROM - * checksum and writes the value to the EEPROM. - **/ -STATIC s32 e1000_update_nvm_checksum_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 j; - u16 nvm_offset; - - DEBUGFUNC("e1000_update_nvm_checksum_i350"); - - for (j = 0; j < 4; j++) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); - ret_val = e1000_update_nvm_checksum_with_offset(hw, nvm_offset); - if (ret_val != E1000_SUCCESS) - goto out; - } - -out: - return ret_val; -} - -/** - * __e1000_access_emi_reg - Read/write EMI register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: pointer to value to read/write from/to the EMI address - * @read: boolean flag to indicate read or write - **/ -STATIC s32 __e1000_access_emi_reg(struct e1000_hw *hw, u16 address, - u16 *data, bool read) -{ - s32 ret_val; - - DEBUGFUNC("__e1000_access_emi_reg"); - - ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); - if (ret_val) - return ret_val; - - if (read) - ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); - else - ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); - - return ret_val; -} - -/** - * e1000_read_emi_reg - Read Extended Management Interface register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: value to be read from the EMI address - **/ -s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) -{ - DEBUGFUNC("e1000_read_emi_reg"); - - return __e1000_access_emi_reg(hw, addr, data, true); -} - -/** - * e1000_initialize_M88E1512_phy - Initialize M88E1512 PHY - * @hw: pointer to the HW structure - * - * Initialize Marverl 1512 to work correctly with Avoton. - **/ -s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_initialize_M88E1512_phy"); - - /* Check if this is correct PHY. */ - if (phy->id != M88E1512_E_PHY_ID) - goto out; - - /* Switch to PHY page 0xFF. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); - if (ret_val) - goto out; - - /* Switch to PHY page 0xFB. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); - if (ret_val) - goto out; - - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); - if (ret_val) - goto out; - - /* Switch to PHY page 0x12. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); - if (ret_val) - goto out; - - /* Change mode to SGMII-to-Copper */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); - if (ret_val) - goto out; - - /* Return the PHY to page 0. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); - if (ret_val) - goto out; - - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - - msec_delay(1000); -out: - return ret_val; -} - -/** - * e1000_set_eee_i350 - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure. - * - **/ -s32 e1000_set_eee_i350(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 ipcnfg, eeer; - - DEBUGFUNC("e1000_set_eee_i350"); - - if ((hw->mac.type < e1000_i350) || - (hw->phy.media_type != e1000_media_type_copper)) - goto out; - ipcnfg = E1000_READ_REG(hw, E1000_IPCNFG); - eeer = E1000_READ_REG(hw, E1000_EEER); - - /* enable or disable per user setting */ - if (!(hw->dev_spec._82575.eee_disable)) { - u32 eee_su = E1000_READ_REG(hw, E1000_EEE_SU); - - ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - - /* This bit should not be set in normal operation. */ - if (eee_su & E1000_EEE_SU_LPI_CLK_STP) - DEBUGOUT("LPI Clock Stop Bit should not be set!\n"); - } else { - ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); - eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | - E1000_EEER_LPI_FC); - } - E1000_WRITE_REG(hw, E1000_IPCNFG, ipcnfg); - E1000_WRITE_REG(hw, E1000_EEER, eeer); - E1000_READ_REG(hw, E1000_IPCNFG); - E1000_READ_REG(hw, E1000_EEER); -out: - - return ret_val; -} - -/** - * e1000_set_eee_i354 - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE legacy mode based on setting in dev_spec structure. - * - **/ -s32 e1000_set_eee_i354(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_set_eee_i354"); - - if ((hw->phy.media_type != e1000_media_type_copper) || - ((phy->id != M88E1543_E_PHY_ID) && - (phy->id != M88E1512_E_PHY_ID))) - goto out; - - if (!hw->dev_spec._82575.eee_disable) { - /* Switch to PHY page 18. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); - if (ret_val) - goto out; - - ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, - &phy_data); - if (ret_val) - goto out; - - phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, - phy_data); - if (ret_val) - goto out; - - /* Return the PHY to page 0. */ - ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); - if (ret_val) - goto out; - - /* Turn on EEE advertisement. */ - ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - phy_data |= E1000_EEE_ADV_100_SUPPORTED | - E1000_EEE_ADV_1000_SUPPORTED; - ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - phy_data); - } else { - /* Turn off EEE advertisement. */ - ret_val = e1000_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | - E1000_EEE_ADV_1000_SUPPORTED); - ret_val = e1000_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, - E1000_EEE_ADV_DEV_I354, - phy_data); - } - -out: - return ret_val; -} - -/** - * e1000_get_eee_status_i354 - Get EEE status - * @hw: pointer to the HW structure - * @status: EEE status - * - * Get EEE status by guessing based on whether Tx or Rx LPI indications have - * been received. - **/ -s32 e1000_get_eee_status_i354(struct e1000_hw *hw, bool *status) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_get_eee_status_i354"); - - /* Check if EEE is supported on this device. */ - if ((hw->phy.media_type != e1000_media_type_copper) || - ((phy->id != M88E1543_E_PHY_ID) && - (phy->id != M88E1512_E_PHY_ID))) - goto out; - - ret_val = e1000_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, - E1000_PCS_STATUS_DEV_I354, - &phy_data); - if (ret_val) - goto out; - - *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | - E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; - -out: - return ret_val; -} - -/* Due to a hw errata, if the host tries to configure the VFTA register - * while performing queries from the BMC or DMA, then the VFTA in some - * cases won't be written. - */ - -/** - * e1000_clear_vfta_i350 - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_i350(struct e1000_hw *hw) -{ - u32 offset; - int i; - - DEBUGFUNC("e1000_clear_vfta_350"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_write_vfta_i350 - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) -{ - int i; - - DEBUGFUNC("e1000_write_vfta_350"); - - for (i = 0; i < 10; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - - E1000_WRITE_FLUSH(hw); -} - - -/** - * e1000_set_i2c_bb - Enable I2C bit-bang - * @hw: pointer to the HW structure - * - * Enable I2C bit-bang interface - * - **/ -s32 e1000_set_i2c_bb(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 ctrl_ext, i2cparams; - - DEBUGFUNC("e1000_set_i2c_bb"); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_I2C_ENA; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - i2cparams = E1000_READ_REG(hw, E1000_I2CPARAMS); - i2cparams |= E1000_I2CBB_EN; - i2cparams |= E1000_I2C_DATA_OE_N; - i2cparams |= E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cparams); - E1000_WRITE_FLUSH(hw); - - return ret_val; -} - -/** - * e1000_read_i2c_byte_generic - Reads 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to read - * @dev_addr: device address - * @data: value read - * - * Performs byte read operation over I2C interface at - * a specified device address. - **/ -s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data) -{ - s32 status = E1000_SUCCESS; - u32 max_retry = 10; - u32 retry = 1; - u16 swfw_mask = 0; - - bool nack = true; - - DEBUGFUNC("e1000_read_i2c_byte_generic"); - - swfw_mask = E1000_SWFW_PHY0_SM; - - do { - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) - != E1000_SUCCESS) { - status = E1000_ERR_SWFW_SYNC; - goto read_byte_out; - } - - e1000_i2c_start(hw); - - /* Device Address and write indication */ - status = e1000_clock_out_i2c_byte(hw, dev_addr); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, byte_offset); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_start(hw); - - /* Device Address and read indication */ - status = e1000_clock_out_i2c_byte(hw, (dev_addr | 0x1)); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_in_i2c_byte(hw, data); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_bit(hw, nack); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_stop(hw); - break; - -fail: - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - msec_delay(100); - e1000_i2c_bus_clear(hw); - retry++; - if (retry < max_retry) - DEBUGOUT("I2C byte read error - Retrying.\n"); - else - DEBUGOUT("I2C byte read error.\n"); - - } while (retry < max_retry); - - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - -read_byte_out: - - return status; -} - -/** - * e1000_write_i2c_byte_generic - Writes 8 bit word over I2C - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: value to write - * - * Performs byte write operation over I2C interface at - * a specified device address. - **/ -s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data) -{ - s32 status = E1000_SUCCESS; - u32 max_retry = 1; - u32 retry = 0; - u16 swfw_mask = 0; - - DEBUGFUNC("e1000_write_i2c_byte_generic"); - - swfw_mask = E1000_SWFW_PHY0_SM; - - if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS) { - status = E1000_ERR_SWFW_SYNC; - goto write_byte_out; - } - - do { - e1000_i2c_start(hw); - - status = e1000_clock_out_i2c_byte(hw, dev_addr); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, byte_offset); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_clock_out_i2c_byte(hw, data); - if (status != E1000_SUCCESS) - goto fail; - - status = e1000_get_i2c_ack(hw); - if (status != E1000_SUCCESS) - goto fail; - - e1000_i2c_stop(hw); - break; - -fail: - e1000_i2c_bus_clear(hw); - retry++; - if (retry < max_retry) - DEBUGOUT("I2C byte write error - Retrying.\n"); - else - DEBUGOUT("I2C byte write error.\n"); - } while (retry < max_retry); - - hw->mac.ops.release_swfw_sync(hw, swfw_mask); - -write_byte_out: - - return status; -} - -/** - * e1000_i2c_start - Sets I2C start condition - * @hw: pointer to hardware structure - * - * Sets I2C start condition (High -> Low on SDA while SCL is High) - **/ -STATIC void e1000_i2c_start(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_i2c_start"); - - /* Start condition must begin with data and clock high */ - e1000_set_i2c_data(hw, &i2cctl, 1); - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Setup time for start condition (4.7us) */ - usec_delay(E1000_I2C_T_SU_STA); - - e1000_set_i2c_data(hw, &i2cctl, 0); - - /* Hold time for start condition (4us) */ - usec_delay(E1000_I2C_T_HD_STA); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - -} - -/** - * e1000_i2c_stop - Sets I2C stop condition - * @hw: pointer to hardware structure - * - * Sets I2C stop condition (Low -> High on SDA while SCL is High) - **/ -STATIC void e1000_i2c_stop(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_i2c_stop"); - - /* Stop condition must begin with data low and clock high */ - e1000_set_i2c_data(hw, &i2cctl, 0); - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Setup time for stop condition (4us) */ - usec_delay(E1000_I2C_T_SU_STO); - - e1000_set_i2c_data(hw, &i2cctl, 1); - - /* bus free time between stop and start (4.7us)*/ - usec_delay(E1000_I2C_T_BUF); -} - -/** - * e1000_clock_in_i2c_byte - Clocks in one byte via I2C - * @hw: pointer to hardware structure - * @data: data byte to clock in - * - * Clocks in one byte data via I2C data/clock - **/ -STATIC s32 e1000_clock_in_i2c_byte(struct e1000_hw *hw, u8 *data) -{ - s32 i; - bool bit = 0; - - DEBUGFUNC("e1000_clock_in_i2c_byte"); - - *data = 0; - for (i = 7; i >= 0; i--) { - e1000_clock_in_i2c_bit(hw, &bit); - *data |= bit << i; - } - - return E1000_SUCCESS; -} - -/** - * e1000_clock_out_i2c_byte - Clocks out one byte via I2C - * @hw: pointer to hardware structure - * @data: data byte clocked out - * - * Clocks out one byte data via I2C data/clock - **/ -STATIC s32 e1000_clock_out_i2c_byte(struct e1000_hw *hw, u8 data) -{ - s32 status = E1000_SUCCESS; - s32 i; - u32 i2cctl; - bool bit = 0; - - DEBUGFUNC("e1000_clock_out_i2c_byte"); - - for (i = 7; i >= 0; i--) { - bit = (data >> i) & 0x1; - status = e1000_clock_out_i2c_bit(hw, bit); - - if (status != E1000_SUCCESS) - break; - } - - /* Release SDA line (set high) */ - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - i2cctl |= E1000_I2C_DATA_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, i2cctl); - E1000_WRITE_FLUSH(hw); - - return status; -} - -/** - * e1000_get_i2c_ack - Polls for I2C ACK - * @hw: pointer to hardware structure - * - * Clocks in/out one bit via I2C data/clock - **/ -STATIC s32 e1000_get_i2c_ack(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - u32 i = 0; - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - u32 timeout = 10; - bool ack = true; - - DEBUGFUNC("e1000_get_i2c_ack"); - - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - /* Wait until SCL returns high */ - for (i = 0; i < timeout; i++) { - usec_delay(1); - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - if (i2cctl & E1000_I2C_CLK_IN) - break; - } - if (!(i2cctl & E1000_I2C_CLK_IN)) - return E1000_ERR_I2C; - - ack = e1000_get_i2c_data(&i2cctl); - if (ack) { - DEBUGOUT("I2C ack was not received.\n"); - status = E1000_ERR_I2C; - } - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - - return status; -} - -/** - * e1000_clock_in_i2c_bit - Clocks in one bit via I2C data/clock - * @hw: pointer to hardware structure - * @data: read data value - * - * Clocks in one bit via I2C data/clock - **/ -STATIC s32 e1000_clock_in_i2c_bit(struct e1000_hw *hw, bool *data) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_clock_in_i2c_bit"); - - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - *data = e1000_get_i2c_data(&i2cctl); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us */ - usec_delay(E1000_I2C_T_LOW); - - return E1000_SUCCESS; -} - -/** - * e1000_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock - * @hw: pointer to hardware structure - * @data: data value to write - * - * Clocks out one bit via I2C data/clock - **/ -STATIC s32 e1000_clock_out_i2c_bit(struct e1000_hw *hw, bool data) -{ - s32 status; - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - - DEBUGFUNC("e1000_clock_out_i2c_bit"); - - status = e1000_set_i2c_data(hw, &i2cctl, data); - if (status == E1000_SUCCESS) { - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Minimum high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Minimum low period of clock is 4.7 us. - * This also takes care of the data hold time. - */ - usec_delay(E1000_I2C_T_LOW); - } else { - status = E1000_ERR_I2C; - DEBUGOUT1("I2C data was not set to %X\n", data); - } - - return status; -} -/** - * e1000_raise_i2c_clk - Raises the I2C SCL clock - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Raises the I2C clock line '0'->'1' - **/ -STATIC void e1000_raise_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) -{ - DEBUGFUNC("e1000_raise_i2c_clk"); - - *i2cctl |= E1000_I2C_CLK_OUT; - *i2cctl &= ~E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* SCL rise time (1000ns) */ - usec_delay(E1000_I2C_T_RISE); -} - -/** - * e1000_lower_i2c_clk - Lowers the I2C SCL clock - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Lowers the I2C clock line '1'->'0' - **/ -STATIC void e1000_lower_i2c_clk(struct e1000_hw *hw, u32 *i2cctl) -{ - - DEBUGFUNC("e1000_lower_i2c_clk"); - - *i2cctl &= ~E1000_I2C_CLK_OUT; - *i2cctl &= ~E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* SCL fall time (300ns) */ - usec_delay(E1000_I2C_T_FALL); -} - -/** - * e1000_set_i2c_data - Sets the I2C data bit - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * @data: I2C data value (0 or 1) to set - * - * Sets the I2C data bit - **/ -STATIC s32 e1000_set_i2c_data(struct e1000_hw *hw, u32 *i2cctl, bool data) -{ - s32 status = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_i2c_data"); - - if (data) - *i2cctl |= E1000_I2C_DATA_OUT; - else - *i2cctl &= ~E1000_I2C_DATA_OUT; - - *i2cctl &= ~E1000_I2C_DATA_OE_N; - *i2cctl |= E1000_I2C_CLK_OE_N; - E1000_WRITE_REG(hw, E1000_I2CPARAMS, *i2cctl); - E1000_WRITE_FLUSH(hw); - - /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ - usec_delay(E1000_I2C_T_RISE + E1000_I2C_T_FALL + E1000_I2C_T_SU_DATA); - - *i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - if (data != e1000_get_i2c_data(i2cctl)) { - status = E1000_ERR_I2C; - DEBUGOUT1("Error - I2C data was not set to %X.\n", data); - } - - return status; -} - -/** - * e1000_get_i2c_data - Reads the I2C SDA data bit - * @hw: pointer to hardware structure - * @i2cctl: Current value of I2CCTL register - * - * Returns the I2C data bit value - **/ -STATIC bool e1000_get_i2c_data(u32 *i2cctl) -{ - bool data; - - DEBUGFUNC("e1000_get_i2c_data"); - - if (*i2cctl & E1000_I2C_DATA_IN) - data = 1; - else - data = 0; - - return data; -} - -/** - * e1000_i2c_bus_clear - Clears the I2C bus - * @hw: pointer to hardware structure - * - * Clears the I2C bus by sending nine clock pulses. - * Used when data line is stuck low. - **/ -void e1000_i2c_bus_clear(struct e1000_hw *hw) -{ - u32 i2cctl = E1000_READ_REG(hw, E1000_I2CPARAMS); - u32 i; - - DEBUGFUNC("e1000_i2c_bus_clear"); - - e1000_i2c_start(hw); - - e1000_set_i2c_data(hw, &i2cctl, 1); - - for (i = 0; i < 9; i++) { - e1000_raise_i2c_clk(hw, &i2cctl); - - /* Min high period of clock is 4us */ - usec_delay(E1000_I2C_T_HIGH); - - e1000_lower_i2c_clk(hw, &i2cctl); - - /* Min low period of clock is 4.7us*/ - usec_delay(E1000_I2C_T_LOW); - } - - e1000_i2c_start(hw); - - /* Put the i2c bus back to default state */ - e1000_i2c_stop(hw); -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.h deleted file mode 100755 index 09b7bf2e..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_82575.h +++ /dev/null @@ -1,520 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_82575_H_ -#define _E1000_82575_H_ - -#define ID_LED_DEFAULT_82575_SERDES ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) -/* - * Receive Address Register Count - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * These entries are also used for MAC-based filtering. - */ -/* - * For 82576, there are an additional set of RARs that begin at an offset - * separate from the first set of RARs. - */ -#define E1000_RAR_ENTRIES_82575 16 -#define E1000_RAR_ENTRIES_82576 24 -#define E1000_RAR_ENTRIES_82580 24 -#define E1000_RAR_ENTRIES_I350 32 -#define E1000_SW_SYNCH_MB 0x00000100 -#define E1000_STAT_DEV_RST_SET 0x00100000 -#define E1000_CTRL_DEV_RST 0x20000000 - -#ifdef E1000_BIT_FIELDS -struct e1000_adv_data_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - u32 data; - struct { - u32 datalen:16; /* Data buffer length */ - u32 rsvd:4; - u32 dtyp:4; /* Descriptor type */ - u32 dcmd:8; /* Descriptor command */ - } config; - } lower; - union { - u32 data; - struct { - u32 status:4; /* Descriptor status */ - u32 idx:4; - u32 popts:6; /* Packet Options */ - u32 paylen:18; /* Payload length */ - } options; - } upper; -}; - -#define E1000_TXD_DTYP_ADV_C 0x2 /* Advanced Context Descriptor */ -#define E1000_TXD_DTYP_ADV_D 0x3 /* Advanced Data Descriptor */ -#define E1000_ADV_TXD_CMD_DEXT 0x20 /* Descriptor extension (0 = legacy) */ -#define E1000_ADV_TUCMD_IPV4 0x2 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADV_TUCMD_IPV6 0x0 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADV_TUCMD_L4T_UDP 0x0 /* L4 Packet TYPE of UDP */ -#define E1000_ADV_TUCMD_L4T_TCP 0x4 /* L4 Packet TYPE of TCP */ -#define E1000_ADV_TUCMD_MKRREQ 0x10 /* Indicates markers are required */ -#define E1000_ADV_DCMD_EOP 0x1 /* End of Packet */ -#define E1000_ADV_DCMD_IFCS 0x2 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADV_DCMD_RS 0x8 /* Report Status */ -#define E1000_ADV_DCMD_VLE 0x40 /* Add VLAN tag */ -#define E1000_ADV_DCMD_TSE 0x80 /* TCP Seg enable */ -/* Extended Device Control */ -#define E1000_CTRL_EXT_NSICR 0x00000001 /* Disable Intr Clear all on read */ - -struct e1000_adv_context_desc { - union { - u32 ip_config; - struct { - u32 iplen:9; - u32 maclen:7; - u32 vlan_tag:16; - } fields; - } ip_setup; - u32 seq_num; - union { - u64 l4_config; - struct { - u32 mkrloc:9; - u32 tucmd:11; - u32 dtyp:4; - u32 adv:8; - u32 rsvd:4; - u32 idx:4; - u32 l4len:8; - u32 mss:16; - } fields; - } l4_setup; -}; -#endif - -/* SRRCTL bit definitions */ -#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ -#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 -#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ -#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 -#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 -#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 -#define E1000_SRRCTL_TIMESTAMP 0x40000000 -#define E1000_SRRCTL_DROP_EN 0x80000000 - -#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F -#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 - -#define E1000_TX_HEAD_WB_ENABLE 0x1 -#define E1000_TX_SEQNUM_WB_ENABLE 0x2 - -#define E1000_MRQC_ENABLE_RSS_4Q 0x00000002 -#define E1000_MRQC_ENABLE_VMDQ 0x00000003 -#define E1000_MRQC_ENABLE_VMDQ_RSS_2Q 0x00000005 -#define E1000_MRQC_RSS_FIELD_IPV4_UDP 0x00400000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP 0x00800000 -#define E1000_MRQC_RSS_FIELD_IPV6_UDP_EX 0x01000000 -#define E1000_MRQC_ENABLE_RSS_8Q 0x00000002 - -#define E1000_VMRCTL_MIRROR_PORT_SHIFT 8 -#define E1000_VMRCTL_MIRROR_DSTPORT_MASK (7 << \ - E1000_VMRCTL_MIRROR_PORT_SHIFT) -#define E1000_VMRCTL_POOL_MIRROR_ENABLE (1 << 0) -#define E1000_VMRCTL_UPLINK_MIRROR_ENABLE (1 << 1) -#define E1000_VMRCTL_DOWNLINK_MIRROR_ENABLE (1 << 2) - -#define E1000_EICR_TX_QUEUE ( \ - E1000_EICR_TX_QUEUE0 | \ - E1000_EICR_TX_QUEUE1 | \ - E1000_EICR_TX_QUEUE2 | \ - E1000_EICR_TX_QUEUE3) - -#define E1000_EICR_RX_QUEUE ( \ - E1000_EICR_RX_QUEUE0 | \ - E1000_EICR_RX_QUEUE1 | \ - E1000_EICR_RX_QUEUE2 | \ - E1000_EICR_RX_QUEUE3) - -#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE -#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE - -#define EIMS_ENABLE_MASK ( \ - E1000_EIMS_RX_QUEUE | \ - E1000_EIMS_TX_QUEUE | \ - E1000_EIMS_TCP_TIMER | \ - E1000_EIMS_OTHER) - -/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */ -#define E1000_IMIR_PORT_IM_EN 0x00010000 /* TCP port enable */ -#define E1000_IMIR_PORT_BP 0x00020000 /* TCP port check bypass */ -#define E1000_IMIREXT_SIZE_BP 0x00001000 /* Packet size bypass */ -#define E1000_IMIREXT_CTRL_URG 0x00002000 /* Check URG bit in header */ -#define E1000_IMIREXT_CTRL_ACK 0x00004000 /* Check ACK bit in header */ -#define E1000_IMIREXT_CTRL_PSH 0x00008000 /* Check PSH bit in header */ -#define E1000_IMIREXT_CTRL_RST 0x00010000 /* Check RST bit in header */ -#define E1000_IMIREXT_CTRL_SYN 0x00020000 /* Check SYN bit in header */ -#define E1000_IMIREXT_CTRL_FIN 0x00040000 /* Check FIN bit in header */ -#define E1000_IMIREXT_CTRL_BP 0x00080000 /* Bypass check of ctrl bits */ - -/* Receive Descriptor - Advanced */ -union e1000_adv_rx_desc { - struct { - __le64 pkt_addr; /* Packet buffer address */ - __le64 hdr_addr; /* Header buffer address */ - } read; - struct { - struct { - union { - __le32 data; - struct { - __le16 pkt_info; /*RSS type, Pkt type*/ - /* Split Header, header buffer len */ - __le16 hdr_info; - } hs_rss; - } lo_dword; - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; /* Packet length */ - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define E1000_RXDADV_RSSTYPE_MASK 0x0000000F -#define E1000_RXDADV_RSSTYPE_SHIFT 12 -#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 -#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 -#define E1000_RXDADV_SPLITHEADER_EN 0x00001000 -#define E1000_RXDADV_SPH 0x8000 -#define E1000_RXDADV_STAT_TS 0x10000 /* Pkt was time stamped */ -#define E1000_RXDADV_STAT_TSIP 0x08000 /* timestamp in packet */ -#define E1000_RXDADV_ERR_HBO 0x00800000 - -/* RSS Hash results */ -#define E1000_RXDADV_RSSTYPE_NONE 0x00000000 -#define E1000_RXDADV_RSSTYPE_IPV4_TCP 0x00000001 -#define E1000_RXDADV_RSSTYPE_IPV4 0x00000002 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP 0x00000003 -#define E1000_RXDADV_RSSTYPE_IPV6_EX 0x00000004 -#define E1000_RXDADV_RSSTYPE_IPV6 0x00000005 -#define E1000_RXDADV_RSSTYPE_IPV6_TCP_EX 0x00000006 -#define E1000_RXDADV_RSSTYPE_IPV4_UDP 0x00000007 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP 0x00000008 -#define E1000_RXDADV_RSSTYPE_IPV6_UDP_EX 0x00000009 - -/* RSS Packet Types as indicated in the receive descriptor */ -#define E1000_RXDADV_PKTTYPE_ILMASK 0x000000F0 -#define E1000_RXDADV_PKTTYPE_TLMASK 0x00000F00 -#define E1000_RXDADV_PKTTYPE_NONE 0x00000000 -#define E1000_RXDADV_PKTTYPE_IPV4 0x00000010 /* IPV4 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV4_EX 0x00000020 /* IPV4 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_IPV6 0x00000040 /* IPV6 hdr present */ -#define E1000_RXDADV_PKTTYPE_IPV6_EX 0x00000080 /* IPV6 hdr + extensions */ -#define E1000_RXDADV_PKTTYPE_TCP 0x00000100 /* TCP hdr present */ -#define E1000_RXDADV_PKTTYPE_UDP 0x00000200 /* UDP hdr present */ -#define E1000_RXDADV_PKTTYPE_SCTP 0x00000400 /* SCTP hdr present */ -#define E1000_RXDADV_PKTTYPE_NFS 0x00000800 /* NFS hdr present */ - -#define E1000_RXDADV_PKTTYPE_IPSEC_ESP 0x00001000 /* IPSec ESP */ -#define E1000_RXDADV_PKTTYPE_IPSEC_AH 0x00002000 /* IPSec AH */ -#define E1000_RXDADV_PKTTYPE_LINKSEC 0x00004000 /* LinkSec Encap */ -#define E1000_RXDADV_PKTTYPE_ETQF 0x00008000 /* PKTTYPE is ETQF index */ -#define E1000_RXDADV_PKTTYPE_ETQF_MASK 0x00000070 /* ETQF has 8 indices */ -#define E1000_RXDADV_PKTTYPE_ETQF_SHIFT 4 /* Right-shift 4 bits */ - -/* LinkSec results */ -/* Security Processing bit Indication */ -#define E1000_RXDADV_LNKSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_LNKSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_LNKSEC_ERROR_NO_SA_MATCH 0x08000000 -#define E1000_RXDADV_LNKSEC_ERROR_REPLAY_ERROR 0x10000000 -#define E1000_RXDADV_LNKSEC_ERROR_BAD_SIG 0x18000000 - -#define E1000_RXDADV_IPSEC_STATUS_SECP 0x00020000 -#define E1000_RXDADV_IPSEC_ERROR_BIT_MASK 0x18000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_PROTOCOL 0x08000000 -#define E1000_RXDADV_IPSEC_ERROR_INVALID_LENGTH 0x10000000 -#define E1000_RXDADV_IPSEC_ERROR_AUTHENTICATION_FAILED 0x18000000 - -/* Transmit Descriptor - Advanced */ -union e1000_adv_tx_desc { - struct { - __le64 buffer_addr; /* Address of descriptor's data buf */ - __le32 cmd_type_len; - __le32 olinfo_status; - } read; - struct { - __le64 rsvd; /* Reserved */ - __le32 nxtseq_seed; - __le32 status; - } wb; -}; - -/* Adv Transmit Descriptor Config Masks */ -#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ -#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ -#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ -#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ -#define E1000_ADVTXD_DCMD_DDTYP_ISCSI 0x10000000 /* DDP hdr type or iSCSI */ -#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ -#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ -#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ -#define E1000_ADVTXD_MAC_LINKSEC 0x00040000 /* Apply LinkSec on pkt */ -#define E1000_ADVTXD_MAC_TSTAMP 0x00080000 /* IEEE1588 Timestamp pkt */ -#define E1000_ADVTXD_STAT_SN_CRC 0x00000002 /* NXTSEQ/SEED prsnt in WB */ -#define E1000_ADVTXD_IDX_SHIFT 4 /* Adv desc Index shift */ -#define E1000_ADVTXD_POPTS_ISCO_1ST 0x00000000 /* 1st TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_MDL 0x00000800 /* Middle TSO of iSCSI PDU */ -#define E1000_ADVTXD_POPTS_ISCO_LAST 0x00001000 /* Last TSO of iSCSI PDU */ -/* 1st & Last TSO-full iSCSI PDU*/ -#define E1000_ADVTXD_POPTS_ISCO_FULL 0x00001800 -#define E1000_ADVTXD_POPTS_IPSEC 0x00000400 /* IPSec offload request */ -#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ - -/* Context descriptors */ -struct e1000_adv_tx_context_desc { - __le32 vlan_macip_lens; - __le32 seqnum_seed; - __le32 type_tucmd_mlhl; - __le32 mss_l4len_idx; -}; - -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ -#define E1000_ADVTXD_VLAN_SHIFT 16 /* Adv ctxt vlan tag shift */ -#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADVTXD_TUCMD_IPV6 0x00000000 /* IP Packet Type: 0=IPv6 */ -#define E1000_ADVTXD_TUCMD_L4T_UDP 0x00000000 /* L4 Packet TYPE of UDP */ -#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ -#define E1000_ADVTXD_TUCMD_L4T_SCTP 0x00001000 /* L4 Packet TYPE of SCTP */ -#define E1000_ADVTXD_TUCMD_IPSEC_TYPE_ESP 0x00002000 /* IPSec Type ESP */ -/* IPSec Encrypt Enable for ESP */ -#define E1000_ADVTXD_TUCMD_IPSEC_ENCRYPT_EN 0x00004000 -/* Req requires Markers and CRC */ -#define E1000_ADVTXD_TUCMD_MKRREQ 0x00002000 -#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ -#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ -/* Adv ctxt IPSec SA IDX mask */ -#define E1000_ADVTXD_IPSEC_SA_INDEX_MASK 0x000000FF -/* Adv ctxt IPSec ESP len mask */ -#define E1000_ADVTXD_IPSEC_ESP_LEN_MASK 0x000000FF - -/* Additional Transmit Descriptor Control definitions */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ -#define E1000_TXDCTL_SWFLSH 0x04000000 /* Tx Desc. wbk flushing */ -/* Tx Queue Arbitration Priority 0=low, 1=high */ -#define E1000_TXDCTL_PRIORITY 0x08000000 - -/* Additional Receive Descriptor Control definitions */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ -#define E1000_RXDCTL_SWFLSH 0x04000000 /* Rx Desc. wbk flushing */ - -/* Direct Cache Access (DCA) definitions */ -#define E1000_DCA_CTRL_DCA_ENABLE 0x00000000 /* DCA Enable */ -#define E1000_DCA_CTRL_DCA_DISABLE 0x00000001 /* DCA Disable */ - -#define E1000_DCA_CTRL_DCA_MODE_CB1 0x00 /* DCA Mode CB1 */ -#define E1000_DCA_CTRL_DCA_MODE_CB2 0x02 /* DCA Mode CB2 */ - -#define E1000_DCA_RXCTRL_CPUID_MASK 0x0000001F /* Rx CPUID Mask */ -#define E1000_DCA_RXCTRL_DESC_DCA_EN (1 << 5) /* DCA Rx Desc enable */ -#define E1000_DCA_RXCTRL_HEAD_DCA_EN (1 << 6) /* DCA Rx Desc header ena */ -#define E1000_DCA_RXCTRL_DATA_DCA_EN (1 << 7) /* DCA Rx Desc payload ena */ -#define E1000_DCA_RXCTRL_DESC_RRO_EN (1 << 9) /* DCA Rx Desc Relax Order */ - -#define E1000_DCA_TXCTRL_CPUID_MASK 0x0000001F /* Tx CPUID Mask */ -#define E1000_DCA_TXCTRL_DESC_DCA_EN (1 << 5) /* DCA Tx Desc enable */ -#define E1000_DCA_TXCTRL_DESC_RRO_EN (1 << 9) /* Tx rd Desc Relax Order */ -#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */ -#define E1000_DCA_TXCTRL_DATA_RRO_EN (1 << 13) /* Tx rd data Relax Order */ - -#define E1000_DCA_TXCTRL_CPUID_MASK_82576 0xFF000000 /* Tx CPUID Mask */ -#define E1000_DCA_RXCTRL_CPUID_MASK_82576 0xFF000000 /* Rx CPUID Mask */ -#define E1000_DCA_TXCTRL_CPUID_SHIFT_82576 24 /* Tx CPUID */ -#define E1000_DCA_RXCTRL_CPUID_SHIFT_82576 24 /* Rx CPUID */ - -/* Additional interrupt register bit definitions */ -#define E1000_ICR_LSECPNS 0x00000020 /* PN threshold - server */ -#define E1000_IMS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ -#define E1000_ICS_LSECPNS E1000_ICR_LSECPNS /* PN threshold - server */ - -/* ETQF register bit definitions */ -#define E1000_ETQF_FILTER_ENABLE (1 << 26) -#define E1000_ETQF_IMM_INT (1 << 29) -#define E1000_ETQF_1588 (1 << 30) -#define E1000_ETQF_QUEUE_ENABLE (1 << 31) -/* - * ETQF filter list: one static filter per filter consumer. This is - * to avoid filter collisions later. Add new filters - * here!! - * - * Current filters: - * EAPOL 802.1x (0x888e): Filter 0 - */ -#define E1000_ETQF_FILTER_EAPOL 0 - -#define E1000_FTQF_VF_BP 0x00008000 -#define E1000_FTQF_1588_TIME_STAMP 0x08000000 -#define E1000_FTQF_MASK 0xF0000000 -#define E1000_FTQF_MASK_PROTO_BP 0x10000000 -#define E1000_FTQF_MASK_SOURCE_ADDR_BP 0x20000000 -#define E1000_FTQF_MASK_DEST_ADDR_BP 0x40000000 -#define E1000_FTQF_MASK_SOURCE_PORT_BP 0x80000000 - -#define E1000_NVM_APME_82575 0x0400 -#define MAX_NUM_VFS 7 - -#define E1000_DTXSWC_MAC_SPOOF_MASK 0x000000FF /* Per VF MAC spoof cntrl */ -#define E1000_DTXSWC_VLAN_SPOOF_MASK 0x0000FF00 /* Per VF VLAN spoof cntrl */ -#define E1000_DTXSWC_LLE_MASK 0x00FF0000 /* Per VF Local LB enables */ -#define E1000_DTXSWC_VLAN_SPOOF_SHIFT 8 -#define E1000_DTXSWC_LLE_SHIFT 16 -#define E1000_DTXSWC_VMDQ_LOOPBACK_EN (1 << 31) /* global VF LB enable */ - -/* Easy defines for setting default pool, would normally be left a zero */ -#define E1000_VT_CTL_DEFAULT_POOL_SHIFT 7 -#define E1000_VT_CTL_DEFAULT_POOL_MASK (0x7 << E1000_VT_CTL_DEFAULT_POOL_SHIFT) - -/* Other useful VMD_CTL register defines */ -#define E1000_VT_CTL_IGNORE_MAC (1 << 28) -#define E1000_VT_CTL_DISABLE_DEF_POOL (1 << 29) -#define E1000_VT_CTL_VM_REPL_EN (1 << 30) - -/* Per VM Offload register setup */ -#define E1000_VMOLR_RLPML_MASK 0x00003FFF /* Long Packet Maximum Length mask */ -#define E1000_VMOLR_LPE 0x00010000 /* Accept Long packet */ -#define E1000_VMOLR_RSSE 0x00020000 /* Enable RSS */ -#define E1000_VMOLR_AUPE 0x01000000 /* Accept untagged packets */ -#define E1000_VMOLR_ROMPE 0x02000000 /* Accept overflow multicast */ -#define E1000_VMOLR_ROPE 0x04000000 /* Accept overflow unicast */ -#define E1000_VMOLR_BAM 0x08000000 /* Accept Broadcast packets */ -#define E1000_VMOLR_MPME 0x10000000 /* Multicast promiscuous mode */ -#define E1000_VMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_VMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_VMOLR_VPE 0x00800000 /* VLAN promiscuous enable */ -#define E1000_VMOLR_UPE 0x20000000 /* Unicast promisuous enable */ -#define E1000_DVMOLR_HIDVLAN 0x20000000 /* Vlan hiding enable */ -#define E1000_DVMOLR_STRVLAN 0x40000000 /* Vlan stripping enable */ -#define E1000_DVMOLR_STRCRC 0x80000000 /* CRC stripping enable */ - -#define E1000_PBRWAC_WALPB 0x00000007 /* Wrap around event on LAN Rx PB */ -#define E1000_PBRWAC_PBE 0x00000008 /* Rx packet buffer empty */ - -#define E1000_VLVF_ARRAY_SIZE 32 -#define E1000_VLVF_VLANID_MASK 0x00000FFF -#define E1000_VLVF_POOLSEL_SHIFT 12 -#define E1000_VLVF_POOLSEL_MASK (0xFF << E1000_VLVF_POOLSEL_SHIFT) -#define E1000_VLVF_LVLAN 0x00100000 -#define E1000_VLVF_VLANID_ENABLE 0x80000000 - -#define E1000_VMVIR_VLANA_DEFAULT 0x40000000 /* Always use default VLAN */ -#define E1000_VMVIR_VLANA_NEVER 0x80000000 /* Never insert VLAN tag */ - -#define E1000_VF_INIT_TIMEOUT 200 /* Number of retries to clear RSTI */ - -#define E1000_IOVCTL 0x05BBC -#define E1000_IOVCTL_REUSE_VFQ 0x00000001 - -#define E1000_RPLOLR_STRVLAN 0x40000000 -#define E1000_RPLOLR_STRCRC 0x80000000 - -#define E1000_TCTL_EXT_COLD 0x000FFC00 -#define E1000_TCTL_EXT_COLD_SHIFT 10 - -#define E1000_DTXCTL_8023LL 0x0004 -#define E1000_DTXCTL_VLAN_ADDED 0x0008 -#define E1000_DTXCTL_OOS_ENABLE 0x0010 -#define E1000_DTXCTL_MDP_EN 0x0020 -#define E1000_DTXCTL_SPOOF_INT 0x0040 - -#define E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT (1 << 14) - -#define ALL_QUEUES 0xFFFF - -/* Rx packet buffer size defines */ -#define E1000_RXPBS_SIZE_MASK_82576 0x0000007F -void e1000_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable); -void e1000_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf); -void e1000_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable); -s32 e1000_init_nvm_params_82575(struct e1000_hw *hw); -s32 e1000_init_hw_82575(struct e1000_hw *hw); - -enum e1000_promisc_type { - e1000_promisc_disabled = 0, /* all promisc modes disabled */ - e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ - e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ - e1000_promisc_enabled = 3, /* both uni and multicast promisc */ - e1000_num_promisc_types -}; - -void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); -void e1000_rlpml_set_vf(struct e1000_hw *, u16); -s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type type); -u16 e1000_rxpbs_adjust_82580(u32 data); -s32 e1000_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data); -s32 e1000_set_eee_i350(struct e1000_hw *); -s32 e1000_set_eee_i354(struct e1000_hw *); -s32 e1000_get_eee_status_i354(struct e1000_hw *, bool *); -s32 e1000_initialize_M88E1512_phy(struct e1000_hw *hw); - -/* I2C SDA and SCL timing parameters for standard mode */ -#define E1000_I2C_T_HD_STA 4 -#define E1000_I2C_T_LOW 5 -#define E1000_I2C_T_HIGH 4 -#define E1000_I2C_T_SU_STA 5 -#define E1000_I2C_T_HD_DATA 5 -#define E1000_I2C_T_SU_DATA 1 -#define E1000_I2C_T_RISE 1 -#define E1000_I2C_T_FALL 1 -#define E1000_I2C_T_SU_STO 4 -#define E1000_I2C_T_BUF 5 - -s32 e1000_set_i2c_bb(struct e1000_hw *hw); -s32 e1000_read_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data); -s32 e1000_write_i2c_byte_generic(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data); -void e1000_i2c_bus_clear(struct e1000_hw *hw); -#endif /* _E1000_82575_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.c deleted file mode 100755 index a0645651..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.c +++ /dev/null @@ -1,1357 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -/** - * e1000_init_mac_params - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the MAC - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_mac_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mac.ops.init_params) { - ret_val = hw->mac.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("MAC Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mac.init_mac_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_nvm_params - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the NVM - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_nvm_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->nvm.ops.init_params) { - ret_val = hw->nvm.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("NVM Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("nvm.init_nvm_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_phy_params - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_phy_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->phy.ops.init_params) { - ret_val = hw->phy.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("PHY Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("phy.init_phy_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_init_mbx_params - Initialize mailbox function pointers - * @hw: pointer to the HW structure - * - * This function initializes the function pointers for the PHY - * set of functions. Called by drivers or by e1000_setup_init_funcs. - **/ -s32 e1000_init_mbx_params(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - if (hw->mbx.ops.init_params) { - ret_val = hw->mbx.ops.init_params(hw); - if (ret_val) { - DEBUGOUT("Mailbox Initialization Error\n"); - goto out; - } - } else { - DEBUGOUT("mbx.init_mbx_params was NULL\n"); - ret_val = -E1000_ERR_CONFIG; - } - -out: - return ret_val; -} - -/** - * e1000_set_mac_type - Sets MAC type - * @hw: pointer to the HW structure - * - * This function sets the mac type of the adapter based on the - * device ID stored in the hw structure. - * MUST BE FIRST FUNCTION CALLED (explicitly or through - * e1000_setup_init_funcs()). - **/ -s32 e1000_set_mac_type(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_set_mac_type"); - - switch (hw->device_id) { - case E1000_DEV_ID_82542: - mac->type = e1000_82542; - break; - case E1000_DEV_ID_82543GC_FIBER: - case E1000_DEV_ID_82543GC_COPPER: - mac->type = e1000_82543; - break; - case E1000_DEV_ID_82544EI_COPPER: - case E1000_DEV_ID_82544EI_FIBER: - case E1000_DEV_ID_82544GC_COPPER: - case E1000_DEV_ID_82544GC_LOM: - mac->type = e1000_82544; - break; - case E1000_DEV_ID_82540EM: - case E1000_DEV_ID_82540EM_LOM: - case E1000_DEV_ID_82540EP: - case E1000_DEV_ID_82540EP_LOM: - case E1000_DEV_ID_82540EP_LP: - mac->type = e1000_82540; - break; - case E1000_DEV_ID_82545EM_COPPER: - case E1000_DEV_ID_82545EM_FIBER: - mac->type = e1000_82545; - break; - case E1000_DEV_ID_82545GM_COPPER: - case E1000_DEV_ID_82545GM_FIBER: - case E1000_DEV_ID_82545GM_SERDES: - mac->type = e1000_82545_rev_3; - break; - case E1000_DEV_ID_82546EB_COPPER: - case E1000_DEV_ID_82546EB_FIBER: - case E1000_DEV_ID_82546EB_QUAD_COPPER: - mac->type = e1000_82546; - break; - case E1000_DEV_ID_82546GB_COPPER: - case E1000_DEV_ID_82546GB_FIBER: - case E1000_DEV_ID_82546GB_SERDES: - case E1000_DEV_ID_82546GB_PCIE: - case E1000_DEV_ID_82546GB_QUAD_COPPER: - case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: - mac->type = e1000_82546_rev_3; - break; - case E1000_DEV_ID_82541EI: - case E1000_DEV_ID_82541EI_MOBILE: - case E1000_DEV_ID_82541ER_LOM: - mac->type = e1000_82541; - break; - case E1000_DEV_ID_82541ER: - case E1000_DEV_ID_82541GI: - case E1000_DEV_ID_82541GI_LF: - case E1000_DEV_ID_82541GI_MOBILE: - mac->type = e1000_82541_rev_2; - break; - case E1000_DEV_ID_82547EI: - case E1000_DEV_ID_82547EI_MOBILE: - mac->type = e1000_82547; - break; - case E1000_DEV_ID_82547GI: - mac->type = e1000_82547_rev_2; - break; - case E1000_DEV_ID_82571EB_COPPER: - case E1000_DEV_ID_82571EB_FIBER: - case E1000_DEV_ID_82571EB_SERDES: - case E1000_DEV_ID_82571EB_SERDES_DUAL: - case E1000_DEV_ID_82571EB_SERDES_QUAD: - case E1000_DEV_ID_82571EB_QUAD_COPPER: - case E1000_DEV_ID_82571PT_QUAD_COPPER: - case E1000_DEV_ID_82571EB_QUAD_FIBER: - case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: - mac->type = e1000_82571; - break; - case E1000_DEV_ID_82572EI: - case E1000_DEV_ID_82572EI_COPPER: - case E1000_DEV_ID_82572EI_FIBER: - case E1000_DEV_ID_82572EI_SERDES: - mac->type = e1000_82572; - break; - case E1000_DEV_ID_82573E: - case E1000_DEV_ID_82573E_IAMT: - case E1000_DEV_ID_82573L: - mac->type = e1000_82573; - break; - case E1000_DEV_ID_82574L: - case E1000_DEV_ID_82574LA: - mac->type = e1000_82574; - break; - case E1000_DEV_ID_82583V: - mac->type = e1000_82583; - break; - case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: - case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: - case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: - mac->type = e1000_80003es2lan; - break; - case E1000_DEV_ID_ICH8_IFE: - case E1000_DEV_ID_ICH8_IFE_GT: - case E1000_DEV_ID_ICH8_IFE_G: - case E1000_DEV_ID_ICH8_IGP_M: - case E1000_DEV_ID_ICH8_IGP_M_AMT: - case E1000_DEV_ID_ICH8_IGP_AMT: - case E1000_DEV_ID_ICH8_IGP_C: - case E1000_DEV_ID_ICH8_82567V_3: - mac->type = e1000_ich8lan; - break; - case E1000_DEV_ID_ICH9_IFE: - case E1000_DEV_ID_ICH9_IFE_GT: - case E1000_DEV_ID_ICH9_IFE_G: - case E1000_DEV_ID_ICH9_IGP_M: - case E1000_DEV_ID_ICH9_IGP_M_AMT: - case E1000_DEV_ID_ICH9_IGP_M_V: - case E1000_DEV_ID_ICH9_IGP_AMT: - case E1000_DEV_ID_ICH9_BM: - case E1000_DEV_ID_ICH9_IGP_C: - case E1000_DEV_ID_ICH10_R_BM_LM: - case E1000_DEV_ID_ICH10_R_BM_LF: - case E1000_DEV_ID_ICH10_R_BM_V: - mac->type = e1000_ich9lan; - break; - case E1000_DEV_ID_ICH10_D_BM_LM: - case E1000_DEV_ID_ICH10_D_BM_LF: - case E1000_DEV_ID_ICH10_D_BM_V: - mac->type = e1000_ich10lan; - break; - case E1000_DEV_ID_PCH_D_HV_DM: - case E1000_DEV_ID_PCH_D_HV_DC: - case E1000_DEV_ID_PCH_M_HV_LM: - case E1000_DEV_ID_PCH_M_HV_LC: - mac->type = e1000_pchlan; - break; - case E1000_DEV_ID_PCH2_LV_LM: - case E1000_DEV_ID_PCH2_LV_V: - mac->type = e1000_pch2lan; - break; - case E1000_DEV_ID_PCH_LPT_I217_LM: - case E1000_DEV_ID_PCH_LPT_I217_V: - case E1000_DEV_ID_PCH_LPTLP_I218_LM: - case E1000_DEV_ID_PCH_LPTLP_I218_V: - mac->type = e1000_pch_lpt; - break; - case E1000_DEV_ID_82575EB_COPPER: - case E1000_DEV_ID_82575EB_FIBER_SERDES: - case E1000_DEV_ID_82575GB_QUAD_COPPER: - mac->type = e1000_82575; - break; - case E1000_DEV_ID_82576: - case E1000_DEV_ID_82576_FIBER: - case E1000_DEV_ID_82576_SERDES: - case E1000_DEV_ID_82576_QUAD_COPPER: - case E1000_DEV_ID_82576_QUAD_COPPER_ET2: - case E1000_DEV_ID_82576_NS: - case E1000_DEV_ID_82576_NS_SERDES: - case E1000_DEV_ID_82576_SERDES_QUAD: - mac->type = e1000_82576; - break; - case E1000_DEV_ID_82580_COPPER: - case E1000_DEV_ID_82580_FIBER: - case E1000_DEV_ID_82580_SERDES: - case E1000_DEV_ID_82580_SGMII: - case E1000_DEV_ID_82580_COPPER_DUAL: - case E1000_DEV_ID_82580_QUAD_FIBER: - case E1000_DEV_ID_DH89XXCC_SGMII: - case E1000_DEV_ID_DH89XXCC_SERDES: - case E1000_DEV_ID_DH89XXCC_BACKPLANE: - case E1000_DEV_ID_DH89XXCC_SFP: - mac->type = e1000_82580; - break; - case E1000_DEV_ID_I350_COPPER: - case E1000_DEV_ID_I350_FIBER: - case E1000_DEV_ID_I350_SERDES: - case E1000_DEV_ID_I350_SGMII: - case E1000_DEV_ID_I350_DA4: - mac->type = e1000_i350; - break; - case E1000_DEV_ID_I210_COPPER_FLASHLESS: - case E1000_DEV_ID_I210_SERDES_FLASHLESS: - case E1000_DEV_ID_I210_COPPER: - case E1000_DEV_ID_I210_COPPER_OEM1: - case E1000_DEV_ID_I210_COPPER_IT: - case E1000_DEV_ID_I210_FIBER: - case E1000_DEV_ID_I210_SERDES: - case E1000_DEV_ID_I210_SGMII: - mac->type = e1000_i210; - break; - case E1000_DEV_ID_I211_COPPER: - mac->type = e1000_i211; - break; - case E1000_DEV_ID_82576_VF: - case E1000_DEV_ID_82576_VF_HV: - mac->type = e1000_vfadapt; - break; - case E1000_DEV_ID_I350_VF: - case E1000_DEV_ID_I350_VF_HV: - mac->type = e1000_vfadapt_i350; - break; - - case E1000_DEV_ID_I354_BACKPLANE_1GBPS: - case E1000_DEV_ID_I354_SGMII: - case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: - mac->type = e1000_i354; - break; - default: - /* Should never have loaded on this device */ - ret_val = -E1000_ERR_MAC_INIT; - break; - } - - return ret_val; -} - -/** - * e1000_setup_init_funcs - Initializes function pointers - * @hw: pointer to the HW structure - * @init_device: true will initialize the rest of the function pointers - * getting the device ready for use. false will only set - * MAC type and the function pointers for the other init - * functions. Passing false will not generate any hardware - * reads or writes. - * - * This function must be called by a driver in order to use the rest - * of the 'shared' code files. Called by drivers only. - **/ -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device) -{ - s32 ret_val; - - /* Can't do much good without knowing the MAC type. */ - ret_val = e1000_set_mac_type(hw); - if (ret_val) { - DEBUGOUT("ERROR: MAC type could not be set properly.\n"); - goto out; - } - - if (!hw->hw_addr) { - DEBUGOUT("ERROR: Registers not mapped\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - /* - * Init function pointers to generic implementations. We do this first - * allowing a driver module to override it afterward. - */ - e1000_init_mac_ops_generic(hw); - e1000_init_phy_ops_generic(hw); - e1000_init_nvm_ops_generic(hw); - e1000_init_mbx_ops_generic(hw); - - /* - * Set up the init function pointers. These are functions within the - * adapter family file that sets up function pointers for the rest of - * the functions in that family. - */ - switch (hw->mac.type) { - case e1000_82542: - e1000_init_function_pointers_82542(hw); - break; - case e1000_82543: - case e1000_82544: - e1000_init_function_pointers_82543(hw); - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - e1000_init_function_pointers_82540(hw); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - e1000_init_function_pointers_82541(hw); - break; - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_82574: - case e1000_82583: - e1000_init_function_pointers_82571(hw); - break; - case e1000_80003es2lan: - e1000_init_function_pointers_80003es2lan(hw); - break; - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - case e1000_pchlan: - case e1000_pch2lan: - case e1000_pch_lpt: - e1000_init_function_pointers_ich8lan(hw); - break; - case e1000_82575: - case e1000_82576: - case e1000_82580: - case e1000_i350: - case e1000_i354: - e1000_init_function_pointers_82575(hw); - break; - case e1000_i210: - case e1000_i211: - e1000_init_function_pointers_i210(hw); - break; - case e1000_vfadapt: - e1000_init_function_pointers_vf(hw); - break; - case e1000_vfadapt_i350: - e1000_init_function_pointers_vf(hw); - break; - default: - DEBUGOUT("Hardware not supported\n"); - ret_val = -E1000_ERR_CONFIG; - break; - } - - /* - * Initialize the rest of the function pointers. These require some - * register reads/writes in some cases. - */ - if (!(ret_val) && init_device) { - ret_val = e1000_init_mac_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_nvm_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_phy_params(hw); - if (ret_val) - goto out; - - ret_val = e1000_init_mbx_params(hw); - if (ret_val) - goto out; - } - -out: - return ret_val; -} - -/** - * e1000_get_bus_info - Obtain bus information for adapter - * @hw: pointer to the HW structure - * - * This will obtain information about the HW bus for which the - * adapter is attached and stores it in the hw structure. This is a - * function pointer entry point called by drivers. - **/ -s32 e1000_get_bus_info(struct e1000_hw *hw) -{ - if (hw->mac.ops.get_bus_info) - return hw->mac.ops.get_bus_info(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_clear_vfta - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * This clears the VLAN filter table on the adapter. This is a function - * pointer entry point called by drivers. - **/ -void e1000_clear_vfta(struct e1000_hw *hw) -{ - if (hw->mac.ops.clear_vfta) - hw->mac.ops.clear_vfta(hw); -} - -/** - * e1000_write_vfta - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: the 32-bit offset in which to write the value to. - * @value: the 32-bit value to write at location offset. - * - * This writes a 32-bit value to a 32-bit offset in the VLAN filter - * table. This is a function pointer entry point called by drivers. - **/ -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) -{ - if (hw->mac.ops.write_vfta) - hw->mac.ops.write_vfta(hw, offset, value); -} - -/** - * e1000_update_mc_addr_list - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count) -{ - if (hw->mac.ops.update_mc_addr_list) - hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, - mc_addr_count); -} - -/** - * e1000_force_mac_fc - Force MAC flow control - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Currently no func pointer exists - * and all implementations are handled in the generic version of this - * function. - **/ -s32 e1000_force_mac_fc(struct e1000_hw *hw) -{ - return e1000_force_mac_fc_generic(hw); -} - -/** - * e1000_check_for_link - Check/Store link connection - * @hw: pointer to the HW structure - * - * This checks the link condition of the adapter and stores the - * results in the hw->mac structure. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_check_for_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_for_link) - return hw->mac.ops.check_for_link(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_check_mng_mode - Check management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has manageability enabled. - * This is a function pointer entry point called by drivers. - **/ -bool e1000_check_mng_mode(struct e1000_hw *hw) -{ - if (hw->mac.ops.check_mng_mode) - return hw->mac.ops.check_mng_mode(hw); - - return false; -} - -/** - * e1000_mng_write_dhcp_info - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - **/ -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) -{ - return e1000_mng_write_dhcp_info_generic(hw, buffer, length); -} - -/** - * e1000_reset_hw - Reset hardware - * @hw: pointer to the HW structure - * - * This resets the hardware into a known state. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_reset_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.reset_hw) - return hw->mac.ops.reset_hw(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_init_hw - Initialize hardware - * @hw: pointer to the HW structure - * - * This inits the hardware readying it for operation. This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_init_hw(struct e1000_hw *hw) -{ - if (hw->mac.ops.init_hw) - return hw->mac.ops.init_hw(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_setup_link - Configures link and flow control - * @hw: pointer to the HW structure - * - * This configures link and flow control settings for the adapter. This - * is a function pointer entry point called by drivers. While modules can - * also call this, they probably call their own version of this function. - **/ -s32 e1000_setup_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_link) - return hw->mac.ops.setup_link(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_get_speed_and_duplex - Returns current speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to a 16-bit value to store the speed - * @duplex: pointer to a 16-bit value to store the duplex. - * - * This returns the speed and duplex of the adapter in the two 'out' - * variables passed in. This is a function pointer entry point called - * by drivers. - **/ -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) -{ - if (hw->mac.ops.get_link_up_info) - return hw->mac.ops.get_link_up_info(hw, speed, duplex); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_setup_led - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_setup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.setup_led) - return hw->mac.ops.setup_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led - Restores SW controllable LED - * @hw: pointer to the HW structure - * - * This restores the SW controllable LED to the value saved off by - * e1000_setup_led. This is a function pointer entry point called by drivers. - **/ -s32 e1000_cleanup_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.cleanup_led) - return hw->mac.ops.cleanup_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_blink_led - Blink SW controllable LED - * @hw: pointer to the HW structure - * - * This starts the adapter LED blinking. Request the LED to be setup first - * and cleaned up after. This is a function pointer entry point called by - * drivers. - **/ -s32 e1000_blink_led(struct e1000_hw *hw) -{ - if (hw->mac.ops.blink_led) - return hw->mac.ops.blink_led(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init - store LED configurations in SW - * @hw: pointer to the HW structure - * - * Initializes the LED config in SW. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_id_led_init(struct e1000_hw *hw) -{ - if (hw->mac.ops.id_led_init) - return hw->mac.ops.id_led_init(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_led_on - Turn on SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED on. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_led_on(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_on) - return hw->mac.ops.led_on(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_led_off - Turn off SW controllable LED - * @hw: pointer to the HW structure - * - * Turns the SW defined LED off. This is a function pointer entry point - * called by drivers. - **/ -s32 e1000_led_off(struct e1000_hw *hw) -{ - if (hw->mac.ops.led_off) - return hw->mac.ops.led_off(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_reset_adaptive - Reset adaptive IFS - * @hw: pointer to the HW structure - * - * Resets the adaptive IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void e1000_reset_adaptive(struct e1000_hw *hw) -{ - e1000_reset_adaptive_generic(hw); -} - -/** - * e1000_update_adaptive - Update adaptive IFS - * @hw: pointer to the HW structure - * - * Updates adapter IFS. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -void e1000_update_adaptive(struct e1000_hw *hw) -{ - e1000_update_adaptive_generic(hw); -} - -/** - * e1000_disable_pcie_master - Disable PCI-Express master access - * @hw: pointer to the HW structure - * - * Disables PCI-Express master access and verifies there are no pending - * requests. Currently no func pointer exists and all implementations are - * handled in the generic version of this function. - **/ -s32 e1000_disable_pcie_master(struct e1000_hw *hw) -{ - return e1000_disable_pcie_master_generic(hw); -} - -/** - * e1000_config_collision_dist - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -void e1000_config_collision_dist(struct e1000_hw *hw) -{ - if (hw->mac.ops.config_collision_dist) - hw->mac.ops.config_collision_dist(hw); -} - -/** - * e1000_rar_set - Sets a receive address register - * @hw: pointer to the HW structure - * @addr: address to set the RAR to - * @index: the RAR to set - * - * Sets a Receive Address Register (RAR) to the specified address. - **/ -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) -{ - if (hw->mac.ops.rar_set) - hw->mac.ops.rar_set(hw, addr, index); -} - -/** - * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state - * @hw: pointer to the HW structure - * - * Ensures that the MDI/MDIX SW state is valid. - **/ -s32 e1000_validate_mdi_setting(struct e1000_hw *hw) -{ - if (hw->mac.ops.validate_mdi_setting) - return hw->mac.ops.validate_mdi_setting(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_hash_mc_addr - Determines address location in multicast table - * @hw: pointer to the HW structure - * @mc_addr: Multicast address to hash. - * - * This hashes an address to determine its location in the multicast - * table. Currently no func pointer exists and all implementations - * are handled in the generic version of this function. - **/ -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) -{ - return e1000_hash_mc_addr_generic(hw, mc_addr); -} - -/** - * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) -{ - return e1000_enable_tx_pkt_filtering_generic(hw); -} - -/** - * e1000_mng_host_if_write - Writes to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - **/ -s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum) -{ - return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum); -} - -/** - * e1000_mng_write_cmd_header - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - **/ -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - return e1000_mng_write_cmd_header_generic(hw, hdr); -} - -/** - * e1000_mng_enable_host_if - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - **/ -s32 e1000_mng_enable_host_if(struct e1000_hw *hw) -{ - return e1000_mng_enable_host_if_generic(hw); -} - -/** - * e1000_check_reset_block - Verifies PHY can be reset - * @hw: pointer to the HW structure - * - * Checks if the PHY is in a state that can be reset or if manageability - * has it tied up. This is a function pointer entry point called by drivers. - **/ -s32 e1000_check_reset_block(struct e1000_hw *hw) -{ - if (hw->phy.ops.check_reset_block) - return hw->phy.ops.check_reset_block(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg - Reads PHY register - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the buffer to store the 16-bit read. - * - * Reads the PHY register and returns the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - if (hw->phy.ops.read_reg) - return hw->phy.ops.read_reg(hw, offset, data); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg - Writes PHY register - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - if (hw->phy.ops.write_reg) - return hw->phy.ops.write_reg(hw, offset, data); - - return E1000_SUCCESS; -} - -/** - * e1000_release_phy - Generic release PHY - * @hw: pointer to the HW structure - * - * Return if silicon family does not require a semaphore when accessing the - * PHY. - **/ -void e1000_release_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.release) - hw->phy.ops.release(hw); -} - -/** - * e1000_acquire_phy - Generic acquire PHY - * @hw: pointer to the HW structure - * - * Return success if silicon family does not require a semaphore when - * accessing the PHY. - **/ -s32 e1000_acquire_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.acquire) - return hw->phy.ops.acquire(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_cfg_on_link_up - Configure PHY upon link up - * @hw: pointer to the HW structure - **/ -s32 e1000_cfg_on_link_up(struct e1000_hw *hw) -{ - if (hw->phy.ops.cfg_on_link_up) - return hw->phy.ops.cfg_on_link_up(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_kmrn_reg - Reads register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to read - * @data: the location to store the 16-bit value read. - * - * Reads a register out of the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - **/ -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return e1000_read_kmrn_reg_generic(hw, offset, data); -} - -/** - * e1000_write_kmrn_reg - Writes register using Kumeran interface - * @hw: pointer to the HW structure - * @offset: the register to write - * @data: the value to write. - * - * Writes a register to the Kumeran interface. Currently no func pointer - * exists and all implementations are handled in the generic version of - * this function. - **/ -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) -{ - return e1000_write_kmrn_reg_generic(hw, offset, data); -} - -/** - * e1000_get_cable_length - Retrieves cable length estimation - * @hw: pointer to the HW structure - * - * This function estimates the cable length and stores them in - * hw->phy.min_length and hw->phy.max_length. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_get_cable_length(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_cable_length) - return hw->phy.ops.get_cable_length(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_info - Retrieves PHY information from registers - * @hw: pointer to the HW structure - * - * This function gets some information from various PHY registers and - * populates hw->phy values with it. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_get_phy_info(struct e1000_hw *hw) -{ - if (hw->phy.ops.get_info) - return hw->phy.ops.get_info(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_hw_reset - Hard PHY reset - * @hw: pointer to the HW structure - * - * Performs a hard PHY reset. This is a function pointer entry point called - * by drivers. - **/ -s32 e1000_phy_hw_reset(struct e1000_hw *hw) -{ - if (hw->phy.ops.reset) - return hw->phy.ops.reset(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_commit - Soft PHY reset - * @hw: pointer to the HW structure - * - * Performs a soft PHY reset on those that apply. This is a function pointer - * entry point called by drivers. - **/ -s32 e1000_phy_commit(struct e1000_hw *hw) -{ - if (hw->phy.ops.commit) - return hw->phy.ops.commit(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_set_d0_lplu_state - Sets low power link up state for D0 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D0 - * and SmartSpeed is disabled when active is true, else clear lplu for D0 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d0_lplu_state) - return hw->phy.ops.set_d0_lplu_state(hw, active); - - return E1000_SUCCESS; -} - -/** - * e1000_set_d3_lplu_state - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. This is a function pointer entry point called by drivers. - **/ -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) -{ - if (hw->phy.ops.set_d3_lplu_state) - return hw->phy.ops.set_d3_lplu_state(hw, active); - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr - Reads MAC address - * @hw: pointer to the HW structure - * - * Reads the MAC address out of the adapter and stores it in the HW structure. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_mac_addr(struct e1000_hw *hw) -{ - if (hw->mac.ops.read_mac_addr) - return hw->mac.ops.read_mac_addr(hw); - - return e1000_read_mac_addr_generic(hw); -} - -/** - * e1000_read_pba_string - Read device part number string - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size) -{ - return e1000_read_pba_string_generic(hw, pba_num, pba_num_size); -} - -/** - * e1000_read_pba_length - Read device part number string length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size) -{ - return e1000_read_pba_length_generic(hw, pba_num_size); -} - -/** - * e1000_read_pba_num - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - * Currently no func pointer exists and all implementations are handled in the - * generic version of this function. - **/ -s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num) -{ - return e1000_read_pba_num_generic(hw, pba_num); -} - -/** - * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Validates the NVM checksum is correct. This is a function pointer entry - * point called by drivers. - **/ -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.validate) - return hw->nvm.ops.validate(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum - * @hw: pointer to the HW structure - * - * Updates the NVM checksum. Currently no func pointer exists and all - * implementations are handled in the generic version of this function. - **/ -s32 e1000_update_nvm_checksum(struct e1000_hw *hw) -{ - if (hw->nvm.ops.update) - return hw->nvm.ops.update(hw); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_reload_nvm - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -void e1000_reload_nvm(struct e1000_hw *hw) -{ - if (hw->nvm.ops.reload) - hw->nvm.ops.reload(hw); -} - -/** - * e1000_read_nvm - Reads NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to read - * @data: pointer to the properly sized buffer for the data. - * - * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.read) - return hw->nvm.ops.read(hw, offset, words, data); - - return -E1000_ERR_CONFIG; -} - -/** - * e1000_write_nvm - Writes to NVM (EEPROM) - * @hw: pointer to the HW structure - * @offset: the word offset to read - * @words: number of 16-bit words to write - * @data: pointer to the properly sized buffer for the data. - * - * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function - * pointer entry point called by drivers. - **/ -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - if (hw->nvm.ops.write) - return hw->nvm.ops.write(hw, offset, words, data); - - return E1000_SUCCESS; -} - -/** - * e1000_write_8bit_ctrl_reg - Writes 8bit Control register - * @hw: pointer to the HW structure - * @reg: 32bit register offset - * @offset: the register to write - * @data: the value to write. - * - * Writes the PHY register at offset with the value in data. - * This is a function pointer entry point called by drivers. - **/ -s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, - u8 data) -{ - return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data); -} - -/** - * e1000_power_up_phy - Restores link in case of PHY power down - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - **/ -void e1000_power_up_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_up) - hw->phy.ops.power_up(hw); - - e1000_setup_link(hw); -} - -/** - * e1000_power_down_phy - Power down PHY - * @hw: pointer to the HW structure - * - * The phy may be powered down to save power, to turn off link when the - * driver is unloaded, or wake on lan is not enabled (among others). - **/ -void e1000_power_down_phy(struct e1000_hw *hw) -{ - if (hw->phy.ops.power_down) - hw->phy.ops.power_down(hw); -} - -/** - * e1000_power_up_fiber_serdes_link - Power up serdes link - * @hw: pointer to the HW structure - * - * Power on the optics and PCS. - **/ -void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.power_up_serdes) - hw->mac.ops.power_up_serdes(hw); -} - -/** - * e1000_shutdown_fiber_serdes_link - Remove link during power down - * @hw: pointer to the HW structure - * - * Shutdown the optics and PCS on driver unload. - **/ -void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw) -{ - if (hw->mac.ops.shutdown_serdes) - hw->mac.ops.shutdown_serdes(hw); -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.h deleted file mode 100755 index 02b16da3..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_api.h +++ /dev/null @@ -1,167 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_API_H_ -#define _E1000_API_H_ - -#include "e1000_hw.h" - -extern void e1000_init_function_pointers_82542(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82543(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82540(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82571(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82541(struct e1000_hw *hw); -extern void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw); -extern void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw); -extern void e1000_init_function_pointers_82575(struct e1000_hw *hw); -extern void e1000_rx_fifo_flush_82575(struct e1000_hw *hw); -extern void e1000_init_function_pointers_vf(struct e1000_hw *hw); -extern void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw); -extern void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw); -extern void e1000_init_function_pointers_i210(struct e1000_hw *hw); - -s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr); -s32 e1000_set_mac_type(struct e1000_hw *hw); -s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device); -s32 e1000_init_mac_params(struct e1000_hw *hw); -s32 e1000_init_nvm_params(struct e1000_hw *hw); -s32 e1000_init_phy_params(struct e1000_hw *hw); -s32 e1000_init_mbx_params(struct e1000_hw *hw); -s32 e1000_get_bus_info(struct e1000_hw *hw); -void e1000_clear_vfta(struct e1000_hw *hw); -void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value); -s32 e1000_force_mac_fc(struct e1000_hw *hw); -s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_reset_hw(struct e1000_hw *hw); -s32 e1000_init_hw(struct e1000_hw *hw); -s32 e1000_setup_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); -s32 e1000_disable_pcie_master(struct e1000_hw *hw); -void e1000_config_collision_dist(struct e1000_hw *hw); -void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index); -u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr); -void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, - u32 mc_addr_count); -s32 e1000_setup_led(struct e1000_hw *hw); -s32 e1000_cleanup_led(struct e1000_hw *hw); -s32 e1000_check_reset_block(struct e1000_hw *hw); -s32 e1000_blink_led(struct e1000_hw *hw); -s32 e1000_led_on(struct e1000_hw *hw); -s32 e1000_led_off(struct e1000_hw *hw); -s32 e1000_id_led_init(struct e1000_hw *hw); -void e1000_reset_adaptive(struct e1000_hw *hw); -void e1000_update_adaptive(struct e1000_hw *hw); -s32 e1000_get_cable_length(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting(struct e1000_hw *hw); -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset, - u8 data); -s32 e1000_get_phy_info(struct e1000_hw *hw); -void e1000_release_phy(struct e1000_hw *hw); -s32 e1000_acquire_phy(struct e1000_hw *hw); -s32 e1000_cfg_on_link_up(struct e1000_hw *hw); -s32 e1000_phy_hw_reset(struct e1000_hw *hw); -s32 e1000_phy_commit(struct e1000_hw *hw); -void e1000_power_up_phy(struct e1000_hw *hw); -void e1000_power_down_phy(struct e1000_hw *hw); -s32 e1000_read_mac_addr(struct e1000_hw *hw); -s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *part_num); -s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size); -s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size); -void e1000_reload_nvm(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum(struct e1000_hw *hw); -s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); -bool e1000_check_mng_mode(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if(struct e1000_hw *hw); -s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, - u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length); -u32 e1000_translate_register_82542(u32 reg); - - - -/* - * TBI_ACCEPT macro definition: - * - * This macro requires: - * adapter = a pointer to struct e1000_hw - * status = the 8 bit status field of the Rx descriptor with EOP set - * error = the 8 bit error field of the Rx descriptor with EOP set - * length = the sum of all the length fields of the Rx descriptors that - * make up the current frame - * last_byte = the last byte of the frame DMAed by the hardware - * max_frame_length = the maximum frame length we want to accept. - * min_frame_length = the minimum frame length we want to accept. - * - * This macro is a conditional that should be used in the interrupt - * handler's Rx processing routine when RxErrors have been detected. - * - * Typical use: - * ... - * if (TBI_ACCEPT) { - * accept_frame = true; - * e1000_tbi_adjust_stats(adapter, MacAddress); - * frame_length--; - * } else { - * accept_frame = false; - * } - * ... - */ - -/* The carrier extension symbol, as received by the NIC. */ -#define CARRIER_EXTENSION 0x0F - -#define TBI_ACCEPT(a, status, errors, length, last_byte, \ - min_frame_size, max_frame_size) \ - (e1000_tbi_sbp_enabled_82543(a) && \ - (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ - ((last_byte) == CARRIER_EXTENSION) && \ - (((status) & E1000_RXD_STAT_VP) ? \ - (((length) > (min_frame_size - VLAN_TAG_SIZE)) && \ - ((length) <= (max_frame_size + 1))) : \ - (((length) > min_frame_size) && \ - ((length) <= (max_frame_size + VLAN_TAG_SIZE + 1))))) - -#define E1000_MAX(a, b) ((a) > (b) ? (a) : (b)) -#define E1000_DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b)) /* ceil(a/b) */ -#endif /* _E1000_API_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_defines.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_defines.h deleted file mode 100755 index 278c5072..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_defines.h +++ /dev/null @@ -1,1498 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_DEFINES_H_ -#define _E1000_DEFINES_H_ - -/* Number of Transmit and Receive Descriptors must be a multiple of 8 */ -#define REQ_TX_DESCRIPTOR_MULTIPLE 8 -#define REQ_RX_DESCRIPTOR_MULTIPLE 8 - -/* Definitions for power management and wakeup registers */ -/* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */ - -/* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ - -/* Wake Up Status */ -#define E1000_WUS_LNKC E1000_WUFC_LNKC -#define E1000_WUS_MAG E1000_WUFC_MAG -#define E1000_WUS_EX E1000_WUFC_EX -#define E1000_WUS_MC E1000_WUFC_MC -#define E1000_WUS_BC E1000_WUFC_BC - -/* Extended Device Control */ -#define E1000_CTRL_EXT_LPCD 0x00000004 /* LCD Power Cycle Done */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* SW Definable Pin 4 data */ -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* SW Definable Pin 6 data */ -#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* SW Definable Pin 3 data */ -/* SDP 4/5 (bits 8,9) are reserved in >= 82575 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP3_DIR 0x00000800 /* Direction of SDP3 0=in 1=out */ -#define E1000_CTRL_EXT_FORCE_SMBUS 0x00000800 /* Force SMBus mode */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -/* Physical Func Reset Done Indication */ -#define E1000_CTRL_EXT_PFRSTD 0x00004000 -#define E1000_CTRL_EXT_SDLPE 0X00040000 /* SerDes Low Power Enable */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ -#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clk Gating */ -#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 -/* Offset of the link mode field in Ctrl Ext register */ -#define E1000_CTRL_EXT_LINK_MODE_OFFSET 22 -#define E1000_CTRL_EXT_LINK_MODE_1000BASE_KX 0x00400000 -#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 -#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000 -#define E1000_CTRL_EXT_LINK_MODE_SGMII 0x00800000 -#define E1000_CTRL_EXT_EIAME 0x01000000 -#define E1000_CTRL_EXT_IRCA 0x00000001 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Drv loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Int ACK Auto-mask */ -#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */ -#define E1000_CTRL_EXT_LSECCK 0x00001000 -#define E1000_CTRL_EXT_PHYPDEN 0x00100000 -#define E1000_I2CCMD_REG_ADDR_SHIFT 16 -#define E1000_I2CCMD_PHY_ADDR_SHIFT 24 -#define E1000_I2CCMD_OPCODE_READ 0x08000000 -#define E1000_I2CCMD_OPCODE_WRITE 0x00000000 -#define E1000_I2CCMD_READY 0x20000000 -#define E1000_I2CCMD_ERROR 0x80000000 -#define E1000_I2CCMD_SFP_DATA_ADDR(a) (0x0000 + (a)) -#define E1000_I2CCMD_SFP_DIAG_ADDR(a) (0x0100 + (a)) -#define E1000_MAX_SGMII_PHY_REG_ADDR 255 -#define E1000_I2CCMD_PHY_TIMEOUT 200 -#define E1000_IVAR_VALID 0x80 -#define E1000_GPIE_NSICR 0x00000001 -#define E1000_GPIE_MSIX_MODE 0x00000010 -#define E1000_GPIE_EIAME 0x40000000 -#define E1000_GPIE_PBA 0x80000000 - -/* Receive Descriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ - -#define E1000_RXDEXT_STATERR_TST 0x00000100 /* Time Stamp taken */ -#define E1000_RXDEXT_STATERR_LB 0x00040000 -#define E1000_RXDEXT_STATERR_CE 0x01000000 -#define E1000_RXDEXT_STATERR_SE 0x02000000 -#define E1000_RXDEXT_STATERR_SEQ 0x04000000 -#define E1000_RXDEXT_STATERR_CXE 0x10000000 -#define E1000_RXDEXT_STATERR_TCPE 0x20000000 -#define E1000_RXDEXT_STATERR_IPE 0x40000000 -#define E1000_RXDEXT_STATERR_RXE 0x80000000 - -/* mask to determine if packets should be dropped due to frame errors */ -#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ - E1000_RXD_ERR_CE | \ - E1000_RXD_ERR_SE | \ - E1000_RXD_ERR_SEQ | \ - E1000_RXD_ERR_CXE | \ - E1000_RXD_ERR_RXE) - -/* Same mask, but for extended and packet split descriptors */ -#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ - E1000_RXDEXT_STATERR_CE | \ - E1000_RXDEXT_STATERR_SE | \ - E1000_RXDEXT_STATERR_SEQ | \ - E1000_RXDEXT_STATERR_CXE | \ - E1000_RXDEXT_STATERR_RXE) - -#if !defined(EXTERNAL_RELEASE) || defined(E1000E_MQ) -#define E1000_MRQC_ENABLE_RSS_2Q 0x00000001 -#endif /* !EXTERNAL_RELEASE || E1000E_MQ */ -#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 -#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 -#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000 -#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 -#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000 - -#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 - -/* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -/* Enable MAC address filtering */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 -/* Enable MNG packets to host memory */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 - -#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */ -#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */ -#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */ -#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */ - -/* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promisc enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promisc enable */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min thresh size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */ -/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ - -/* Use byte values for the following shift parameters - * Usage: - * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & - * E1000_PSRCTL_BSIZE0_MASK) | - * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & - * E1000_PSRCTL_BSIZE1_MASK) | - * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & - * E1000_PSRCTL_BSIZE2_MASK) | - * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; - * E1000_PSRCTL_BSIZE3_MASK)) - * where value0 = [128..16256], default=256 - * value1 = [1024..64512], default=4096 - * value2 = [0..64512], default=4096 - * value3 = [0..64512], default=0 - */ - -#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F -#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 -#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 -#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 - -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ - -/* SWFW_SYNC Definitions */ -#define E1000_SWFW_EEP_SM 0x01 -#define E1000_SWFW_PHY0_SM 0x02 -#define E1000_SWFW_PHY1_SM 0x04 -#define E1000_SWFW_CSR_SM 0x08 -#define E1000_SWFW_PHY2_SM 0x20 -#define E1000_SWFW_PHY3_SM 0x40 -#define E1000_SWFW_SW_MNG_SM 0x400 - -/* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master reqs */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */ -#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */ -#define E1000_CTRL_MEHE 0x00080000 /* Memory Error Handling Enable */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_ADVD3WUC 0x00100000 /* D3 WUC */ -#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 /* PHY PM enable */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_I2C_ENA 0x02000000 /* I2C enable */ - -#define E1000_CTRL_MDIO_DIR E1000_CTRL_SWDPIO2 -#define E1000_CTRL_MDIO E1000_CTRL_SWDPIN2 -#define E1000_CTRL_MDC_DIR E1000_CTRL_SWDPIO3 -#define E1000_CTRL_MDC E1000_CTRL_SWDPIN3 - -#define E1000_CONNSW_ENRGSRC 0x4 -#define E1000_CONNSW_PHYSD 0x400 -#define E1000_CONNSW_PHY_PDN 0x800 -#define E1000_CONNSW_SERDESD 0x200 -#define E1000_CONNSW_AUTOSENSE_CONF 0x2 -#define E1000_CONNSW_AUTOSENSE_EN 0x1 -#define E1000_PCS_CFG_PCS_EN 8 -#define E1000_PCS_LCTL_FLV_LINK_UP 1 -#define E1000_PCS_LCTL_FSV_10 0 -#define E1000_PCS_LCTL_FSV_100 2 -#define E1000_PCS_LCTL_FSV_1000 4 -#define E1000_PCS_LCTL_FDV_FULL 8 -#define E1000_PCS_LCTL_FSD 0x10 -#define E1000_PCS_LCTL_FORCE_LINK 0x20 -#define E1000_PCS_LCTL_FORCE_FCTRL 0x80 -#define E1000_PCS_LCTL_AN_ENABLE 0x10000 -#define E1000_PCS_LCTL_AN_RESTART 0x20000 -#define E1000_PCS_LCTL_AN_TIMEOUT 0x40000 -#define E1000_ENABLE_SERDES_LOOPBACK 0x0410 - -#define E1000_PCS_LSTS_LINK_OK 1 -#define E1000_PCS_LSTS_SPEED_100 2 -#define E1000_PCS_LSTS_SPEED_1000 4 -#define E1000_PCS_LSTS_DUPLEX_FULL 8 -#define E1000_PCS_LSTS_SYNK_OK 0x10 -#define E1000_PCS_LSTS_AN_COMPLETE 0x10000 - -/* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Duplex 0=half 1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ -#define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Compltn by NVM */ -#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Master request status */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_2P5_SKU 0x00001000 /* Val of 2.5GBE SKU strap */ -#define E1000_STATUS_2P5_SKU_OVER 0x00002000 /* Val of 2.5GBE SKU Over */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ - -/* Constants used to interpret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus spd 50-66MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus spd 66-100MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus spd 100-133MHz*/ - -#define SPEED_10 10 -#define SPEED_100 100 -#define SPEED_1000 1000 -#define SPEED_2500 2500 -#define HALF_DUPLEX 1 -#define FULL_DUPLEX 2 - -#define PHY_FORCE_TIME 20 - -#define ADVERTISE_10_HALF 0x0001 -#define ADVERTISE_10_FULL 0x0002 -#define ADVERTISE_100_HALF 0x0004 -#define ADVERTISE_100_FULL 0x0008 -#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */ -#define ADVERTISE_1000_FULL 0x0020 - -/* 1000/H is not supported, nor spec-compliant. */ -#define E1000_ALL_SPEED_DUPLEX ( \ - ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ - ADVERTISE_100_FULL | ADVERTISE_1000_FULL) -#define E1000_ALL_NOT_GIG ( \ - ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF | \ - ADVERTISE_100_FULL) -#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL) -#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL) -#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF) - -#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX - -/* LED Control */ -#define E1000_PHY_LED0_MODE_MASK 0x00000007 -#define E1000_PHY_LED0_IVRT 0x00000008 -#define E1000_PHY_LED0_MASK 0x0000001F - -#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F -#define E1000_LEDCTL_LED0_MODE_SHIFT 0 -#define E1000_LEDCTL_LED0_IVRT 0x00000040 -#define E1000_LEDCTL_LED0_BLINK 0x00000080 - -#define E1000_LEDCTL_MODE_LINK_UP 0x2 -#define E1000_LEDCTL_MODE_LED_ON 0xE -#define E1000_LEDCTL_MODE_LED_OFF 0xF - -/* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Desc extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ -#define E1000_TXD_EXTCMD_TSTAMP 0x00000010 /* IEEE1588 Timestamp packet */ - -/* Transmit Control */ -#define E1000_TCTL_EN 0x00000002 /* enable Tx */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ - -/* Transmit Arbitration Count */ -#define E1000_TARC0_ENABLE 0x00000400 /* Enable Tx Queue 0 */ - -/* SerDes Control */ -#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400 -#define E1000_SCTL_ENABLE_SERDES_LOOPBACK 0x0410 - -/* Receive Checksum Control */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_CRCOFL 0x00000800 /* CRC32 offload enable */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ - -/* Header split receive */ -#define E1000_RFCTL_NFSW_DIS 0x00000040 -#define E1000_RFCTL_NFSR_DIS 0x00000080 -#define E1000_RFCTL_ACK_DIS 0x00001000 -#define E1000_RFCTL_EXTEN 0x00008000 -#define E1000_RFCTL_IPV6_EX_DIS 0x00010000 -#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 -#define E1000_RFCTL_LEF 0x00040000 - -/* Collision related configuration parameters */ -#define E1000_COLLISION_THRESHOLD 15 -#define E1000_CT_SHIFT 4 -#define E1000_COLLISION_DISTANCE 63 -#define E1000_COLD_SHIFT 12 - -/* Default values for the transmit IPG register */ -#define DEFAULT_82542_TIPG_IPGT 10 -#define DEFAULT_82543_TIPG_IPGT_FIBER 9 -#define DEFAULT_82543_TIPG_IPGT_COPPER 8 - -#define E1000_TIPG_IPGT_MASK 0x000003FF - -#define DEFAULT_82542_TIPG_IPGR1 2 -#define DEFAULT_82543_TIPG_IPGR1 8 -#define E1000_TIPG_IPGR1_SHIFT 10 - -#define DEFAULT_82542_TIPG_IPGR2 10 -#define DEFAULT_82543_TIPG_IPGR2 6 -#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7 -#define E1000_TIPG_IPGR2_SHIFT 20 - -/* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ - -#define ETHERNET_FCS_SIZE 4 -#define MAX_JUMBO_FRAME_SIZE 0x3F00 - -/* Extended Configuration Control and Size */ -#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 -#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001 -#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008 -#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 -#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000 -#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000 -#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16 - -#define E1000_PHY_CTRL_D0A_LPLU 0x00000002 -#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004 -#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008 -#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040 - -#define E1000_KABGTXD_BGSQLBIAS 0x00050000 - -/* Low Power IDLE Control */ -#define E1000_LPIC_LPIET_SHIFT 24 /* Low Power Idle Entry Time */ - -/* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB */ -#define E1000_PBA_10K 0x000A /* 10KB */ -#define E1000_PBA_12K 0x000C /* 12KB */ -#define E1000_PBA_14K 0x000E /* 14KB */ -#define E1000_PBA_16K 0x0010 /* 16KB */ -#define E1000_PBA_18K 0x0012 -#define E1000_PBA_20K 0x0014 -#define E1000_PBA_22K 0x0016 -#define E1000_PBA_24K 0x0018 -#define E1000_PBA_26K 0x001A -#define E1000_PBA_30K 0x001E -#define E1000_PBA_32K 0x0020 -#define E1000_PBA_34K 0x0022 -#define E1000_PBA_35K 0x0023 -#define E1000_PBA_38K 0x0026 -#define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB */ -#define E1000_PBA_64K 0x0040 /* 64KB */ - -#define E1000_PBA_RXA_MASK 0xFFFF - -#define E1000_PBS_16K E1000_PBA_16K - -/* Uncorrectable/correctable ECC Error counts and enable bits */ -#define E1000_PBECCSTS_CORR_ERR_CNT_MASK 0x000000FF -#define E1000_PBECCSTS_UNCORR_ERR_CNT_MASK 0x0000FF00 -#define E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT 8 -#define E1000_PBECCSTS_ECC_ENABLE 0x00010000 - -#define IFS_MAX 80 -#define IFS_MIN 40 -#define IFS_RATIO 4 -#define IFS_STEP 10 -#define MIN_NUM_XMITS 1000 - -/* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ - -#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */ - -/* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* Rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */ -#define E1000_ICR_VMMB 0x00000100 /* VM MB event */ -#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ -#define E1000_ICR_TXD_LOW 0x00008000 -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_ECCER 0x00400000 /* Uncorrectable ECC Error */ -#define E1000_ICR_TS 0x00080000 /* Time Sync Interrupt */ -#define E1000_ICR_DRSTA 0x40000000 /* Device Reset Asserted */ -/* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_INT_ASSERTED 0x80000000 -#define E1000_ICR_DOUTSYNC 0x10000000 /* NIC DMA out of sync */ -#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */ -#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */ -#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */ -#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */ -#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */ -#define E1000_ICR_FER 0x00400000 /* Fatal Error */ - -#define E1000_ICR_THS 0x00800000 /* ICR.THS: Thermal Sensor Event*/ -#define E1000_ICR_MDDET 0x10000000 /* Malicious Driver Detect */ - -/* PBA ECC Register */ -#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */ -#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */ -#define E1000_PBA_ECC_CORR_EN 0x00000001 /* Enable ECC error correction */ -#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */ -#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 on ECC error */ - -/* Extended Interrupt Cause Read */ -#define E1000_EICR_RX_QUEUE0 0x00000001 /* Rx Queue 0 Interrupt */ -#define E1000_EICR_RX_QUEUE1 0x00000002 /* Rx Queue 1 Interrupt */ -#define E1000_EICR_RX_QUEUE2 0x00000004 /* Rx Queue 2 Interrupt */ -#define E1000_EICR_RX_QUEUE3 0x00000008 /* Rx Queue 3 Interrupt */ -#define E1000_EICR_TX_QUEUE0 0x00000100 /* Tx Queue 0 Interrupt */ -#define E1000_EICR_TX_QUEUE1 0x00000200 /* Tx Queue 1 Interrupt */ -#define E1000_EICR_TX_QUEUE2 0x00000400 /* Tx Queue 2 Interrupt */ -#define E1000_EICR_TX_QUEUE3 0x00000800 /* Tx Queue 3 Interrupt */ -#define E1000_EICR_TCP_TIMER 0x40000000 /* TCP Timer */ -#define E1000_EICR_OTHER 0x80000000 /* Interrupt Cause Active */ -/* TCP Timer */ -#define E1000_TCPTIMER_KS 0x00000100 /* KickStart */ -#define E1000_TCPTIMER_COUNT_ENABLE 0x00000200 /* Count Enable */ -#define E1000_TCPTIMER_COUNT_FINISH 0x00000400 /* Count finish */ -#define E1000_TCPTIMER_LOOP 0x00000800 /* Loop */ - -/* This defines the bits that are set in the Interrupt Mask - * Set/Read Register. Each bit is documented below: - * o RXT0 = Receiver Timer Interrupt (ring 0) - * o TXDW = Transmit Descriptor Written Back - * o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) - * o RXSEQ = Receive Sequence Error - * o LSC = Link Status Change - */ -#define IMS_ENABLE_MASK ( \ - E1000_IMS_RXT0 | \ - E1000_IMS_TXDW | \ - E1000_IMS_RXDMT0 | \ - E1000_IMS_RXSEQ | \ - E1000_IMS_LSC) - -/* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Tx desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_VMMB E1000_ICR_VMMB /* Mail box activity */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* Rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */ -#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW -#define E1000_IMS_ECCER E1000_ICR_ECCER /* Uncorrectable ECC Error */ -#define E1000_IMS_TS E1000_ICR_TS /* Time Sync Interrupt */ -#define E1000_IMS_DRSTA E1000_ICR_DRSTA /* Device Reset Asserted */ -#define E1000_IMS_DOUTSYNC E1000_ICR_DOUTSYNC /* NIC DMA out of sync */ -#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */ -#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */ -#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */ -#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */ -#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */ -#define E1000_IMS_FER E1000_ICR_FER /* Fatal Error */ - -#define E1000_IMS_THS E1000_ICR_THS /* ICR.TS: Thermal Sensor Event*/ -#define E1000_IMS_MDDET E1000_ICR_MDDET /* Malicious Driver Detect */ -/* Extended Interrupt Mask Set */ -#define E1000_EIMS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EIMS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EIMS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EIMS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EIMS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EIMS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EIMS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EIMS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EIMS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -/* Interrupt Cause Set */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */ - -/* Extended Interrupt Cause Set */ -#define E1000_EICS_RX_QUEUE0 E1000_EICR_RX_QUEUE0 /* Rx Queue 0 Interrupt */ -#define E1000_EICS_RX_QUEUE1 E1000_EICR_RX_QUEUE1 /* Rx Queue 1 Interrupt */ -#define E1000_EICS_RX_QUEUE2 E1000_EICR_RX_QUEUE2 /* Rx Queue 2 Interrupt */ -#define E1000_EICS_RX_QUEUE3 E1000_EICR_RX_QUEUE3 /* Rx Queue 3 Interrupt */ -#define E1000_EICS_TX_QUEUE0 E1000_EICR_TX_QUEUE0 /* Tx Queue 0 Interrupt */ -#define E1000_EICS_TX_QUEUE1 E1000_EICR_TX_QUEUE1 /* Tx Queue 1 Interrupt */ -#define E1000_EICS_TX_QUEUE2 E1000_EICR_TX_QUEUE2 /* Tx Queue 2 Interrupt */ -#define E1000_EICS_TX_QUEUE3 E1000_EICR_TX_QUEUE3 /* Tx Queue 3 Interrupt */ -#define E1000_EICS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */ -#define E1000_EICS_OTHER E1000_EICR_OTHER /* Interrupt Cause Active */ - -#define E1000_EITR_ITR_INT_MASK 0x0000FFFF -/* E1000_EITR_CNT_IGNR is only for 82576 and newer */ -#define E1000_EITR_CNT_IGNR 0x80000000 /* Don't reset counters on write */ -#define E1000_EITR_INTERVAL 0x00007FFC - -/* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */ -/* Enable the counting of descriptors still to be processed. */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 - -/* Flow Control Constants */ -#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 -#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 -#define FLOW_CONTROL_TYPE 0x8808 - -/* 802.1q VLAN Packet Size */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMA'd) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ - -/* Receive Address - * Number of high/low register pairs in the RAR. The RAR (Receive Address - * Registers) holds the directed and multicast addresses that we monitor. - * Technically, we have 16 spots. However, we reserve one of these spots - * (RAR[15]) for our directed address used by controllers with - * manageability enabled, allowing us room for 15 multicast addresses. - */ -#define E1000_RAR_ENTRIES 15 -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ -#define E1000_RAL_MAC_ADDR_LEN 4 -#define E1000_RAH_MAC_ADDR_LEN 2 -#define E1000_RAH_QUEUE_MASK_82575 0x000C0000 -#define E1000_RAH_POOL_1 0x00040000 - -/* Error Codes */ -#define E1000_SUCCESS 0 -#define E1000_ERR_NVM 1 -#define E1000_ERR_PHY 2 -#define E1000_ERR_CONFIG 3 -#define E1000_ERR_PARAM 4 -#define E1000_ERR_MAC_INIT 5 -#define E1000_ERR_PHY_TYPE 6 -#define E1000_ERR_RESET 9 -#define E1000_ERR_MASTER_REQUESTS_PENDING 10 -#define E1000_ERR_HOST_INTERFACE_COMMAND 11 -#define E1000_BLK_PHY_RESET 12 -#define E1000_ERR_SWFW_SYNC 13 -#define E1000_NOT_IMPLEMENTED 14 -#define E1000_ERR_MBX 15 -#define E1000_ERR_INVALID_ARGUMENT 16 -#define E1000_ERR_NO_SPACE 17 -#define E1000_ERR_NVM_PBA_SECTION 18 -#define E1000_ERR_I2C 19 -#define E1000_ERR_INVM_VALUE_NOT_FOUND 20 - -/* Loop limit on how long we wait for auto-negotiation to complete */ -#define FIBER_LINK_UP_LIMIT 50 -#define COPPER_LINK_UP_LIMIT 10 -#define PHY_AUTO_NEG_LIMIT 45 -#define PHY_FORCE_LIMIT 20 -/* Number of 100 microseconds we wait for PCI Express master disable */ -#define MASTER_DISABLE_TIMEOUT 800 -/* Number of milliseconds we wait for PHY configuration done after MAC reset */ -#define PHY_CFG_TIMEOUT 100 -/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */ -#define MDIO_OWNERSHIP_TIMEOUT 10 -/* Number of milliseconds for NVM auto read done after MAC reset. */ -#define AUTO_READ_DONE_TIMEOUT 10 - -/* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ - -/* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ - -/* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ - -#define E1000_TSYNCTXCTL_VALID 0x00000001 /* Tx timestamp valid */ -#define E1000_TSYNCTXCTL_ENABLED 0x00000010 /* enable Tx timestamping */ - -#define E1000_TSYNCRXCTL_VALID 0x00000001 /* Rx timestamp valid */ -#define E1000_TSYNCRXCTL_TYPE_MASK 0x0000000E /* Rx type mask */ -#define E1000_TSYNCRXCTL_TYPE_L2_V2 0x00 -#define E1000_TSYNCRXCTL_TYPE_L4_V1 0x02 -#define E1000_TSYNCRXCTL_TYPE_L2_L4_V2 0x04 -#define E1000_TSYNCRXCTL_TYPE_ALL 0x08 -#define E1000_TSYNCRXCTL_TYPE_EVENT_V2 0x0A -#define E1000_TSYNCRXCTL_ENABLED 0x00000010 /* enable Rx timestamping */ -#define E1000_TSYNCRXCTL_SYSCFI 0x00000020 /* Sys clock frequency */ - -#define E1000_RXMTRL_PTP_V1_SYNC_MESSAGE 0x00000000 -#define E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE 0x00010000 - -#define E1000_RXMTRL_PTP_V2_SYNC_MESSAGE 0x00000000 -#define E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE 0x01000000 - -#define E1000_TSYNCRXCFG_PTP_V1_CTRLT_MASK 0x000000FF -#define E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE 0x00 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE 0x01 -#define E1000_TSYNCRXCFG_PTP_V1_FOLLOWUP_MESSAGE 0x02 -#define E1000_TSYNCRXCFG_PTP_V1_DELAY_RESP_MESSAGE 0x03 -#define E1000_TSYNCRXCFG_PTP_V1_MANAGEMENT_MESSAGE 0x04 - -#define E1000_TSYNCRXCFG_PTP_V2_MSGID_MASK 0x00000F00 -#define E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE 0x0000 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE 0x0100 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_REQ_MESSAGE 0x0200 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_RESP_MESSAGE 0x0300 -#define E1000_TSYNCRXCFG_PTP_V2_FOLLOWUP_MESSAGE 0x0800 -#define E1000_TSYNCRXCFG_PTP_V2_DELAY_RESP_MESSAGE 0x0900 -#define E1000_TSYNCRXCFG_PTP_V2_PATH_DELAY_FOLLOWUP_MESSAGE 0x0A00 -#define E1000_TSYNCRXCFG_PTP_V2_ANNOUNCE_MESSAGE 0x0B00 -#define E1000_TSYNCRXCFG_PTP_V2_SIGNALLING_MESSAGE 0x0C00 -#define E1000_TSYNCRXCFG_PTP_V2_MANAGEMENT_MESSAGE 0x0D00 - -#define E1000_TIMINCA_16NS_SHIFT 24 -#define E1000_TIMINCA_INCPERIOD_SHIFT 24 -#define E1000_TIMINCA_INCVALUE_MASK 0x00FFFFFF - -#define E1000_TSICR_TXTS 0x00000002 -#define E1000_TSIM_TXTS 0x00000002 -/* TUPLE Filtering Configuration */ -#define E1000_TTQF_DISABLE_MASK 0xF0008000 /* TTQF Disable Mask */ -#define E1000_TTQF_QUEUE_ENABLE 0x100 /* TTQF Queue Enable Bit */ -#define E1000_TTQF_PROTOCOL_MASK 0xFF /* TTQF Protocol Mask */ -/* TTQF TCP Bit, shift with E1000_TTQF_PROTOCOL SHIFT */ -#define E1000_TTQF_PROTOCOL_TCP 0x0 -/* TTQF UDP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_UDP 0x1 -/* TTQF SCTP Bit, shift with E1000_TTQF_PROTOCOL_SHIFT */ -#define E1000_TTQF_PROTOCOL_SCTP 0x2 -#define E1000_TTQF_PROTOCOL_SHIFT 5 /* TTQF Protocol Shift */ -#define E1000_TTQF_QUEUE_SHIFT 16 /* TTQF Queue Shfit */ -#define E1000_TTQF_RX_QUEUE_MASK 0x70000 /* TTQF Queue Mask */ -#define E1000_TTQF_MASK_ENABLE 0x10000000 /* TTQF Mask Enable Bit */ -#define E1000_IMIR_CLEAR_MASK 0xF001FFFF /* IMIR Reg Clear Mask */ -#define E1000_IMIR_PORT_BYPASS 0x20000 /* IMIR Port Bypass Bit */ -#define E1000_IMIR_PRIORITY_SHIFT 29 /* IMIR Priority Shift */ -#define E1000_IMIREXT_CLEAR_MASK 0x7FFFF /* IMIREXT Reg Clear Mask */ - -#define E1000_MDICNFG_EXT_MDIO 0x80000000 /* MDI ext/int destination */ -#define E1000_MDICNFG_COM_MDIO 0x40000000 /* MDI shared w/ lan 0 */ -#define E1000_MDICNFG_PHY_MASK 0x03E00000 -#define E1000_MDICNFG_PHY_SHIFT 21 - -#define E1000_MEDIA_PORT_COPPER 1 -#define E1000_MEDIA_PORT_OTHER 2 -#define E1000_M88E1112_AUTO_COPPER_SGMII 0x2 -#define E1000_M88E1112_AUTO_COPPER_BASEX 0x3 -#define E1000_M88E1112_STATUS_LINK 0x0004 /* Interface Link Bit */ -#define E1000_M88E1112_MAC_CTRL_1 0x10 -#define E1000_M88E1112_MAC_CTRL_1_MODE_MASK 0x0380 /* Mode Select */ -#define E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT 7 -#define E1000_M88E1112_PAGE_ADDR 0x16 -#define E1000_M88E1112_STATUS 0x01 - -#define E1000_THSTAT_LOW_EVENT 0x20000000 /* Low thermal threshold */ -#define E1000_THSTAT_MID_EVENT 0x00200000 /* Mid thermal threshold */ -#define E1000_THSTAT_HIGH_EVENT 0x00002000 /* High thermal threshold */ -#define E1000_THSTAT_PWR_DOWN 0x00000001 /* Power Down Event */ -#define E1000_THSTAT_LINK_THROTTLE 0x00000002 /* Link Spd Throttle Event */ - -/* I350 EEE defines */ -#define E1000_IPCNFG_EEE_1G_AN 0x00000008 /* IPCNFG EEE Ena 1G AN */ -#define E1000_IPCNFG_EEE_100M_AN 0x00000004 /* IPCNFG EEE Ena 100M AN */ -#define E1000_EEER_TX_LPI_EN 0x00010000 /* EEER Tx LPI Enable */ -#define E1000_EEER_RX_LPI_EN 0x00020000 /* EEER Rx LPI Enable */ -#define E1000_EEER_LPI_FC 0x00040000 /* EEER Ena on Flow Cntrl */ -/* EEE status */ -#define E1000_EEER_EEE_NEG 0x20000000 /* EEE capability nego */ -#define E1000_EEER_RX_LPI_STATUS 0x40000000 /* Rx in LPI state */ -#define E1000_EEER_TX_LPI_STATUS 0x80000000 /* Tx in LPI state */ -#define E1000_EEE_LP_ADV_ADDR_I350 0x040F /* EEE LP Advertisement */ -#define E1000_M88E1543_PAGE_ADDR 0x16 /* Page Offset Register */ -#define E1000_M88E1543_EEE_CTRL_1 0x0 -#define E1000_M88E1543_EEE_CTRL_1_MS 0x0001 /* EEE Master/Slave */ -#define E1000_EEE_ADV_DEV_I354 7 -#define E1000_EEE_ADV_ADDR_I354 60 -#define E1000_EEE_ADV_100_SUPPORTED (1 << 1) /* 100BaseTx EEE Supported */ -#define E1000_EEE_ADV_1000_SUPPORTED (1 << 2) /* 1000BaseT EEE Supported */ -#define E1000_PCS_STATUS_DEV_I354 3 -#define E1000_PCS_STATUS_ADDR_I354 1 -#define E1000_PCS_STATUS_RX_LPI_RCVD 0x0400 -#define E1000_PCS_STATUS_TX_LPI_RCVD 0x0800 -#define E1000_M88E1512_CFG_REG_1 0x0010 -#define E1000_M88E1512_CFG_REG_2 0x0011 -#define E1000_M88E1512_CFG_REG_3 0x0007 -#define E1000_M88E1512_MODE 0x0014 -#define E1000_EEE_SU_LPI_CLK_STP 0x00800000 /* EEE LPI Clock Stop */ -#define E1000_EEE_LP_ADV_DEV_I210 7 /* EEE LP Adv Device */ -#define E1000_EEE_LP_ADV_ADDR_I210 61 /* EEE LP Adv Register */ -/* PCI Express Control */ -#define E1000_GCR_RXD_NO_SNOOP 0x00000001 -#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002 -#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004 -#define E1000_GCR_TXD_NO_SNOOP 0x00000008 -#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010 -#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020 -#define E1000_GCR_CMPL_TMOUT_MASK 0x0000F000 -#define E1000_GCR_CMPL_TMOUT_10ms 0x00001000 -#define E1000_GCR_CMPL_TMOUT_RESEND 0x00010000 -#define E1000_GCR_CAP_VER2 0x00040000 - -#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \ - E1000_GCR_RXDSCW_NO_SNOOP | \ - E1000_GCR_RXDSCR_NO_SNOOP | \ - E1000_GCR_TXD_NO_SNOOP | \ - E1000_GCR_TXDSCW_NO_SNOOP | \ - E1000_GCR_TXDSCR_NO_SNOOP) - -#define E1000_MMDAC_FUNC_DATA 0x4000 /* Data, no post increment */ - -/* mPHY address control and data registers */ -#define E1000_MPHY_ADDR_CTL 0x0024 /* Address Control Reg */ -#define E1000_MPHY_ADDR_CTL_OFFSET_MASK 0xFFFF0000 -#define E1000_MPHY_DATA 0x0E10 /* Data Register */ - -/* AFE CSR Offset for PCS CLK */ -#define E1000_MPHY_PCS_CLK_REG_OFFSET 0x0004 -/* Override for near end digital loopback. */ -#define E1000_MPHY_PCS_CLK_REG_DIGINELBEN 0x10 - -/* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ -#define MII_CR_SPEED_1000 0x0040 -#define MII_CR_SPEED_100 0x2000 -#define MII_CR_SPEED_10 0x0000 - -/* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ - -/* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP 10T Half Dplx Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP 10T Full Dplx Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP 100TX Half Dplx Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP 100TX Full Dplx Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asym Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ - -/* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP 10T Half Dplx Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP 10T Full Dplx Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP 100TX Half Dplx Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP 100TX Full Dplx Capable */ - -/* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -/* 1=Repeater/switch device port 0=DTE device */ -#define CR_1000T_REPEATER_DTE 0x0400 -/* 1=Configure PHY as Master 0=Configure PHY as Slave */ -#define CR_1000T_MS_VALUE 0x0800 -/* 1=Master/Slave manual config value 0=Automatic Master/Slave config */ -#define CR_1000T_MS_ENABLE 0x1000 -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ - -/* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle err since last rd */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asym pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local Tx Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ - -#define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 - -/* PHY 1000 MII Register/Bit Definitions */ -/* PHY Registers defined by IEEE */ -#define PHY_CONTROL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Register */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page Tx */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */ - -/* NVM Control */ -#define E1000_EECD_SK 0x00000001 /* NVM Clock */ -#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* NVM Data In */ -#define E1000_EECD_DO 0x00000008 /* NVM Data Out */ -#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* NVM Present */ -#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */ -#define E1000_EECD_BLOCKED 0x00008000 /* Bit banging access blocked flag */ -#define E1000_EECD_ABORT 0x00010000 /* NVM operation aborted flag */ -#define E1000_EECD_TIMEOUT 0x00020000 /* NVM read operation timeout flag */ -#define E1000_EECD_ERROR_CLR 0x00040000 /* NVM error status clear bit */ -/* NVM Addressing bits based on type 0=small, 1=large */ -#define E1000_EECD_ADDR_BITS 0x00000400 -#define E1000_EECD_TYPE 0x00002000 /* NVM Type (1-SPI, 0-Microwire) */ -#ifndef E1000_NVM_GRANT_ATTEMPTS -#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */ -#endif -#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */ -#define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Ena Auto FLASH update */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ -#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES) -#define E1000_EECD_FLUPD_I210 0x00800000 /* Update FLASH */ -#define E1000_EECD_FLUDONE_I210 0x04000000 /* Update FLASH done */ -#define E1000_EECD_FLASH_DETECTED_I210 0x00080000 /* FLASH detected */ -#define E1000_EECD_SEC1VAL_I210 0x02000000 /* Sector One Valid */ -#define E1000_FLUDONE_ATTEMPTS 20000 -#define E1000_EERD_EEWR_MAX_COUNT 512 /* buffered EEPROM words rw */ -#define E1000_I210_FIFO_SEL_RX 0x00 -#define E1000_I210_FIFO_SEL_TX_QAV(_i) (0x02 + (_i)) -#define E1000_I210_FIFO_SEL_TX_LEGACY E1000_I210_FIFO_SEL_TX_QAV(0) -#define E1000_I210_FIFO_SEL_BMC2OS_TX 0x06 -#define E1000_I210_FIFO_SEL_BMC2OS_RX 0x01 - -#define E1000_I210_FLASH_SECTOR_SIZE 0x1000 /* 4KB FLASH sector unit size */ -/* Secure FLASH mode requires removing MSb */ -#define E1000_I210_FW_PTR_MASK 0x7FFF -/* Firmware code revision field word offset*/ -#define E1000_I210_FW_VER_OFFSET 328 - -#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write regs */ -#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_NVM_RW_REG_START 1 /* Start operation */ -#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */ -#define E1000_FLASH_UPDATES 2000 - -/* NVM Word Offsets */ -#define NVM_COMPAT 0x0003 -#define NVM_ID_LED_SETTINGS 0x0004 -#define NVM_VERSION 0x0005 -#define NVM_SERDES_AMPLITUDE 0x0006 /* SERDES output amplitude */ -#define NVM_PHY_CLASS_WORD 0x0007 -#define E1000_I210_NVM_FW_MODULE_PTR 0x0010 -#define E1000_I350_NVM_FW_MODULE_PTR 0x0051 -#define NVM_FUTURE_INIT_WORD1 0x0019 -#define NVM_ETRACK_WORD 0x0042 -#define NVM_ETRACK_HIWORD 0x0043 -#define NVM_COMB_VER_OFF 0x0083 -#define NVM_COMB_VER_PTR 0x003d - -/* NVM version defines */ -#define NVM_MAJOR_MASK 0xF000 -#define NVM_MINOR_MASK 0x0FF0 -#define NVM_IMAGE_ID_MASK 0x000F -#define NVM_COMB_VER_MASK 0x00FF -#define NVM_MAJOR_SHIFT 12 -#define NVM_MINOR_SHIFT 4 -#define NVM_COMB_VER_SHFT 8 -#define NVM_VER_INVALID 0xFFFF -#define NVM_ETRACK_SHIFT 16 -#define NVM_ETRACK_VALID 0x8000 -#define NVM_NEW_DEC_MASK 0x0F00 -#define NVM_HEX_CONV 16 -#define NVM_HEX_TENS 10 - -/* FW version defines */ -/* Offset of "Loader patch ptr" in Firmware Header */ -#define E1000_I350_NVM_FW_LOADER_PATCH_PTR_OFFSET 0x01 -/* Patch generation hour & minutes */ -#define E1000_I350_NVM_FW_VER_WORD1_OFFSET 0x04 -/* Patch generation month & day */ -#define E1000_I350_NVM_FW_VER_WORD2_OFFSET 0x05 -/* Patch generation year */ -#define E1000_I350_NVM_FW_VER_WORD3_OFFSET 0x06 -/* Patch major & minor numbers */ -#define E1000_I350_NVM_FW_VER_WORD4_OFFSET 0x07 - -#define NVM_MAC_ADDR 0x0000 -#define NVM_SUB_DEV_ID 0x000B -#define NVM_SUB_VEN_ID 0x000C -#define NVM_DEV_ID 0x000D -#define NVM_VEN_ID 0x000E -#define NVM_INIT_CTRL_2 0x000F -#define NVM_INIT_CTRL_4 0x0013 -#define NVM_LED_1_CFG 0x001C -#define NVM_LED_0_2_CFG 0x001F - -#define NVM_COMPAT_VALID_CSUM 0x0001 -#define NVM_FUTURE_INIT_WORD1_VALID_CSUM 0x0040 - -#define NVM_INIT_CONTROL2_REG 0x000F -#define NVM_INIT_CONTROL3_PORT_B 0x0014 -#define NVM_INIT_3GIO_3 0x001A -#define NVM_SWDEF_PINS_CTRL_PORT_0 0x0020 -#define NVM_INIT_CONTROL3_PORT_A 0x0024 -#define NVM_CFG 0x0012 -#define NVM_ALT_MAC_ADDR_PTR 0x0037 -#define NVM_CHECKSUM_REG 0x003F -#define NVM_COMPATIBILITY_REG_3 0x0003 -#define NVM_COMPATIBILITY_BIT_MASK 0x8000 - -#define E1000_NVM_CFG_DONE_PORT_0 0x040000 /* MNG config cycle done */ -#define E1000_NVM_CFG_DONE_PORT_1 0x080000 /* ...for second port */ -#define E1000_NVM_CFG_DONE_PORT_2 0x100000 /* ...for third port */ -#define E1000_NVM_CFG_DONE_PORT_3 0x200000 /* ...for fourth port */ - -#define NVM_82580_LAN_FUNC_OFFSET(a) ((a) ? (0x40 + (0x40 * (a))) : 0) - -/* Mask bits for fields in Word 0x24 of the NVM */ -#define NVM_WORD24_COM_MDIO 0x0008 /* MDIO interface shared */ -#define NVM_WORD24_EXT_MDIO 0x0004 /* MDIO accesses routed extrnl */ -/* Offset of Link Mode bits for 82575/82576 */ -#define NVM_WORD24_LNK_MODE_OFFSET 8 -/* Offset of Link Mode bits for 82580 up */ -#define NVM_WORD24_82580_LNK_MODE_OFFSET 4 - - -/* Mask bits for fields in Word 0x0f of the NVM */ -#define NVM_WORD0F_PAUSE_MASK 0x3000 -#define NVM_WORD0F_PAUSE 0x1000 -#define NVM_WORD0F_ASM_DIR 0x2000 -#define NVM_WORD0F_SWPDIO_EXT_MASK 0x00F0 - -/* Mask bits for fields in Word 0x1a of the NVM */ -#define NVM_WORD1A_ASPM_MASK 0x000C - -/* Mask bits for fields in Word 0x03 of the EEPROM */ -#define NVM_COMPAT_LOM 0x0800 - -/* length of string needed to store PBA number */ -#define E1000_PBANUM_LENGTH 11 - -/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */ -#define NVM_SUM 0xBABA - -/* PBA (printed board assembly) number words */ -#define NVM_PBA_OFFSET_0 8 -#define NVM_PBA_OFFSET_1 9 -#define NVM_PBA_PTR_GUARD 0xFAFA -#define NVM_RESERVED_WORD 0xFFFF -#define NVM_PHY_CLASS_A 0x8000 -#define NVM_SERDES_AMPLITUDE_MASK 0x000F -#define NVM_SIZE_MASK 0x1C00 -#define NVM_SIZE_SHIFT 10 -#define NVM_WORD_SIZE_BASE_SHIFT 6 -#define NVM_SWDPIO_EXT_SHIFT 4 - -/* NVM Commands - Microwire */ -#define NVM_READ_OPCODE_MICROWIRE 0x6 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_MICROWIRE 0x5 /* NVM write opcode */ -#define NVM_ERASE_OPCODE_MICROWIRE 0x7 /* NVM erase opcode */ -#define NVM_EWEN_OPCODE_MICROWIRE 0x13 /* NVM erase/write enable */ -#define NVM_EWDS_OPCODE_MICROWIRE 0x10 /* NVM erase/write disable */ - -/* NVM Commands - SPI */ -#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */ -#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */ -#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */ -#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */ - -/* SPI NVM Status Register */ -#define NVM_STATUS_RDY_SPI 0x01 - -/* Word definitions for ID LED Settings */ -#define ID_LED_RESERVED_0000 0x0000 -#define ID_LED_RESERVED_FFFF 0xFFFF -#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_DEF1_DEF2)) -#define ID_LED_DEF1_DEF2 0x1 -#define ID_LED_DEF1_ON2 0x2 -#define ID_LED_DEF1_OFF2 0x3 -#define ID_LED_ON1_DEF2 0x4 -#define ID_LED_ON1_ON2 0x5 -#define ID_LED_ON1_OFF2 0x6 -#define ID_LED_OFF1_DEF2 0x7 -#define ID_LED_OFF1_ON2 0x8 -#define ID_LED_OFF1_OFF2 0x9 - -#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF -#define IGP_ACTIVITY_LED_ENABLE 0x0300 -#define IGP_LED3_MODE 0x07000000 - -/* PCI/PCI-X/PCI-EX Config space */ -#define PCIX_COMMAND_REGISTER 0xE6 -#define PCIX_STATUS_REGISTER_LO 0xE8 -#define PCIX_STATUS_REGISTER_HI 0xEA -#define PCI_HEADER_TYPE_REGISTER 0x0E -#define PCIE_LINK_STATUS 0x12 -#define PCIE_DEVICE_CONTROL2 0x28 - -#define PCIX_COMMAND_MMRBC_MASK 0x000C -#define PCIX_COMMAND_MMRBC_SHIFT 0x2 -#define PCIX_STATUS_HI_MMRBC_MASK 0x0060 -#define PCIX_STATUS_HI_MMRBC_SHIFT 0x5 -#define PCIX_STATUS_HI_MMRBC_4K 0x3 -#define PCIX_STATUS_HI_MMRBC_2K 0x2 -#define PCIX_STATUS_LO_FUNC_MASK 0x7 -#define PCI_HEADER_TYPE_MULTIFUNC 0x80 -#define PCIE_LINK_WIDTH_MASK 0x3F0 -#define PCIE_LINK_WIDTH_SHIFT 4 -#define PCIE_LINK_SPEED_MASK 0x0F -#define PCIE_LINK_SPEED_2500 0x01 -#define PCIE_LINK_SPEED_5000 0x02 -#define PCIE_DEVICE_CONTROL2_16ms 0x0005 - -#ifndef ETH_ADDR_LEN -#define ETH_ADDR_LEN 6 -#endif - -#define PHY_REVISION_MASK 0xFFFFFFF0 -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF - -/* Bit definitions for valid PHY IDs. - * I = Integrated - * E = External - */ -#define M88E1000_E_PHY_ID 0x01410C50 -#define M88E1000_I_PHY_ID 0x01410C30 -#define M88E1011_I_PHY_ID 0x01410C20 -#define IGP01E1000_I_PHY_ID 0x02A80380 -#define M88E1111_I_PHY_ID 0x01410CC0 -#define M88E1543_E_PHY_ID 0x01410EA0 -#define M88E1512_E_PHY_ID 0x01410DD0 -#define M88E1112_E_PHY_ID 0x01410C90 -#define I347AT4_E_PHY_ID 0x01410DC0 -#define M88E1340M_E_PHY_ID 0x01410DF0 -#define GG82563_E_PHY_ID 0x01410CA0 -#define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 -#define IFE_PLUS_E_PHY_ID 0x02A80320 -#define IFE_C_E_PHY_ID 0x02A80310 -#define BME1000_E_PHY_ID 0x01410CB0 -#define BME1000_E_PHY_ID_R2 0x01410CB1 -#define I82577_E_PHY_ID 0x01540050 -#define I82578_E_PHY_ID 0x004DD040 -#define I82579_E_PHY_ID 0x01540090 -#define I217_E_PHY_ID 0x015400A0 -#define I82580_I_PHY_ID 0x015403A0 -#define I350_I_PHY_ID 0x015403B0 -#define I210_I_PHY_ID 0x01410C00 -#define IGP04E1000_E_PHY_ID 0x02A80391 -#define M88_VENDOR 0x0141 - -/* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Reg */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Reg */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Cntrl */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for pg number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ - -/* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reverse enabled */ -/* MDI Crossover Mode bits 6:5 Manual MDI configuration */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 -/* Auto crossover enabled all speeds */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Tx */ - -/* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -/* 0 = <50M - * 1 = 50-80M - * 2 = 80-110M - * 3 = 110-140M - * 4 = >140M - */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ - -#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 - -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 -#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000 -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the slave - */ -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300 -#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ - -/* Intel I347AT4 Registers */ -#define I347AT4_PCDL 0x10 /* PHY Cable Diagnostics Length */ -#define I347AT4_PCDC 0x15 /* PHY Cable Diagnostics Control */ -#define I347AT4_PAGE_SELECT 0x16 - -/* I347AT4 Extended PHY Specific Control Register */ - -/* Number of times we will attempt to autonegotiate before downshifting if we - * are the master - */ -#define I347AT4_PSCR_DOWNSHIFT_ENABLE 0x0800 -#define I347AT4_PSCR_DOWNSHIFT_MASK 0x7000 -#define I347AT4_PSCR_DOWNSHIFT_1X 0x0000 -#define I347AT4_PSCR_DOWNSHIFT_2X 0x1000 -#define I347AT4_PSCR_DOWNSHIFT_3X 0x2000 -#define I347AT4_PSCR_DOWNSHIFT_4X 0x3000 -#define I347AT4_PSCR_DOWNSHIFT_5X 0x4000 -#define I347AT4_PSCR_DOWNSHIFT_6X 0x5000 -#define I347AT4_PSCR_DOWNSHIFT_7X 0x6000 -#define I347AT4_PSCR_DOWNSHIFT_8X 0x7000 - -/* I347AT4 PHY Cable Diagnostics Control */ -#define I347AT4_PCDC_CABLE_LENGTH_UNIT 0x0400 /* 0=cm 1=meters */ - -/* M88E1112 only registers */ -#define M88E1112_VCT_DSP_DISTANCE 0x001A - -/* M88EC018 Rev 2 specific DownShift settings */ -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 -#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800 - -#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020 -#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C - -/* BME1000 PHY Specific Control Register */ -#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */ - -/* Bits... - * 15-5: page - * 4-0: register offset - */ -#define GG82563_PAGE_SHIFT 5 -#define GG82563_REG(page, reg) \ - (((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) -#define GG82563_MIN_ALT_REG 30 - -/* GG82563 Specific Registers */ -#define GG82563_PHY_SPEC_CTRL GG82563_REG(0, 16) /* PHY Spec Cntrl */ -#define GG82563_PHY_PAGE_SELECT GG82563_REG(0, 22) /* Page Select */ -#define GG82563_PHY_SPEC_CTRL_2 GG82563_REG(0, 26) /* PHY Spec Cntrl2 */ -#define GG82563_PHY_PAGE_SELECT_ALT GG82563_REG(0, 29) /* Alt Page Select */ - -/* MAC Specific Control Register */ -#define GG82563_PHY_MAC_SPEC_CTRL GG82563_REG(2, 21) - -#define GG82563_PHY_DSP_DISTANCE GG82563_REG(5, 26) /* DSP Distance */ - -/* Page 193 - Port Control Registers */ -/* Kumeran Mode Control */ -#define GG82563_PHY_KMRN_MODE_CTRL GG82563_REG(193, 16) -#define GG82563_PHY_PWR_MGMT_CTRL GG82563_REG(193, 20) /* Pwr Mgt Ctrl */ - -/* Page 194 - KMRN Registers */ -#define GG82563_PHY_INBAND_CTRL GG82563_REG(194, 18) /* Inband Ctrl */ - -/* MDI Control */ -#define E1000_MDIC_REG_MASK 0x001F0000 -#define E1000_MDIC_REG_SHIFT 16 -#define E1000_MDIC_PHY_MASK 0x03E00000 -#define E1000_MDIC_PHY_SHIFT 21 -#define E1000_MDIC_OP_WRITE 0x04000000 -#define E1000_MDIC_OP_READ 0x08000000 -#define E1000_MDIC_READY 0x10000000 -#define E1000_MDIC_ERROR 0x40000000 -#define E1000_MDIC_DEST 0x80000000 - -/* SerDes Control */ -#define E1000_GEN_CTL_READY 0x80000000 -#define E1000_GEN_CTL_ADDRESS_SHIFT 8 -#define E1000_GEN_POLL_TIMEOUT 640 - -/* LinkSec register fields */ -#define E1000_LSECTXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECTXCAP_SUM_SHIFT 16 -#define E1000_LSECRXCAP_SUM_MASK 0x00FF0000 -#define E1000_LSECRXCAP_SUM_SHIFT 16 - -#define E1000_LSECTXCTRL_EN_MASK 0x00000003 -#define E1000_LSECTXCTRL_DISABLE 0x0 -#define E1000_LSECTXCTRL_AUTH 0x1 -#define E1000_LSECTXCTRL_AUTH_ENCRYPT 0x2 -#define E1000_LSECTXCTRL_AISCI 0x00000020 -#define E1000_LSECTXCTRL_PNTHRSH_MASK 0xFFFFFF00 -#define E1000_LSECTXCTRL_RSV_MASK 0x000000D8 - -#define E1000_LSECRXCTRL_EN_MASK 0x0000000C -#define E1000_LSECRXCTRL_EN_SHIFT 2 -#define E1000_LSECRXCTRL_DISABLE 0x0 -#define E1000_LSECRXCTRL_CHECK 0x1 -#define E1000_LSECRXCTRL_STRICT 0x2 -#define E1000_LSECRXCTRL_DROP 0x3 -#define E1000_LSECRXCTRL_PLSH 0x00000040 -#define E1000_LSECRXCTRL_RP 0x00000080 -#define E1000_LSECRXCTRL_RSV_MASK 0xFFFFFF33 - -/* Tx Rate-Scheduler Config fields */ -#define E1000_RTTBCNRC_RS_ENA 0x80000000 -#define E1000_RTTBCNRC_RF_DEC_MASK 0x00003FFF -#define E1000_RTTBCNRC_RF_INT_SHIFT 14 -#define E1000_RTTBCNRC_RF_INT_MASK \ - (E1000_RTTBCNRC_RF_DEC_MASK << E1000_RTTBCNRC_RF_INT_SHIFT) - -/* DMA Coalescing register fields */ -/* DMA Coalescing Watchdog Timer */ -#define E1000_DMACR_DMACWT_MASK 0x00003FFF -/* DMA Coalescing Rx Threshold */ -#define E1000_DMACR_DMACTHR_MASK 0x00FF0000 -#define E1000_DMACR_DMACTHR_SHIFT 16 -/* Lx when no PCIe transactions */ -#define E1000_DMACR_DMAC_LX_MASK 0x30000000 -#define E1000_DMACR_DMAC_LX_SHIFT 28 -#define E1000_DMACR_DMAC_EN 0x80000000 /* Enable DMA Coalescing */ -/* DMA Coalescing BMC-to-OS Watchdog Enable */ -#define E1000_DMACR_DC_BMC2OSW_EN 0x00008000 - -/* DMA Coalescing Transmit Threshold */ -#define E1000_DMCTXTH_DMCTTHR_MASK 0x00000FFF - -#define E1000_DMCTLX_TTLX_MASK 0x00000FFF /* Time to LX request */ - -/* Rx Traffic Rate Threshold */ -#define E1000_DMCRTRH_UTRESH_MASK 0x0007FFFF -/* Rx packet rate in current window */ -#define E1000_DMCRTRH_LRPRCW 0x80000000 - -/* DMA Coal Rx Traffic Current Count */ -#define E1000_DMCCNT_CCOUNT_MASK 0x01FFFFFF - -/* Flow ctrl Rx Threshold High val */ -#define E1000_FCRTC_RTH_COAL_MASK 0x0003FFF0 -#define E1000_FCRTC_RTH_COAL_SHIFT 4 -/* Lx power decision based on DMA coal */ -#define E1000_PCIEMISC_LX_DECISION 0x00000080 - -#define E1000_RXPBS_CFG_TS_EN 0x80000000 /* Timestamp in Rx buffer */ -#define E1000_RXPBS_SIZE_I210_MASK 0x0000003F /* Rx packet buffer size */ -#define E1000_TXPB0S_SIZE_I210_MASK 0x0000003F /* Tx packet buffer 0 size */ - -/* Proxy Filter Control */ -#define E1000_PROXYFC_D0 0x00000001 /* Enable offload in D0 */ -#define E1000_PROXYFC_EX 0x00000004 /* Directed exact proxy */ -#define E1000_PROXYFC_MC 0x00000008 /* Directed MC Proxy */ -#define E1000_PROXYFC_BC 0x00000010 /* Broadcast Proxy Enable */ -#define E1000_PROXYFC_ARP_DIRECTED 0x00000020 /* Directed ARP Proxy Ena */ -#define E1000_PROXYFC_IPV4 0x00000040 /* Directed IPv4 Enable */ -#define E1000_PROXYFC_IPV6 0x00000080 /* Directed IPv6 Enable */ -#define E1000_PROXYFC_NS 0x00000200 /* IPv6 Neighbor Solicitation */ -#define E1000_PROXYFC_ARP 0x00000800 /* ARP Request Proxy Ena */ -/* Proxy Status */ -#define E1000_PROXYS_CLEAR 0xFFFFFFFF /* Clear */ - -/* Firmware Status */ -#define E1000_FWSTS_FWRI 0x80000000 /* FW Reset Indication */ -/* VF Control */ -#define E1000_VTCTRL_RST 0x04000000 /* Reset VF */ - -#define E1000_STATUS_LAN_ID_MASK 0x00000000C /* Mask for Lan ID field */ -/* Lan ID bit field offset in status register */ -#define E1000_STATUS_LAN_ID_OFFSET 2 -#define E1000_VFTA_ENTRIES 128 -#ifndef E1000_UNUSEDARG -#define E1000_UNUSEDARG -#endif /* E1000_UNUSEDARG */ -#ifndef ERROR_REPORT -#define ERROR_REPORT(fmt) do { } while (0) -#endif /* ERROR_REPORT */ -#endif /* _E1000_DEFINES_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_hw.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_hw.h deleted file mode 100755 index 4dd92a30..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_hw.h +++ /dev/null @@ -1,1026 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_HW_H_ -#define _E1000_HW_H_ - -#include "e1000_osdep.h" -#include "e1000_regs.h" -#include "e1000_defines.h" - -struct e1000_hw; - -#define E1000_DEV_ID_82542 0x1000 -#define E1000_DEV_ID_82543GC_FIBER 0x1001 -#define E1000_DEV_ID_82543GC_COPPER 0x1004 -#define E1000_DEV_ID_82544EI_COPPER 0x1008 -#define E1000_DEV_ID_82544EI_FIBER 0x1009 -#define E1000_DEV_ID_82544GC_COPPER 0x100C -#define E1000_DEV_ID_82544GC_LOM 0x100D -#define E1000_DEV_ID_82540EM 0x100E -#define E1000_DEV_ID_82540EM_LOM 0x1015 -#define E1000_DEV_ID_82540EP_LOM 0x1016 -#define E1000_DEV_ID_82540EP 0x1017 -#define E1000_DEV_ID_82540EP_LP 0x101E -#define E1000_DEV_ID_82545EM_COPPER 0x100F -#define E1000_DEV_ID_82545EM_FIBER 0x1011 -#define E1000_DEV_ID_82545GM_COPPER 0x1026 -#define E1000_DEV_ID_82545GM_FIBER 0x1027 -#define E1000_DEV_ID_82545GM_SERDES 0x1028 -#define E1000_DEV_ID_82546EB_COPPER 0x1010 -#define E1000_DEV_ID_82546EB_FIBER 0x1012 -#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D -#define E1000_DEV_ID_82546GB_COPPER 0x1079 -#define E1000_DEV_ID_82546GB_FIBER 0x107A -#define E1000_DEV_ID_82546GB_SERDES 0x107B -#define E1000_DEV_ID_82546GB_PCIE 0x108A -#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 -#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 -#define E1000_DEV_ID_82541EI 0x1013 -#define E1000_DEV_ID_82541EI_MOBILE 0x1018 -#define E1000_DEV_ID_82541ER_LOM 0x1014 -#define E1000_DEV_ID_82541ER 0x1078 -#define E1000_DEV_ID_82541GI 0x1076 -#define E1000_DEV_ID_82541GI_LF 0x107C -#define E1000_DEV_ID_82541GI_MOBILE 0x1077 -#define E1000_DEV_ID_82547EI 0x1019 -#define E1000_DEV_ID_82547EI_MOBILE 0x101A -#define E1000_DEV_ID_82547GI 0x1075 -#define E1000_DEV_ID_82571EB_COPPER 0x105E -#define E1000_DEV_ID_82571EB_FIBER 0x105F -#define E1000_DEV_ID_82571EB_SERDES 0x1060 -#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9 -#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA -#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4 -#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5 -#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5 -#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC -#define E1000_DEV_ID_82572EI_COPPER 0x107D -#define E1000_DEV_ID_82572EI_FIBER 0x107E -#define E1000_DEV_ID_82572EI_SERDES 0x107F -#define E1000_DEV_ID_82572EI 0x10B9 -#define E1000_DEV_ID_82573E 0x108B -#define E1000_DEV_ID_82573E_IAMT 0x108C -#define E1000_DEV_ID_82573L 0x109A -#define E1000_DEV_ID_82574L 0x10D3 -#define E1000_DEV_ID_82574LA 0x10F6 -#define E1000_DEV_ID_82583V 0x150C -#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 -#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 -#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA -#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB -#define E1000_DEV_ID_ICH8_82567V_3 0x1501 -#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049 -#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A -#define E1000_DEV_ID_ICH8_IGP_C 0x104B -#define E1000_DEV_ID_ICH8_IFE 0x104C -#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4 -#define E1000_DEV_ID_ICH8_IFE_G 0x10C5 -#define E1000_DEV_ID_ICH8_IGP_M 0x104D -#define E1000_DEV_ID_ICH9_IGP_M 0x10BF -#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5 -#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB -#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD -#define E1000_DEV_ID_ICH9_BM 0x10E5 -#define E1000_DEV_ID_ICH9_IGP_C 0x294C -#define E1000_DEV_ID_ICH9_IFE 0x10C0 -#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3 -#define E1000_DEV_ID_ICH9_IFE_G 0x10C2 -#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC -#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD -#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE -#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE -#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF -#define E1000_DEV_ID_ICH10_D_BM_V 0x1525 -#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA -#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB -#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF -#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0 -#define E1000_DEV_ID_PCH2_LV_LM 0x1502 -#define E1000_DEV_ID_PCH2_LV_V 0x1503 -#define E1000_DEV_ID_PCH_LPT_I217_LM 0x153A -#define E1000_DEV_ID_PCH_LPT_I217_V 0x153B -#define E1000_DEV_ID_PCH_LPTLP_I218_LM 0x155A -#define E1000_DEV_ID_PCH_LPTLP_I218_V 0x1559 -#define E1000_DEV_ID_82576 0x10C9 -#define E1000_DEV_ID_82576_FIBER 0x10E6 -#define E1000_DEV_ID_82576_SERDES 0x10E7 -#define E1000_DEV_ID_82576_QUAD_COPPER 0x10E8 -#define E1000_DEV_ID_82576_QUAD_COPPER_ET2 0x1526 -#define E1000_DEV_ID_82576_NS 0x150A -#define E1000_DEV_ID_82576_NS_SERDES 0x1518 -#define E1000_DEV_ID_82576_SERDES_QUAD 0x150D -#define E1000_DEV_ID_82576_VF 0x10CA -#define E1000_DEV_ID_82576_VF_HV 0x152D -#define E1000_DEV_ID_I350_VF 0x1520 -#define E1000_DEV_ID_I350_VF_HV 0x152F -#define E1000_DEV_ID_82575EB_COPPER 0x10A7 -#define E1000_DEV_ID_82575EB_FIBER_SERDES 0x10A9 -#define E1000_DEV_ID_82575GB_QUAD_COPPER 0x10D6 -#define E1000_DEV_ID_82580_COPPER 0x150E -#define E1000_DEV_ID_82580_FIBER 0x150F -#define E1000_DEV_ID_82580_SERDES 0x1510 -#define E1000_DEV_ID_82580_SGMII 0x1511 -#define E1000_DEV_ID_82580_COPPER_DUAL 0x1516 -#define E1000_DEV_ID_82580_QUAD_FIBER 0x1527 -#define E1000_DEV_ID_I350_COPPER 0x1521 -#define E1000_DEV_ID_I350_FIBER 0x1522 -#define E1000_DEV_ID_I350_SERDES 0x1523 -#define E1000_DEV_ID_I350_SGMII 0x1524 -#define E1000_DEV_ID_I350_DA4 0x1546 -#define E1000_DEV_ID_I210_COPPER 0x1533 -#define E1000_DEV_ID_I210_COPPER_OEM1 0x1534 -#define E1000_DEV_ID_I210_COPPER_IT 0x1535 -#define E1000_DEV_ID_I210_FIBER 0x1536 -#define E1000_DEV_ID_I210_SERDES 0x1537 -#define E1000_DEV_ID_I210_SGMII 0x1538 -#define E1000_DEV_ID_I210_COPPER_FLASHLESS 0x157B -#define E1000_DEV_ID_I210_SERDES_FLASHLESS 0x157C -#define E1000_DEV_ID_I211_COPPER 0x1539 -#define E1000_DEV_ID_I354_BACKPLANE_1GBPS 0x1F40 -#define E1000_DEV_ID_I354_SGMII 0x1F41 -#define E1000_DEV_ID_I354_BACKPLANE_2_5GBPS 0x1F45 -#define E1000_DEV_ID_DH89XXCC_SGMII 0x0438 -#define E1000_DEV_ID_DH89XXCC_SERDES 0x043A -#define E1000_DEV_ID_DH89XXCC_BACKPLANE 0x043C -#define E1000_DEV_ID_DH89XXCC_SFP 0x0440 - -#define E1000_REVISION_0 0 -#define E1000_REVISION_1 1 -#define E1000_REVISION_2 2 -#define E1000_REVISION_3 3 -#define E1000_REVISION_4 4 - -#define E1000_FUNC_0 0 -#define E1000_FUNC_1 1 -#define E1000_FUNC_2 2 -#define E1000_FUNC_3 3 - -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN2 6 -#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN3 9 - -enum e1000_mac_type { - e1000_undefined = 0, - e1000_82542, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_82571, - e1000_82572, - e1000_82573, - e1000_82574, - e1000_82583, - e1000_80003es2lan, - e1000_ich8lan, - e1000_ich9lan, - e1000_ich10lan, - e1000_pchlan, - e1000_pch2lan, - e1000_pch_lpt, - e1000_82575, - e1000_82576, - e1000_82580, - e1000_i350, - e1000_i354, - e1000_i210, - e1000_i211, - e1000_vfadapt, - e1000_vfadapt_i350, - e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ -}; - -enum e1000_media_type { - e1000_media_type_unknown = 0, - e1000_media_type_copper = 1, - e1000_media_type_fiber = 2, - e1000_media_type_internal_serdes = 3, - e1000_num_media_types -}; - -enum e1000_nvm_type { - e1000_nvm_unknown = 0, - e1000_nvm_none, - e1000_nvm_eeprom_spi, - e1000_nvm_eeprom_microwire, - e1000_nvm_flash_hw, - e1000_nvm_invm, - e1000_nvm_flash_sw -}; - -enum e1000_nvm_override { - e1000_nvm_override_none = 0, - e1000_nvm_override_spi_small, - e1000_nvm_override_spi_large, - e1000_nvm_override_microwire_small, - e1000_nvm_override_microwire_large -}; - -enum e1000_phy_type { - e1000_phy_unknown = 0, - e1000_phy_none, - e1000_phy_m88, - e1000_phy_igp, - e1000_phy_igp_2, - e1000_phy_gg82563, - e1000_phy_igp_3, - e1000_phy_ife, - e1000_phy_bm, - e1000_phy_82578, - e1000_phy_82577, - e1000_phy_82579, - e1000_phy_i217, - e1000_phy_82580, - e1000_phy_vf, - e1000_phy_i210, -}; - -enum e1000_bus_type { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_pci_express, - e1000_bus_type_reserved -}; - -enum e1000_bus_speed { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_2500, - e1000_bus_speed_5000, - e1000_bus_speed_reserved -}; - -enum e1000_bus_width { - e1000_bus_width_unknown = 0, - e1000_bus_width_pcie_x1, - e1000_bus_width_pcie_x2, - e1000_bus_width_pcie_x4 = 4, - e1000_bus_width_pcie_x8 = 8, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved -}; - -enum e1000_1000t_rx_status { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF -}; - -enum e1000_rev_polarity { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF -}; - -enum e1000_fc_mode { - e1000_fc_none = 0, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full, - e1000_fc_default = 0xFF -}; - -enum e1000_ffe_config { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked -}; - -enum e1000_dsp_config { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF -}; - -enum e1000_ms_type { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto -}; - -enum e1000_smart_speed { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off -}; - -enum e1000_serdes_link_state { - e1000_serdes_link_down = 0, - e1000_serdes_link_autoneg_progress, - e1000_serdes_link_autoneg_complete, - e1000_serdes_link_forced_up -}; - -#define __le16 u16 -#define __le32 u32 -#define __le64 u64 -/* Receive Descriptor */ -struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; -}; - -/* Receive Descriptor - Extended */ -union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define MAX_PS_BUFFERS 4 - -/* Number of packet split data buffers (not including the header buffer) */ -#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1) - -/* Receive Descriptor - Packet Split */ -union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - /* length of buffers 1-3 */ - __le16 length[PS_PAGE_BUFFERS]; - } upper; - __le64 reserved; - } wb; /* writeback */ -}; - -/* Transmit Descriptor */ -struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; -}; - -/* Offload Context Descriptor */ -struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; -}; - -/* Offload data descriptor */ -struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; - u8 cmd; - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; - } fields; - } upper; -}; - -/* Statistics counters collected by the MAC */ -struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 tor; - u64 tot; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; - u64 cbtmpc; - u64 htdpmc; - u64 cbrdpc; - u64 cbrmpc; - u64 rpthc; - u64 hgptc; - u64 htcbdpc; - u64 hgorc; - u64 hgotc; - u64 lenerrs; - u64 scvpc; - u64 hrmpc; - u64 doosync; - u64 o2bgptc; - u64 o2bspc; - u64 b2ospc; - u64 b2ogprc; -}; - -struct e1000_vf_stats { - u64 base_gprc; - u64 base_gptc; - u64 base_gorc; - u64 base_gotc; - u64 base_mprc; - u64 base_gotlbc; - u64 base_gptlbc; - u64 base_gorlbc; - u64 base_gprlbc; - - u32 last_gprc; - u32 last_gptc; - u32 last_gorc; - u32 last_gotc; - u32 last_mprc; - u32 last_gotlbc; - u32 last_gptlbc; - u32 last_gorlbc; - u32 last_gprlbc; - - u64 gprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 mprc; - u64 gotlbc; - u64 gptlbc; - u64 gorlbc; - u64 gprlbc; -}; - -struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; -}; - -struct e1000_host_mng_dhcp_cookie { - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; -}; - -/* Host Interface "Rev 1" */ -struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; - u8 checksum; -}; - -#define E1000_HI_MAX_DATA_LENGTH 252 -struct e1000_host_command_info { - struct e1000_host_command_header command_header; - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; -}; - -/* Host Interface "Rev 2" */ -struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; -}; - -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 -struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; -}; - -#include "e1000_mac.h" -#include "e1000_phy.h" -#include "e1000_nvm.h" -#include "e1000_manage.h" -#include "e1000_mbx.h" - -/* Function pointers for the MAC. */ -struct e1000_mac_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*id_led_init)(struct e1000_hw *); - s32 (*blink_led)(struct e1000_hw *); - bool (*check_mng_mode)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - s32 (*cleanup_led)(struct e1000_hw *); - void (*clear_hw_cntrs)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - void (*set_lan_id)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - s32 (*led_on)(struct e1000_hw *); - s32 (*led_off)(struct e1000_hw *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - void (*shutdown_serdes)(struct e1000_hw *); - void (*power_up_serdes)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - s32 (*setup_physical_interface)(struct e1000_hw *); - s32 (*setup_led)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - void (*config_collision_dist)(struct e1000_hw *); - void (*rar_set)(struct e1000_hw *, u8*, u32); - s32 (*read_mac_addr)(struct e1000_hw *); - s32 (*validate_mdi_setting)(struct e1000_hw *); - s32 (*acquire_swfw_sync)(struct e1000_hw *, u16); - void (*release_swfw_sync)(struct e1000_hw *, u16); -}; - -/* When to use various PHY register access functions: - * - * Func Caller - * Function Does Does When to use - * ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - * X_reg L,P,A n/a for simple PHY reg accesses - * X_reg_locked P,A L for multiple accesses of different regs - * on different pages - * X_reg_page A L,P for multiple accesses of different regs - * on the same page - * - * Where X=[read|write], L=locking, P=sets page, A=register access - * - */ -struct e1000_phy_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*cfg_on_link_up)(struct e1000_hw *); - s32 (*check_polarity)(struct e1000_hw *); - s32 (*check_reset_block)(struct e1000_hw *); - s32 (*commit)(struct e1000_hw *); - s32 (*force_speed_duplex)(struct e1000_hw *); - s32 (*get_cfg_done)(struct e1000_hw *hw); - s32 (*get_cable_length)(struct e1000_hw *); - s32 (*get_info)(struct e1000_hw *); - s32 (*set_page)(struct e1000_hw *, u16); - s32 (*read_reg)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *); - s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *); - void (*release)(struct e1000_hw *); - s32 (*reset)(struct e1000_hw *); - s32 (*set_d0_lplu_state)(struct e1000_hw *, bool); - s32 (*set_d3_lplu_state)(struct e1000_hw *, bool); - s32 (*write_reg)(struct e1000_hw *, u32, u16); - s32 (*write_reg_locked)(struct e1000_hw *, u32, u16); - s32 (*write_reg_page)(struct e1000_hw *, u32, u16); - void (*power_up)(struct e1000_hw *); - void (*power_down)(struct e1000_hw *); - s32 (*read_i2c_byte)(struct e1000_hw *, u8, u8, u8 *); - s32 (*write_i2c_byte)(struct e1000_hw *, u8, u8, u8); -}; - -/* Function pointers for the NVM. */ -struct e1000_nvm_operations { - s32 (*init_params)(struct e1000_hw *); - s32 (*acquire)(struct e1000_hw *); - s32 (*read)(struct e1000_hw *, u16, u16, u16 *); - void (*release)(struct e1000_hw *); - void (*reload)(struct e1000_hw *); - s32 (*update)(struct e1000_hw *); - s32 (*valid_led_default)(struct e1000_hw *, u16 *); - s32 (*validate)(struct e1000_hw *); - s32 (*write)(struct e1000_hw *, u16, u16, u16 *); -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[ETH_ADDR_LEN]; - u8 perm_addr[ETH_ADDR_LEN]; - - enum e1000_mac_type type; - - u32 collision_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - u32 mc_filter_type; - u32 tx_packet_delta; - u32 txcw; - - u16 current_ifs_val; - u16 ifs_max_val; - u16 ifs_min_val; - u16 ifs_ratio; - u16 ifs_step_size; - u16 mta_reg_count; - u16 uta_reg_count; - - /* Maximum size of the MTA register table in all supported adapters */ - #define MAX_MTA_REG 128 - u32 mta_shadow[MAX_MTA_REG]; - u16 rar_entry_count; - - u8 forced_speed_duplex; - - bool adaptive_ifs; - bool has_fwsm; - bool arc_subsystem_valid; - bool asf_firmware_present; - bool autoneg; - bool autoneg_failed; - bool get_link_status; - bool in_ifs_mode; - bool report_tx_early; - enum e1000_serdes_link_state serdes_link_state; - bool serdes_has_link; - bool tx_pkt_filtering; -}; - -struct e1000_phy_info { - struct e1000_phy_operations ops; - enum e1000_phy_type type; - - enum e1000_1000t_rx_status local_rx; - enum e1000_1000t_rx_status remote_rx; - enum e1000_ms_type ms_type; - enum e1000_ms_type original_ms_type; - enum e1000_rev_polarity cable_polarity; - enum e1000_smart_speed smart_speed; - - u32 addr; - u32 id; - u32 reset_delay_us; /* in usec */ - u32 revision; - - enum e1000_media_type media_type; - - u16 autoneg_advertised; - u16 autoneg_mask; - u16 cable_length; - u16 max_cable_length; - u16 min_cable_length; - - u8 mdix; - - bool disable_polarity_correction; - bool is_mdix; - bool polarity_correction; - bool speed_downgraded; - bool autoneg_wait_to_complete; -}; - -struct e1000_nvm_info { - struct e1000_nvm_operations ops; - enum e1000_nvm_type type; - enum e1000_nvm_override override; - - u32 flash_bank_size; - u32 flash_base_addr; - - u16 word_size; - u16 delay_usec; - u16 address_bits; - u16 opcode_bits; - u16 page_size; -}; - -struct e1000_bus_info { - enum e1000_bus_type type; - enum e1000_bus_speed speed; - enum e1000_bus_width width; - - u16 func; - u16 pci_cmd_word; -}; - -struct e1000_fc_info { - u32 high_water; /* Flow control high-water mark */ - u32 low_water; /* Flow control low-water mark */ - u16 pause_time; /* Flow control pause timer */ - u16 refresh_time; /* Flow control refresh timer */ - bool send_xon; /* Flow control send XON */ - bool strict_ieee; /* Strict IEEE mode */ - enum e1000_fc_mode current_mode; /* FC mode in effect */ - enum e1000_fc_mode requested_mode; /* FC mode requested by caller */ -}; - -struct e1000_mbx_operations { - s32 (*init_params)(struct e1000_hw *hw); - s32 (*read)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write)(struct e1000_hw *, u32 *, u16, u16); - s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*check_for_msg)(struct e1000_hw *, u16); - s32 (*check_for_ack)(struct e1000_hw *, u16); - s32 (*check_for_rst)(struct e1000_hw *, u16); -}; - -struct e1000_mbx_stats { - u32 msgs_tx; - u32 msgs_rx; - - u32 acks; - u32 reqs; - u32 rsts; -}; - -struct e1000_mbx_info { - struct e1000_mbx_operations ops; - struct e1000_mbx_stats stats; - u32 timeout; - u32 usec_delay; - u16 size; -}; - -struct e1000_dev_spec_82541 { - enum e1000_dsp_config dsp_config; - enum e1000_ffe_config ffe_config; - u16 spd_default; - bool phy_init_script; -}; - -struct e1000_dev_spec_82542 { - bool dma_fairness; -}; - -struct e1000_dev_spec_82543 { - u32 tbi_compatibility; - bool dma_fairness; - bool init_phy_disabled; -}; - -struct e1000_dev_spec_82571 { - bool laa_is_present; - u32 smb_counter; - E1000_MUTEX swflag_mutex; -}; - -struct e1000_dev_spec_80003es2lan { - bool mdic_wa_enable; -}; - -struct e1000_shadow_ram { - u16 value; - bool modified; -}; - -#define E1000_SHADOW_RAM_WORDS 2048 - -#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT) -/* I218 PHY Ultra Low Power (ULP) states */ -enum e1000_ulp_state { - e1000_ulp_state_unknown, - e1000_ulp_state_off, - e1000_ulp_state_on, -}; - -#endif /* NAHUM6LP_HW && ULP_SUPPORT */ -struct e1000_dev_spec_ich8lan { - bool kmrn_lock_loss_workaround_enabled; - struct e1000_shadow_ram shadow_ram[E1000_SHADOW_RAM_WORDS]; - E1000_MUTEX nvm_mutex; - E1000_MUTEX swflag_mutex; - bool nvm_k1_enabled; - bool eee_disable; - u16 eee_lp_ability; -#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT) - enum e1000_ulp_state ulp_state; -#endif /* NAHUM6LP_HW && ULP_SUPPORT */ - u16 lat_enc; - u16 max_ltr_enc; - bool smbus_disable; -}; - -struct e1000_dev_spec_82575 { - bool sgmii_active; - bool global_device_reset; - bool eee_disable; - bool module_plugged; - bool clear_semaphore_once; - u32 mtu; - struct sfp_e1000_flags eth_flags; - u8 media_port; - bool media_changed; -}; - -struct e1000_dev_spec_vf { - u32 vf_number; - u32 v2p_mailbox; -}; - -struct e1000_hw { - void *back; - - u8 *hw_addr; - u8 *flash_address; - unsigned long io_base; - - struct e1000_mac_info mac; - struct e1000_fc_info fc; - struct e1000_phy_info phy; - struct e1000_nvm_info nvm; - struct e1000_bus_info bus; - struct e1000_mbx_info mbx; - struct e1000_host_mng_dhcp_cookie mng_cookie; - - union { - struct e1000_dev_spec_82541 _82541; - struct e1000_dev_spec_82542 _82542; - struct e1000_dev_spec_82543 _82543; - struct e1000_dev_spec_82571 _82571; - struct e1000_dev_spec_80003es2lan _80003es2lan; - struct e1000_dev_spec_ich8lan ich8lan; - struct e1000_dev_spec_82575 _82575; - struct e1000_dev_spec_vf vf; - } dev_spec; - - u16 device_id; - u16 subsystem_vendor_id; - u16 subsystem_device_id; - u16 vendor_id; - - u8 revision_id; -}; - -#include "e1000_82541.h" -#include "e1000_82543.h" -#include "e1000_82571.h" -#include "e1000_80003es2lan.h" -#include "e1000_ich8lan.h" -#include "e1000_82575.h" -#include "e1000_i210.h" - -/* These functions must be implemented by drivers */ -void e1000_pci_clear_mwi(struct e1000_hw *hw); -void e1000_pci_set_mwi(struct e1000_hw *hw); -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -s32 e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -void e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); -void e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value); - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.c deleted file mode 100755 index 1f5600d5..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.c +++ /dev/null @@ -1,1000 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - - -STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw); -STATIC void e1000_release_nvm_i210(struct e1000_hw *hw); -STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw); -STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -STATIC s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw); -STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data); - -/** - * e1000_acquire_nvm_i210 - Request for access to EEPROM - * @hw: pointer to the HW structure - * - * Acquire the necessary semaphores for exclusive access to the EEPROM. - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -STATIC s32 e1000_acquire_nvm_i210(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_acquire_nvm_i210"); - - ret_val = e1000_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); - - return ret_val; -} - -/** - * e1000_release_nvm_i210 - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit, - * then release the semaphores acquired. - **/ -STATIC void e1000_release_nvm_i210(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_i210"); - - e1000_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM); -} - -/** - * e1000_acquire_swfw_sync_i210 - Acquire SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Acquire the SW/FW semaphore to access the PHY or NVM. The mask - * will also specify which port we're acquiring the lock for. - **/ -s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - u32 swmask = mask; - u32 fwmask = mask << 16; - s32 ret_val = E1000_SUCCESS; - s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ - - DEBUGFUNC("e1000_acquire_swfw_sync_i210"); - - while (i < timeout) { - if (e1000_get_hw_semaphore_i210(hw)) { - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - if (!(swfw_sync & (fwmask | swmask))) - break; - - /* - * Firmware currently using resource (fwmask) - * or other software thread using resource (swmask) - */ - e1000_put_hw_semaphore_generic(hw); - msec_delay_irq(5); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); - ret_val = -E1000_ERR_SWFW_SYNC; - goto out; - } - - swfw_sync |= swmask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); - -out: - return ret_val; -} - -/** - * e1000_release_swfw_sync_i210 - Release SW/FW semaphore - * @hw: pointer to the HW structure - * @mask: specifies which semaphore to acquire - * - * Release the SW/FW semaphore used to access the PHY or NVM. The mask - * will also specify which port we're releasing the lock for. - **/ -void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask) -{ - u32 swfw_sync; - - DEBUGFUNC("e1000_release_swfw_sync_i210"); - - while (e1000_get_hw_semaphore_i210(hw) != E1000_SUCCESS) - ; /* Empty */ - - swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC); - swfw_sync &= ~mask; - E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync); - - e1000_put_hw_semaphore_generic(hw); -} - -/** - * e1000_get_hw_semaphore_i210 - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -STATIC s32 e1000_get_hw_semaphore_i210(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_i210"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - /* In rare circumstances, the SW semaphore may already be held - * unintentionally. Clear the semaphore once before giving up. - */ - if (hw->dev_spec._82575.clear_semaphore_once) { - hw->dev_spec._82575.clear_semaphore_once = false; - e1000_put_hw_semaphore_generic(hw); - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - } - } - - /* If we do not have the semaphore here, we have to give up. */ - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the Shadow Ram to read - * @words: number of words to read - * @data: word read from the Shadow Ram - * - * Reads a 16 bit word from the Shadow Ram using the EERD register. - * Uses necessary synchronization semaphores. - **/ -s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 status = E1000_SUCCESS; - u16 i, count; - - DEBUGFUNC("e1000_read_nvm_srrd_i210"); - - /* We cannot hold synchronization semaphores for too long, - * because of forceful takeover procedure. However it is more efficient - * to read in bursts than synchronizing access for each word. */ - for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { - count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? - E1000_EERD_EEWR_MAX_COUNT : (words - i); - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = e1000_read_nvm_eerd(hw, offset, count, - data + i); - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - if (status != E1000_SUCCESS) - break; - } - - return status; -} - -/** - * e1000_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR - * @hw: pointer to the HW structure - * @offset: offset within the Shadow RAM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the Shadow RAM - * - * Writes data to Shadow RAM at offset using EEWR register. - * - * If e1000_update_nvm_checksum is not called after this function , the - * data will not be committed to FLASH and also Shadow RAM will most likely - * contain an invalid checksum. - * - * If error code is returned, data and Shadow RAM may be inconsistent - buffer - * partially written. - **/ -s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - s32 status = E1000_SUCCESS; - u16 i, count; - - DEBUGFUNC("e1000_write_nvm_srwr_i210"); - - /* We cannot hold synchronization semaphores for too long, - * because of forceful takeover procedure. However it is more efficient - * to write in bursts than synchronizing access for each word. */ - for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) { - count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ? - E1000_EERD_EEWR_MAX_COUNT : (words - i); - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - status = e1000_write_nvm_srwr(hw, offset, count, - data + i); - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - if (status != E1000_SUCCESS) - break; - } - - return status; -} - -/** - * e1000_write_nvm_srwr - Write to Shadow Ram using EEWR - * @hw: pointer to the HW structure - * @offset: offset within the Shadow Ram to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the Shadow Ram - * - * Writes data to Shadow Ram at offset using EEWR register. - * - * If e1000_update_nvm_checksum is not called after this function , the - * Shadow Ram will most likely contain an invalid checksum. - **/ -STATIC s32 e1000_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, k, eewr = 0; - u32 attempts = 100000; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_nvm_srwr"); - - /* - * A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - for (i = 0; i < words; i++) { - eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | - (data[i] << E1000_NVM_RW_REG_DATA) | - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_SRWR, eewr); - - for (k = 0; k < attempts; k++) { - if (E1000_NVM_RW_REG_DONE & - E1000_READ_REG(hw, E1000_SRWR)) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(5); - } - - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Shadow RAM write EEWR timed out\n"); - break; - } - } - -out: - return ret_val; -} - -/** e1000_read_invm_word_i210 - Reads OTP - * @hw: pointer to the HW structure - * @address: the word address (aka eeprom offset) to read - * @data: pointer to the data read - * - * Reads 16-bit words from the OTP. Return error when the word is not - * stored in OTP. - **/ -STATIC s32 e1000_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data) -{ - s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; - u32 invm_dword; - u16 i; - u8 record_type, word_address; - - DEBUGFUNC("e1000_read_invm_word_i210"); - - for (i = 0; i < E1000_INVM_SIZE; i++) { - invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); - /* Get record type */ - record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword); - if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE) - break; - if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE) - i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE) - i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS; - if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) { - word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword); - if (word_address == address) { - *data = INVM_DWORD_TO_WORD_DATA(invm_dword); - DEBUGOUT2("Read INVM Word 0x%02x = %x", - address, *data); - status = E1000_SUCCESS; - break; - } - } - } - if (status != E1000_SUCCESS) - DEBUGOUT1("Requested word 0x%02x not found in OTP\n", address); - return status; -} - -/** e1000_read_invm_i210 - Read invm wrapper function for I210/I211 - * @hw: pointer to the HW structure - * @address: the word address (aka eeprom offset) to read - * @data: pointer to the data read - * - * Wrapper function to return data formerly found in the NVM. - **/ -STATIC s32 e1000_read_invm_i210(struct e1000_hw *hw, u16 offset, - u16 E1000_UNUSEDARG words, u16 *data) -{ - s32 ret_val = E1000_SUCCESS; - UNREFERENCED_1PARAMETER(words); - - DEBUGFUNC("e1000_read_invm_i210"); - - /* Only the MAC addr is required to be present in the iNVM */ - switch (offset) { - case NVM_MAC_ADDR: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, &data[0]); - ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+1, - &data[1]); - ret_val |= e1000_read_invm_word_i210(hw, (u8)offset+2, - &data[2]); - if (ret_val != E1000_SUCCESS) - DEBUGOUT("MAC Addr not found in iNVM\n"); - break; - case NVM_INIT_CTRL_2: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_INIT_CTRL_2_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_INIT_CTRL_4: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_INIT_CTRL_4_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_LED_1_CFG: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_LED_1_CFG_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_LED_0_2_CFG: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = NVM_LED_0_2_CFG_DEFAULT_I211; - ret_val = E1000_SUCCESS; - } - break; - case NVM_ID_LED_SETTINGS: - ret_val = e1000_read_invm_word_i210(hw, (u8)offset, data); - if (ret_val != E1000_SUCCESS) { - *data = ID_LED_RESERVED_FFFF; - ret_val = E1000_SUCCESS; - } - break; - case NVM_SUB_DEV_ID: - *data = hw->subsystem_device_id; - break; - case NVM_SUB_VEN_ID: - *data = hw->subsystem_vendor_id; - break; - case NVM_DEV_ID: - *data = hw->device_id; - break; - case NVM_VEN_ID: - *data = hw->vendor_id; - break; - default: - DEBUGOUT1("NVM word 0x%02x is not mapped.\n", offset); - *data = NVM_RESERVED_WORD; - break; - } - return ret_val; -} - -/** - * e1000_read_invm_version - Reads iNVM version and image type - * @hw: pointer to the HW structure - * @invm_ver: version structure for the version read - * - * Reads iNVM version and image type. - **/ -s32 e1000_read_invm_version(struct e1000_hw *hw, - struct e1000_fw_version *invm_ver) -{ - u32 *record = NULL; - u32 *next_record = NULL; - u32 i = 0; - u32 invm_dword = 0; - u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE / - E1000_INVM_RECORD_SIZE_IN_BYTES); - u32 buffer[E1000_INVM_SIZE]; - s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND; - u16 version = 0; - - DEBUGFUNC("e1000_read_invm_version"); - - /* Read iNVM memory */ - for (i = 0; i < E1000_INVM_SIZE; i++) { - invm_dword = E1000_READ_REG(hw, E1000_INVM_DATA_REG(i)); - buffer[i] = invm_dword; - } - - /* Read version number */ - for (i = 1; i < invm_blocks; i++) { - record = &buffer[invm_blocks - i]; - next_record = &buffer[invm_blocks - i + 1]; - - /* Check if we have first version location used */ - if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) { - version = 0; - status = E1000_SUCCESS; - break; - } - /* Check if we have second version location used */ - else if ((i == 1) && - ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) { - version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; - status = E1000_SUCCESS; - break; - } - /* - * Check if we have odd version location - * used and it is the last one used - */ - else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) && - ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) && - (i != 1))) { - version = (*next_record & E1000_INVM_VER_FIELD_TWO) - >> 13; - status = E1000_SUCCESS; - break; - } - /* - * Check if we have even version location - * used and it is the last one used - */ - else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) && - ((*record & 0x3) == 0)) { - version = (*record & E1000_INVM_VER_FIELD_ONE) >> 3; - status = E1000_SUCCESS; - break; - } - } - - if (status == E1000_SUCCESS) { - invm_ver->invm_major = (version & E1000_INVM_MAJOR_MASK) - >> E1000_INVM_MAJOR_SHIFT; - invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK; - } - /* Read Image Type */ - for (i = 1; i < invm_blocks; i++) { - record = &buffer[invm_blocks - i]; - next_record = &buffer[invm_blocks - i + 1]; - - /* Check if we have image type in first location used */ - if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) { - invm_ver->invm_img_type = 0; - status = E1000_SUCCESS; - break; - } - /* Check if we have image type in first location used */ - else if ((((*record & 0x3) == 0) && - ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) || - ((((*record & 0x3) != 0) && (i != 1)))) { - invm_ver->invm_img_type = - (*next_record & E1000_INVM_IMGTYPE_FIELD) >> 23; - status = E1000_SUCCESS; - break; - } - } - return status; -} - -/** - * e1000_validate_nvm_checksum_i210 - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw) -{ - s32 status = E1000_SUCCESS; - s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *); - - DEBUGFUNC("e1000_validate_nvm_checksum_i210"); - - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - - /* - * Replace the read function with semaphore grabbing with - * the one that skips this for a while. - * We have semaphore taken already here. - */ - read_op_ptr = hw->nvm.ops.read; - hw->nvm.ops.read = e1000_read_nvm_eerd; - - status = e1000_validate_nvm_checksum_generic(hw); - - /* Revert original read operation. */ - hw->nvm.ops.read = read_op_ptr; - - hw->nvm.ops.release(hw); - } else { - status = E1000_ERR_SWFW_SYNC; - } - - return status; -} - - -/** - * e1000_update_nvm_checksum_i210 - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. Next commit EEPROM data onto the Flash. - **/ -s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum_i210"); - - /* - * Read the first word from the EEPROM. If this times out or fails, do - * not continue or we could be in for a very long wait while every - * EEPROM read fails - */ - ret_val = e1000_read_nvm_eerd(hw, 0, 1, &nvm_data); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("EEPROM read failed\n"); - goto out; - } - - if (hw->nvm.ops.acquire(hw) == E1000_SUCCESS) { - /* - * Do not use hw->nvm.ops.write, hw->nvm.ops.read - * because we do not want to take the synchronization - * semaphores twice here. - */ - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = e1000_read_nvm_eerd(hw, i, 1, &nvm_data); - if (ret_val) { - hw->nvm.ops.release(hw); - DEBUGOUT("NVM Read Error while updating checksum.\n"); - goto out; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = e1000_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, - &checksum); - if (ret_val != E1000_SUCCESS) { - hw->nvm.ops.release(hw); - DEBUGOUT("NVM Write Error while updating checksum.\n"); - goto out; - } - - hw->nvm.ops.release(hw); - - ret_val = e1000_update_flash_i210(hw); - } else { - ret_val = E1000_ERR_SWFW_SYNC; - } -out: - return ret_val; -} - -/** - * e1000_get_flash_presence_i210 - Check if flash device is detected. - * @hw: pointer to the HW structure - * - **/ -bool e1000_get_flash_presence_i210(struct e1000_hw *hw) -{ - u32 eec = 0; - bool ret_val = false; - - DEBUGFUNC("e1000_get_flash_presence_i210"); - - eec = E1000_READ_REG(hw, E1000_EECD); - - if (eec & E1000_EECD_FLASH_DETECTED_I210) - ret_val = true; - - return ret_val; -} - -/** - * e1000_update_flash_i210 - Commit EEPROM to the flash - * @hw: pointer to the HW structure - * - **/ -s32 e1000_update_flash_i210(struct e1000_hw *hw) -{ - s32 ret_val; - u32 flup; - - DEBUGFUNC("e1000_update_flash_i210"); - - ret_val = e1000_pool_flash_update_done_i210(hw); - if (ret_val == -E1000_ERR_NVM) { - DEBUGOUT("Flash update time out\n"); - goto out; - } - - flup = E1000_READ_REG(hw, E1000_EECD) | E1000_EECD_FLUPD_I210; - E1000_WRITE_REG(hw, E1000_EECD, flup); - - ret_val = e1000_pool_flash_update_done_i210(hw); - if (ret_val == E1000_SUCCESS) - DEBUGOUT("Flash update complete\n"); - else - DEBUGOUT("Flash update time out\n"); - -out: - return ret_val; -} - -/** - * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. - * @hw: pointer to the HW structure - * - **/ -s32 e1000_pool_flash_update_done_i210(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_NVM; - u32 i, reg; - - DEBUGFUNC("e1000_pool_flash_update_done_i210"); - - for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { - reg = E1000_READ_REG(hw, E1000_EECD); - if (reg & E1000_EECD_FLUDONE_I210) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(5); - } - - return ret_val; -} - -/** - * e1000_init_nvm_params_i210 - Initialize i210 NVM function pointers - * @hw: pointer to the HW structure - * - * Initialize the i210/i211 NVM parameters and function pointers. - **/ -STATIC s32 e1000_init_nvm_params_i210(struct e1000_hw *hw) -{ - s32 ret_val; - struct e1000_nvm_info *nvm = &hw->nvm; - - DEBUGFUNC("e1000_init_nvm_params_i210"); - - ret_val = e1000_init_nvm_params_82575(hw); - nvm->ops.acquire = e1000_acquire_nvm_i210; - nvm->ops.release = e1000_release_nvm_i210; - nvm->ops.valid_led_default = e1000_valid_led_default_i210; - if (e1000_get_flash_presence_i210(hw)) { - hw->nvm.type = e1000_nvm_flash_hw; - nvm->ops.read = e1000_read_nvm_srrd_i210; - nvm->ops.write = e1000_write_nvm_srwr_i210; - nvm->ops.validate = e1000_validate_nvm_checksum_i210; - nvm->ops.update = e1000_update_nvm_checksum_i210; - } else { - hw->nvm.type = e1000_nvm_invm; - nvm->ops.read = e1000_read_invm_i210; - nvm->ops.write = e1000_null_write_nvm; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.update = e1000_null_ops_generic; - } - return ret_val; -} - -/** - * e1000_init_function_pointers_i210 - Init func ptrs. - * @hw: pointer to the HW structure - * - * Called to initialize all function pointers and parameters. - **/ -void e1000_init_function_pointers_i210(struct e1000_hw *hw) -{ - e1000_init_function_pointers_82575(hw); - hw->nvm.ops.init_params = e1000_init_nvm_params_i210; - - return; -} - -/** - * e1000_valid_led_default_i210 - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -STATIC s32 e1000_valid_led_default_i210(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_i210"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - goto out; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { - switch (hw->phy.media_type) { - case e1000_media_type_internal_serdes: - *data = ID_LED_DEFAULT_I210_SERDES; - break; - case e1000_media_type_copper: - default: - *data = ID_LED_DEFAULT_I210; - break; - } - } -out: - return ret_val; -} - -/** - * __e1000_access_xmdio_reg - Read/write XMDIO register - * @hw: pointer to the HW structure - * @address: XMDIO address to program - * @dev_addr: device address to program - * @data: pointer to value to read/write from/to the XMDIO address - * @read: boolean flag to indicate read or write - **/ -STATIC s32 __e1000_access_xmdio_reg(struct e1000_hw *hw, u16 address, - u8 dev_addr, u16 *data, bool read) -{ - s32 ret_val; - - DEBUGFUNC("__e1000_access_xmdio_reg"); - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA | - dev_addr); - if (ret_val) - return ret_val; - - if (read) - ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data); - else - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data); - if (ret_val) - return ret_val; - - /* Recalibrate the device back to 0 */ - ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0); - if (ret_val) - return ret_val; - - return ret_val; -} - -/** - * e1000_read_xmdio_reg - Read XMDIO register - * @hw: pointer to the HW structure - * @addr: XMDIO address to program - * @dev_addr: device address to program - * @data: value to be read from the EMI address - **/ -s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data) -{ - DEBUGFUNC("e1000_read_xmdio_reg"); - - return __e1000_access_xmdio_reg(hw, addr, dev_addr, data, true); -} - -/** - * e1000_write_xmdio_reg - Write XMDIO register - * @hw: pointer to the HW structure - * @addr: XMDIO address to program - * @dev_addr: device address to program - * @data: value to be written to the XMDIO address - **/ -s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data) -{ - DEBUGFUNC("e1000_read_xmdio_reg"); - - return __e1000_access_xmdio_reg(hw, addr, dev_addr, &data, false); -} - -/** - * e1000_pll_workaround_i210 - * @hw: pointer to the HW structure - * - * Works around an errata in the PLL circuit where it occasionally - * provides the wrong clock frequency after power up. - **/ -STATIC s32 e1000_pll_workaround_i210(struct e1000_hw *hw) -{ - s32 ret_val; - u32 wuc, mdicnfg, ctrl_ext, reg_val; - u16 nvm_word, phy_word, pci_word, tmp_nvm; - int i; - - /* Get and set needed register values */ - wuc = E1000_READ_REG(hw, E1000_WUC); - mdicnfg = E1000_READ_REG(hw, E1000_MDICNFG); - reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO; - E1000_WRITE_REG(hw, E1000_MDICNFG, reg_val); - - /* Get data from NVM, or set default */ - ret_val = e1000_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD, - &nvm_word); - if (ret_val != E1000_SUCCESS) - nvm_word = E1000_INVM_DEFAULT_AL; - tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL; - for (i = 0; i < E1000_MAX_PLL_TRIES; i++) { - /* check current state */ - hw->phy.ops.read_reg(hw, (E1000_PHY_PLL_FREQ_PAGE | - E1000_PHY_PLL_FREQ_REG), &phy_word); - if ((phy_word & E1000_PHY_PLL_UNCONF) - != E1000_PHY_PLL_UNCONF) { - ret_val = E1000_SUCCESS; - break; - } else { - ret_val = -E1000_ERR_PHY; - } - hw->phy.ops.reset(hw); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - E1000_WRITE_REG(hw, E1000_WUC, 0); - reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16); - E1000_WRITE_REG(hw, E1000_EEARBC, reg_val); - - e1000_read_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); - pci_word |= E1000_PCI_PMCSR_D3; - e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); - msec_delay(1); - pci_word &= ~E1000_PCI_PMCSR_D3; - e1000_write_pci_cfg(hw, E1000_PCI_PMCSR, &pci_word); - reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16); - E1000_WRITE_REG(hw, E1000_EEARBC, reg_val); - - /* restore WUC register */ - E1000_WRITE_REG(hw, E1000_WUC, wuc); - } - /* restore MDICNFG setting */ - E1000_WRITE_REG(hw, E1000_MDICNFG, mdicnfg); - return ret_val; -} - -/** - * e1000_init_hw_i210 - Init hw for I210/I211 - * @hw: pointer to the HW structure - * - * Called to initialize hw for i210 hw family. - **/ -s32 e1000_init_hw_i210(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_init_hw_i210"); - if ((hw->mac.type >= e1000_i210) && - !(e1000_get_flash_presence_i210(hw))) { - ret_val = e1000_pll_workaround_i210(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - } - ret_val = e1000_init_hw_82575(hw); - return ret_val; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.h deleted file mode 100755 index f2bd43bb..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_i210.h +++ /dev/null @@ -1,110 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_I210_H_ -#define _E1000_I210_H_ - -bool e1000_get_flash_presence_i210(struct e1000_hw *hw); -s32 e1000_update_flash_i210(struct e1000_hw *hw); -s32 e1000_update_nvm_checksum_i210(struct e1000_hw *hw); -s32 e1000_validate_nvm_checksum_i210(struct e1000_hw *hw); -s32 e1000_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_invm_version(struct e1000_hw *hw, - struct e1000_fw_version *invm_ver); -s32 e1000_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -void e1000_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask); -s32 e1000_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, - u16 *data); -s32 e1000_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, - u16 data); -s32 e1000_init_hw_i210(struct e1000_hw *hw); - -#define E1000_STM_OPCODE 0xDB00 -#define E1000_EEPROM_FLASH_SIZE_WORD 0x11 - -#define INVM_DWORD_TO_RECORD_TYPE(invm_dword) \ - (u8)((invm_dword) & 0x7) -#define INVM_DWORD_TO_WORD_ADDRESS(invm_dword) \ - (u8)(((invm_dword) & 0x0000FE00) >> 9) -#define INVM_DWORD_TO_WORD_DATA(invm_dword) \ - (u16)(((invm_dword) & 0xFFFF0000) >> 16) - -enum E1000_INVM_STRUCTURE_TYPE { - E1000_INVM_UNINITIALIZED_STRUCTURE = 0x00, - E1000_INVM_WORD_AUTOLOAD_STRUCTURE = 0x01, - E1000_INVM_CSR_AUTOLOAD_STRUCTURE = 0x02, - E1000_INVM_PHY_REGISTER_AUTOLOAD_STRUCTURE = 0x03, - E1000_INVM_RSA_KEY_SHA256_STRUCTURE = 0x04, - E1000_INVM_INVALIDATED_STRUCTURE = 0x0F, -}; - -#define E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS 8 -#define E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS 1 -#define E1000_INVM_ULT_BYTES_SIZE 8 -#define E1000_INVM_RECORD_SIZE_IN_BYTES 4 -#define E1000_INVM_VER_FIELD_ONE 0x1FF8 -#define E1000_INVM_VER_FIELD_TWO 0x7FE000 -#define E1000_INVM_IMGTYPE_FIELD 0x1F800000 - -#define E1000_INVM_MAJOR_MASK 0x3F0 -#define E1000_INVM_MINOR_MASK 0xF -#define E1000_INVM_MAJOR_SHIFT 4 - -#define ID_LED_DEFAULT_I210 ((ID_LED_OFF1_ON2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_OFF2)) -#define ID_LED_DEFAULT_I210_SERDES ((ID_LED_DEF1_DEF2 << 8) | \ - (ID_LED_DEF1_DEF2 << 4) | \ - (ID_LED_OFF1_ON2)) - -/* NVM offset defaults for I211 devices */ -#define NVM_INIT_CTRL_2_DEFAULT_I211 0X7243 -#define NVM_INIT_CTRL_4_DEFAULT_I211 0x00C1 -#define NVM_LED_1_CFG_DEFAULT_I211 0x0184 -#define NVM_LED_0_2_CFG_DEFAULT_I211 0x200C - -/* PLL Defines */ -#define E1000_PCI_PMCSR 0x44 -#define E1000_PCI_PMCSR_D3 0x03 -#define E1000_MAX_PLL_TRIES 5 -#define E1000_PHY_PLL_UNCONF 0xFF -#define E1000_PHY_PLL_FREQ_PAGE 0xFC0000 -#define E1000_PHY_PLL_FREQ_REG 0x000E -#define E1000_INVM_DEFAULT_AL 0x202F -#define E1000_INVM_AUTOLOAD 0x0A -#define E1000_INVM_PLL_WO_VAL 0x0010 - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.c deleted file mode 100755 index 3b1627bf..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.c +++ /dev/null @@ -1,5260 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -/* 82562G 10/100 Network Connection - * 82562G-2 10/100 Network Connection - * 82562GT 10/100 Network Connection - * 82562GT-2 10/100 Network Connection - * 82562V 10/100 Network Connection - * 82562V-2 10/100 Network Connection - * 82566DC-2 Gigabit Network Connection - * 82566DC Gigabit Network Connection - * 82566DM-2 Gigabit Network Connection - * 82566DM Gigabit Network Connection - * 82566MC Gigabit Network Connection - * 82566MM Gigabit Network Connection - * 82567LM Gigabit Network Connection - * 82567LF Gigabit Network Connection - * 82567V Gigabit Network Connection - * 82567LM-2 Gigabit Network Connection - * 82567LF-2 Gigabit Network Connection - * 82567V-2 Gigabit Network Connection - * 82567LF-3 Gigabit Network Connection - * 82567LM-3 Gigabit Network Connection - * 82567LM-4 Gigabit Network Connection - * 82577LM Gigabit Network Connection - * 82577LC Gigabit Network Connection - * 82578DM Gigabit Network Connection - * 82578DC Gigabit Network Connection - * 82579LM Gigabit Network Connection - * 82579V Gigabit Network Connection - * Ethernet Connection I217-LM - * Ethernet Connection I217-V - * Ethernet Connection I218-V - * Ethernet Connection I218-LM - */ - -#include "e1000_api.h" - -STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); -STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw); -STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw); -STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw); -STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); -STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); -STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); -STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); -STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw); -#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT -STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, - u8 *mc_addr_list, - u32 mc_addr_count); -#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ -STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); -STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, - bool active); -STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, - u16 *data); -STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); -STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); -STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); -STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw); -STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); -STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw); -STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw); -STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); -STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 *data); -STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data); -STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, - u32 offset, u16 *data); -STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 byte); -STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); -STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw); -STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); -STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw); -STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); - -/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ -/* Offset 04h HSFSTS */ -union ich8_hws_flash_status { - struct ich8_hsfsts { - u16 flcdone:1; /* bit 0 Flash Cycle Done */ - u16 flcerr:1; /* bit 1 Flash Cycle Error */ - u16 dael:1; /* bit 2 Direct Access error Log */ - u16 berasesz:2; /* bit 4:3 Sector Erase Size */ - u16 flcinprog:1; /* bit 5 flash cycle in Progress */ - u16 reserved1:2; /* bit 13:6 Reserved */ - u16 reserved2:6; /* bit 13:6 Reserved */ - u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ - u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ - } hsf_status; - u16 regval; -}; - -/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ -/* Offset 06h FLCTL */ -union ich8_hws_flash_ctrl { - struct ich8_hsflctl { - u16 flcgo:1; /* 0 Flash Cycle Go */ - u16 flcycle:2; /* 2:1 Flash Cycle */ - u16 reserved:5; /* 7:3 Reserved */ - u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ - u16 flockdn:6; /* 15:10 Reserved */ - } hsf_ctrl; - u16 regval; -}; - -/* ICH Flash Region Access Permissions */ -union ich8_hws_flash_regacc { - struct ich8_flracc { - u32 grra:8; /* 0:7 GbE region Read Access */ - u32 grwa:8; /* 8:15 GbE region Write Access */ - u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ - u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ - } hsf_flregacc; - u16 regval; -}; - -/** - * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers - * @hw: pointer to the HW structure - * - * Test access to the PHY registers by reading the PHY ID registers. If - * the PHY ID is already known (e.g. resume path) compare it with known ID, - * otherwise assume the read PHY ID is correct if it is valid. - * - * Assumes the sw/fw/hw semaphore is already acquired. - **/ -STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) -{ - u16 phy_reg = 0; - u32 phy_id = 0; - s32 ret_val = 0; - u16 retry_count; - u32 mac_reg = 0; - - for (retry_count = 0; retry_count < 2; retry_count++) { - ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg); - if (ret_val || (phy_reg == 0xFFFF)) - continue; - phy_id = (u32)(phy_reg << 16); - - ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg); - if (ret_val || (phy_reg == 0xFFFF)) { - phy_id = 0; - continue; - } - phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); - break; - } - - if (hw->phy.id) { - if (hw->phy.id == phy_id) - goto out; - } else if (phy_id) { - hw->phy.id = phy_id; - hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); - goto out; - } - - /* In case the PHY needs to be in mdio slow mode, - * set slow mode and try to get the PHY id again. - */ - if (hw->mac.type < e1000_pch_lpt) { - hw->phy.ops.release(hw); - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (!ret_val) - ret_val = e1000_get_phy_id(hw); - hw->phy.ops.acquire(hw); - } - - if (ret_val) - return false; -out: - if (hw->mac.type == e1000_pch_lpt) { - /* Unforce SMBus mode in PHY */ - hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg); - phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; - hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg); - - /* Unforce SMBus mode in MAC */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - } - - return true; -} - -/** - * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value - * @hw: pointer to the HW structure - * - * Toggling the LANPHYPC pin value fully power-cycles the PHY and is - * used to reset the PHY to a quiescent state when necessary. - **/ -STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) -{ - u32 mac_reg; - - DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt"); - - /* Set Phy Config Counter to 50msec */ - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3); - mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; - mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; - E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg); - - /* Toggle LANPHYPC Value bit */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL); - mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; - mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; - E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); - E1000_WRITE_FLUSH(hw); - usec_delay(10); - mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; - E1000_WRITE_REG(hw, E1000_CTRL, mac_reg); - E1000_WRITE_FLUSH(hw); - - if (hw->mac.type < e1000_pch_lpt) { - msec_delay(50); - } else { - u16 count = 20; - - do { - msec_delay(5); - } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) & - E1000_CTRL_EXT_LPCD) && count--); - - msec_delay(30); - } -} - -/** - * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds - * @hw: pointer to the HW structure - * - * Workarounds/flow necessary for PHY initialization during driver load - * and resume paths. - **/ -STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) -{ - u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM); - s32 ret_val; - - DEBUGFUNC("e1000_init_phy_workarounds_pchlan"); - - /* Gate automatic PHY configuration by hardware on managed and - * non-managed 82579 and newer adapters. - */ - e1000_gate_hw_phy_config_ich8lan(hw, true); - -#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT) - /* It is not possible to be certain of the current state of ULP - * so forcibly disable it. - */ - hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; - -#endif /* NAHUM6LP_HW && ULP_SUPPORT */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) { - DEBUGOUT("Failed to initialize PHY flow\n"); - goto out; - } - - /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is - * inaccessible and resetting the PHY is not blocked, toggle the - * LANPHYPC Value bit to force the interconnect to PCIe mode. - */ - switch (hw->mac.type) { - case e1000_pch_lpt: - if (e1000_phy_is_accessible_pchlan(hw)) - break; - - /* Before toggling LANPHYPC, see if PHY is accessible by - * forcing MAC to SMBus mode first. - */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - - /* Wait 50 milliseconds for MAC to finish any retries - * that it might be trying to perform from previous - * attempts to acknowledge any phy read requests. - */ - msec_delay(50); - - /* fall-through */ - case e1000_pch2lan: - if (e1000_phy_is_accessible_pchlan(hw)) - break; - - /* fall-through */ - case e1000_pchlan: - if ((hw->mac.type == e1000_pchlan) && - (fwsm & E1000_ICH_FWSM_FW_VALID)) - break; - - if (hw->phy.ops.check_reset_block(hw)) { - DEBUGOUT("Required LANPHYPC toggle blocked by ME\n"); - ret_val = -E1000_ERR_PHY; - break; - } - - /* Toggle LANPHYPC Value bit */ - e1000_toggle_lanphypc_pch_lpt(hw); - if (hw->mac.type >= e1000_pch_lpt) { - if (e1000_phy_is_accessible_pchlan(hw)) - break; - - /* Toggling LANPHYPC brings the PHY out of SMBus mode - * so ensure that the MAC is also out of SMBus mode - */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - - if (e1000_phy_is_accessible_pchlan(hw)) - break; - - ret_val = -E1000_ERR_PHY; - } - break; - default: - break; - } - - hw->phy.ops.release(hw); - if (!ret_val) { - - /* Check to see if able to reset PHY. Print error if not */ - if (hw->phy.ops.check_reset_block(hw)) { - ERROR_REPORT("Reset blocked by ME\n"); - goto out; - } - - /* Reset the PHY before any access to it. Doing so, ensures - * that the PHY is in a known good state before we read/write - * PHY registers. The generic reset is sufficient here, - * because we haven't determined the PHY type yet. - */ - ret_val = e1000_phy_hw_reset_generic(hw); - if (ret_val) - goto out; - - /* On a successful reset, possibly need to wait for the PHY - * to quiesce to an accessible state before returning control - * to the calling function. If the PHY does not quiesce, then - * return E1000E_BLK_PHY_RESET, as this is the condition that - * the PHY is in. - */ - ret_val = hw->phy.ops.check_reset_block(hw); - if (ret_val) - ERROR_REPORT("ME blocked access to PHY after reset\n"); - } - -out: - /* Ungate automatic PHY configuration on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(fwsm & E1000_ICH_FWSM_FW_VALID)) { - msec_delay(10); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - return ret_val; -} - -/** - * e1000_init_phy_params_pchlan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - **/ -STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - - DEBUGFUNC("e1000_init_phy_params_pchlan"); - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_swflag_ich8lan; - phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; - phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; - phy->ops.set_page = e1000_set_page_igp; - phy->ops.read_reg = e1000_read_phy_reg_hv; - phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; - phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; - phy->ops.release = e1000_release_swflag_ich8lan; - phy->ops.reset = e1000_phy_hw_reset_ich8lan; - phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; - phy->ops.write_reg = e1000_write_phy_reg_hv; - phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; - phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - phy->id = e1000_phy_unknown; - - ret_val = e1000_init_phy_workarounds_pchlan(hw); - if (ret_val) - return ret_val; - - if (phy->id == e1000_phy_unknown) - switch (hw->mac.type) { - default: - ret_val = e1000_get_phy_id(hw); - if (ret_val) - return ret_val; - if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) - break; - /* fall-through */ - case e1000_pch2lan: - case e1000_pch_lpt: - /* In case the PHY needs to be in mdio slow mode, - * set slow mode and try to get the PHY id again. - */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - return ret_val; - ret_val = e1000_get_phy_id(hw); - if (ret_val) - return ret_val; - break; - } - phy->type = e1000_get_phy_type_from_id(phy->id); - - switch (phy->type) { - case e1000_phy_82577: - case e1000_phy_82579: - case e1000_phy_i217: - phy->ops.check_polarity = e1000_check_polarity_82577; - phy->ops.force_speed_duplex = - e1000_phy_force_speed_duplex_82577; - phy->ops.get_cable_length = e1000_get_cable_length_82577; - phy->ops.get_info = e1000_get_phy_info_82577; - phy->ops.commit = e1000_phy_sw_reset_generic; - break; - case e1000_phy_82578: - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - phy->ops.get_cable_length = e1000_get_cable_length_m88; - phy->ops.get_info = e1000_get_phy_info_m88; - break; - default: - ret_val = -E1000_ERR_PHY; - break; - } - - return ret_val; -} - -/** - * e1000_init_phy_params_ich8lan - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific PHY parameters and function pointers. - **/ -STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 i = 0; - - DEBUGFUNC("e1000_init_phy_params_ich8lan"); - - phy->addr = 1; - phy->reset_delay_us = 100; - - phy->ops.acquire = e1000_acquire_swflag_ich8lan; - phy->ops.check_reset_block = e1000_check_reset_block_ich8lan; - phy->ops.get_cable_length = e1000_get_cable_length_igp_2; - phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan; - phy->ops.read_reg = e1000_read_phy_reg_igp; - phy->ops.release = e1000_release_swflag_ich8lan; - phy->ops.reset = e1000_phy_hw_reset_ich8lan; - phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan; - phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan; - phy->ops.write_reg = e1000_write_phy_reg_igp; - phy->ops.power_up = e1000_power_up_phy_copper; - phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; - - /* We may need to do this twice - once for IGP and if that fails, - * we'll set BM func pointers and try again - */ - ret_val = e1000_determine_phy_address(hw); - if (ret_val) { - phy->ops.write_reg = e1000_write_phy_reg_bm; - phy->ops.read_reg = e1000_read_phy_reg_bm; - ret_val = e1000_determine_phy_address(hw); - if (ret_val) { - DEBUGOUT("Cannot determine PHY addr. Erroring out\n"); - return ret_val; - } - } - - phy->id = 0; - while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) && - (i++ < 100)) { - msec_delay(1); - ret_val = e1000_get_phy_id(hw); - if (ret_val) - return ret_val; - } - - /* Verify phy id */ - switch (phy->id) { - case IGP03E1000_E_PHY_ID: - phy->type = e1000_phy_igp_3; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked; - phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked; - phy->ops.get_info = e1000_get_phy_info_igp; - phy->ops.check_polarity = e1000_check_polarity_igp; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy->type = e1000_phy_ife; - phy->autoneg_mask = E1000_ALL_NOT_GIG; - phy->ops.get_info = e1000_get_phy_info_ife; - phy->ops.check_polarity = e1000_check_polarity_ife; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; - break; - case BME1000_E_PHY_ID: - phy->type = e1000_phy_bm; - phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; - phy->ops.read_reg = e1000_read_phy_reg_bm; - phy->ops.write_reg = e1000_write_phy_reg_bm; - phy->ops.commit = e1000_phy_sw_reset_generic; - phy->ops.get_info = e1000_get_phy_info_m88; - phy->ops.check_polarity = e1000_check_polarity_m88; - phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88; - break; - default: - return -E1000_ERR_PHY; - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific NVM parameters and function - * pointers. - **/ -STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 gfpreg, sector_base_addr, sector_end_addr; - u16 i; - - DEBUGFUNC("e1000_init_nvm_params_ich8lan"); - - /* Can't read flash registers if the register set isn't mapped. */ - nvm->type = e1000_nvm_flash_sw; - if (!hw->flash_address) { - DEBUGOUT("ERROR: Flash registers not mapped\n"); - return -E1000_ERR_CONFIG; - } - - gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG); - - /* sector_X_addr is a "sector"-aligned address (4096 bytes) - * Add 1 to sector_end_addr since this sector is included in - * the overall size. - */ - sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; - sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; - - /* flash_base_addr is byte-aligned */ - nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; - - /* find total size of the NVM, then cut in half since the total - * size represents two separate NVM banks. - */ - nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) - << FLASH_SECTOR_ADDR_SHIFT); - nvm->flash_bank_size /= 2; - /* Adjust to word count */ - nvm->flash_bank_size /= sizeof(u16); - - nvm->word_size = E1000_SHADOW_RAM_WORDS; - - /* Clear shadow ram */ - for (i = 0; i < nvm->word_size; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - - E1000_MUTEX_INIT(&dev_spec->nvm_mutex); - E1000_MUTEX_INIT(&dev_spec->swflag_mutex); - - /* Function Pointers */ - nvm->ops.acquire = e1000_acquire_nvm_ich8lan; - nvm->ops.release = e1000_release_nvm_ich8lan; - nvm->ops.read = e1000_read_nvm_ich8lan; - nvm->ops.update = e1000_update_nvm_checksum_ich8lan; - nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan; - nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan; - nvm->ops.write = e1000_write_nvm_ich8lan; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_ich8lan - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific MAC parameters and function - * pointers. - **/ -STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; -#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) - u16 pci_cfg; -#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ - - DEBUGFUNC("e1000_init_mac_params_ich8lan"); - - /* Set media type function pointer */ - hw->phy.media_type = e1000_media_type_copper; - - /* Set mta register count */ - mac->mta_reg_count = 32; - /* Set rar entry count */ - mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; - if (mac->type == e1000_ich8lan) - mac->rar_entry_count--; - /* Set if part includes ASF firmware */ - mac->asf_firmware_present = true; - /* FWSM register */ - mac->has_fwsm = true; - /* ARC subsystem not supported */ - mac->arc_subsystem_valid = false; - /* Adaptive IFS supported */ - mac->adaptive_ifs = true; - - /* Function pointers */ - - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_ich8lan; - /* function id */ - mac->ops.set_lan_id = e1000_set_lan_id_single_port; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_ich8lan; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_ich8lan; - /* link setup */ - mac->ops.setup_link = e1000_setup_link_ich8lan; - /* physical interface setup */ - mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic; - /* clear hardware counters */ - mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan; - - /* LED and other operations */ - switch (mac->type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_generic; - /* blink LED */ - mac->ops.blink_led = e1000_blink_led_generic; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_generic; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_ich8lan; - mac->ops.led_off = e1000_led_off_ich8lan; - break; - case e1000_pch2lan: - mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; - mac->ops.rar_set = e1000_rar_set_pch2lan; - /* fall-through */ - case e1000_pch_lpt: -#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT - /* multicast address update for pch2 */ - mac->ops.update_mc_addr_list = - e1000_update_mc_addr_list_pch2lan; -#endif - case e1000_pchlan: -#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) - /* save PCH revision_id */ - e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg); - hw->revision_id = (u8)(pci_cfg &= 0x000F); -#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */ - /* check management mode */ - mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; - /* ID LED init */ - mac->ops.id_led_init = e1000_id_led_init_pchlan; - /* setup LED */ - mac->ops.setup_led = e1000_setup_led_pchlan; - /* cleanup LED */ - mac->ops.cleanup_led = e1000_cleanup_led_pchlan; - /* turn on/off LED */ - mac->ops.led_on = e1000_led_on_pchlan; - mac->ops.led_off = e1000_led_off_pchlan; - break; - default: - break; - } - - if (mac->type == e1000_pch_lpt) { - mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; - mac->ops.rar_set = e1000_rar_set_pch_lpt; - mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt; - } - - /* Enable PCS Lock-loss workaround for ICH8 */ - if (mac->type == e1000_ich8lan) - e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true); - - return E1000_SUCCESS; -} - -/** - * __e1000_access_emi_reg_locked - Read/write EMI register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: pointer to value to read/write from/to the EMI address - * @read: boolean flag to indicate read or write - * - * This helper function assumes the SW/FW/HW Semaphore is already acquired. - **/ -STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, - u16 *data, bool read) -{ - s32 ret_val; - - DEBUGFUNC("__e1000_access_emi_reg_locked"); - - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address); - if (ret_val) - return ret_val; - - if (read) - ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA, - data); - else - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, - *data); - - return ret_val; -} - -/** - * e1000_read_emi_reg_locked - Read Extended Management Interface register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: value to be read from the EMI address - * - * Assumes the SW/FW/HW Semaphore is already acquired. - **/ -s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) -{ - DEBUGFUNC("e1000_read_emi_reg_locked"); - - return __e1000_access_emi_reg_locked(hw, addr, data, true); -} - -/** - * e1000_write_emi_reg_locked - Write Extended Management Interface register - * @hw: pointer to the HW structure - * @addr: EMI address to program - * @data: value to be written to the EMI address - * - * Assumes the SW/FW/HW Semaphore is already acquired. - **/ -s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) -{ - DEBUGFUNC("e1000_read_emi_reg_locked"); - - return __e1000_access_emi_reg_locked(hw, addr, &data, false); -} - -/** - * e1000_set_eee_pchlan - Enable/disable EEE support - * @hw: pointer to the HW structure - * - * Enable/disable EEE based on setting in dev_spec structure, the duplex of - * the link and the EEE capabilities of the link partner. The LPI Control - * register bits will remain set only if/when link is up. - * - * EEE LPI must not be asserted earlier than one second after link is up. - * On 82579, EEE LPI should not be enabled until such time otherwise there - * can be link issues with some switches. Other devices can have EEE LPI - * enabled immediately upon link up since they have a timer in hardware which - * prevents LPI from being asserted too early. - **/ -s32 e1000_set_eee_pchlan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - s32 ret_val; - u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; - - DEBUGFUNC("e1000_set_eee_pchlan"); - - switch (hw->phy.type) { - case e1000_phy_82579: - lpa = I82579_EEE_LP_ABILITY; - pcs_status = I82579_EEE_PCS_STATUS; - adv_addr = I82579_EEE_ADVERTISEMENT; - break; - case e1000_phy_i217: - lpa = I217_EEE_LP_ABILITY; - pcs_status = I217_EEE_PCS_STATUS; - adv_addr = I217_EEE_ADVERTISEMENT; - break; - default: - return E1000_SUCCESS; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); - if (ret_val) - goto release; - - /* Clear bits that enable EEE in various speeds */ - lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; - - /* Enable EEE if not disabled by user */ - if (!dev_spec->eee_disable) { - /* Save off link partner's EEE ability */ - ret_val = e1000_read_emi_reg_locked(hw, lpa, - &dev_spec->eee_lp_ability); - if (ret_val) - goto release; - - /* Read EEE advertisement */ - ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); - if (ret_val) - goto release; - - /* Enable EEE only for speeds in which the link partner is - * EEE capable and for which we advertise EEE. - */ - if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) - lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; - - if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { - hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data); - if (data & NWAY_LPAR_100TX_FD_CAPS) - lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; - else - /* EEE is not supported in 100Half, so ignore - * partner's EEE in 100 ability if full-duplex - * is not advertised. - */ - dev_spec->eee_lp_ability &= - ~I82579_EEE_100_SUPPORTED; - } - } - - /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ - ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); - if (ret_val) - goto release; - - ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl); -release: - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP - * @hw: pointer to the HW structure - * @link: link up bool flag - * - * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications - * preventing further DMA write requests. Workaround the issue by disabling - * the de-assertion of the clock request when in 1Gpbs mode. - * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link - * speeds in order to avoid Tx hangs. - **/ -STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) -{ - u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); - u32 status = E1000_READ_REG(hw, E1000_STATUS); - s32 ret_val = E1000_SUCCESS; - u16 reg; - - if (link && (status & E1000_STATUS_SPEED_1000)) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = - e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, - ®); - if (ret_val) - goto release; - - ret_val = - e1000_write_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - reg & - ~E1000_KMRNCTRLSTA_K1_ENABLE); - if (ret_val) - goto release; - - usec_delay(10); - - E1000_WRITE_REG(hw, E1000_FEXTNVM6, - fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); - - ret_val = - e1000_write_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_K1_CONFIG, - reg); -release: - hw->phy.ops.release(hw); - } else { - /* clear FEXTNVM6 bit 8 on link down or 10/100 */ - fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; - - if (!link || ((status & E1000_STATUS_SPEED_100) && - (status & E1000_STATUS_FD))) - goto update_fextnvm6; - - ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, ®); - if (ret_val) - return ret_val; - - /* Clear link status transmit timeout */ - reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; - - if (status & E1000_STATUS_SPEED_100) { - /* Set inband Tx timeout to 5x10us for 100Half */ - reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; - - /* Do not extend the K1 entry latency for 100Half */ - fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; - } else { - /* Set inband Tx timeout to 50x10us for 10Full/Half */ - reg |= 50 << - I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; - - /* Extend the K1 entry latency for 10 Mbps */ - fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; - } - - ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg); - if (ret_val) - return ret_val; - -update_fextnvm6: - E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6); - } - - return ret_val; -} - -#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT) -/** - * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP - * @hw: pointer to the HW structure - * @to_sx: boolean indicating a system power state transition to Sx - * - * When link is down, configure ULP mode to significantly reduce the power - * to the PHY. If on a Manageability Engine (ME) enabled system, tell the - * ME firmware to start the ULP configuration. If not on an ME enabled - * system, configure the ULP mode by software. - */ -s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) -{ - u32 mac_reg; - s32 ret_val = E1000_SUCCESS; - u16 phy_reg; - - if ((hw->mac.type < e1000_pch_lpt) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || - (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) - return 0; - - if (!to_sx) { - int i = 0; - - /* Poll up to 5 seconds for Cable Disconnected indication */ - while (!(E1000_READ_REG(hw, E1000_FEXT) & - E1000_FEXT_PHY_CABLE_DISCONNECTED)) { - /* Bail if link is re-acquired */ - if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) - return -E1000_ERR_PHY; - - if (i++ == 100) - break; - - msec_delay(50); - } - DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n", - (E1000_READ_REG(hw, E1000_FEXT) & - E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", - i * 50); - } - - if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { - /* Request ME configure ULP mode in the PHY */ - mac_reg = E1000_READ_REG(hw, E1000_H2ME); - mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; - E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); - - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* During S0 Idle keep the phy in PCI-E mode */ - if (hw->dev_spec.ich8lan.smbus_disable) - goto skip_smbus; - - /* Force SMBus mode in PHY */ - ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); - if (ret_val) - goto release; - phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; - e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); - - /* Force SMBus mode in MAC */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - -skip_smbus: - if (!to_sx) { - /* Change the 'Link Status Change' interrupt to trigger - * on 'Cable Status Change' - */ - ret_val = e1000_read_kmrn_reg_locked(hw, - E1000_KMRNCTRLSTA_OP_MODES, - &phy_reg); - if (ret_val) - goto release; - phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; - e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, - phy_reg); - } - - /* Set Inband ULP Exit, Reset to SMBus mode and - * Disable SMBus Release on PERST# in PHY - */ - ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); - if (ret_val) - goto release; - phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | - I218_ULP_CONFIG1_DISABLE_SMB_PERST); - if (to_sx) { - if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC) - phy_reg |= I218_ULP_CONFIG1_WOL_HOST; - - phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; - } else { - phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; - } - e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); - - /* Set Disable SMBus Release on PERST# in MAC */ - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); - mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; - E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); - - /* Commit ULP changes in PHY by starting auto ULP configuration */ - phy_reg |= I218_ULP_CONFIG1_START; - e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); - - if (!to_sx) { - /* Disable Tx so that the MAC doesn't send any (buffered) - * packets to the PHY. - */ - mac_reg = E1000_READ_REG(hw, E1000_TCTL); - mac_reg &= ~E1000_TCTL_EN; - E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); - } -release: - hw->phy.ops.release(hw); -out: - if (ret_val) - DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val); - else - hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; - - return ret_val; -} - -/** - * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP - * @hw: pointer to the HW structure - * @force: boolean indicating whether or not to force disabling ULP - * - * Un-configure ULP mode when link is up, the system is transitioned from - * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled - * system, poll for an indication from ME that ULP has been un-configured. - * If not on an ME enabled system, un-configure the ULP mode by software. - * - * During nominal operation, this function is called when link is acquired - * to disable ULP mode (force=false); otherwise, for example when unloading - * the driver or during Sx->S0 transitions, this is called with force=true - * to forcibly disable ULP. - - * When the cable is plugged in while the device is in D0, a Cable Status - * Change interrupt is generated which causes this function to be called - * to partially disable ULP mode and restart autonegotiation. This function - * is then called again due to the resulting Link Status Change interrupt - * to finish cleaning up after the ULP flow. - */ -s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) -{ - s32 ret_val = E1000_SUCCESS; - u32 mac_reg; - u16 phy_reg; - int i = 0; - - if ((hw->mac.type < e1000_pch_lpt) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) || - (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) - return 0; - - if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) { - if (force) { - /* Request ME un-configure ULP mode in the PHY */ - mac_reg = E1000_READ_REG(hw, E1000_H2ME); - mac_reg &= ~E1000_H2ME_ULP; - mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; - E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); - } - - /* Poll up to 100msec for ME to clear ULP_CFG_DONE */ - while (E1000_READ_REG(hw, E1000_FWSM) & - E1000_FWSM_ULP_CFG_DONE) { - if (i++ == 10) { - ret_val = -E1000_ERR_PHY; - goto out; - } - - msec_delay(10); - } - DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); - - if (force) { - mac_reg = E1000_READ_REG(hw, E1000_H2ME); - mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; - E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); - } else { - /* Clear H2ME.ULP after ME ULP configuration */ - mac_reg = E1000_READ_REG(hw, E1000_H2ME); - mac_reg &= ~E1000_H2ME_ULP; - E1000_WRITE_REG(hw, E1000_H2ME, mac_reg); - - /* Restore link speed advertisements and restart - * Auto-negotiation - */ - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) - goto out; - - ret_val = e1000_oem_bits_config_ich8lan(hw, true); - } - - goto out; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - /* Revert the change to the 'Link Status Change' - * interrupt to trigger on 'Cable Status Change' - */ - ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, - &phy_reg); - if (ret_val) - goto release; - phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC; - e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg); - - if (force) - /* Toggle LANPHYPC Value bit */ - e1000_toggle_lanphypc_pch_lpt(hw); - - /* Unforce SMBus mode in PHY */ - ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); - if (ret_val) { - /* The MAC might be in PCIe mode, so temporarily force to - * SMBus mode in order to access the PHY. - */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - - msec_delay(50); - - ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, - &phy_reg); - if (ret_val) - goto release; - } - phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; - e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); - - /* Unforce SMBus mode in MAC */ - mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg); - - /* When ULP mode was previously entered, K1 was disabled by the - * hardware. Re-Enable K1 in the PHY when exiting ULP. - */ - ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); - if (ret_val) - goto release; - phy_reg |= HV_PM_CTRL_K1_ENABLE; - e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); - - /* Clear ULP enabled configuration */ - ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); - if (ret_val) - goto release; - /* CSC interrupt received due to ULP Indication */ - if ((phy_reg & I218_ULP_CONFIG1_IND) || force) { - phy_reg &= ~(I218_ULP_CONFIG1_IND | - I218_ULP_CONFIG1_STICKY_ULP | - I218_ULP_CONFIG1_RESET_TO_SMBUS | - I218_ULP_CONFIG1_WOL_HOST | - I218_ULP_CONFIG1_INBAND_EXIT | - I218_ULP_CONFIG1_DISABLE_SMB_PERST); - e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); - - /* Commit ULP changes by starting auto ULP configuration */ - phy_reg |= I218_ULP_CONFIG1_START; - e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); - - /* Clear Disable SMBus Release on PERST# in MAC */ - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7); - mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; - E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg); - - if (!force) { - hw->phy.ops.release(hw); - - if (hw->mac.autoneg) - e1000_phy_setup_autoneg(hw); - - e1000_sw_lcd_config_ich8lan(hw); - - e1000_oem_bits_config_ich8lan(hw, true); - - /* Set ULP state to unknown and return non-zero to - * indicate no link (yet) and re-enter on the next LSC - * to finish disabling ULP flow. - */ - hw->dev_spec.ich8lan.ulp_state = - e1000_ulp_state_unknown; - - return 1; - } - } - - /* Re-enable Tx */ - mac_reg = E1000_READ_REG(hw, E1000_TCTL); - mac_reg |= E1000_TCTL_EN; - E1000_WRITE_REG(hw, E1000_TCTL, mac_reg); - -release: - hw->phy.ops.release(hw); - if (force) { - hw->phy.ops.reset(hw); - msec_delay(50); - } -out: - if (ret_val) - DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val); - else - hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; - - return ret_val; -} - -#endif /* NAHUM6LP_HW && ULP_SUPPORT */ -/** - * e1000_check_for_copper_link_ich8lan - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link = false; - u16 phy_reg; - - DEBUGFUNC("e1000_check_for_copper_link_ich8lan"); - - /* We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) - return E1000_SUCCESS; - - if ((hw->mac.type < e1000_pch_lpt) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) || - (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) { - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - } else { - /* Check the MAC's STATUS register to determine link state - * since the PHY could be inaccessible while in ULP mode. - */ - link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU); - if (link) - ret_val = e1000_disable_ulp_lpt_lp(hw, false); - else - ret_val = e1000_enable_ulp_lpt_lp(hw, false); - - if (ret_val) - return ret_val; - } - - if (hw->mac.type == e1000_pchlan) { - ret_val = e1000_k1_gig_workaround_hv(hw, link); - if (ret_val) - return ret_val; - } - - /* When connected at 10Mbps half-duplex, some parts are excessively - * aggressive resulting in many collisions. To avoid this, increase - * the IPG and reduce Rx latency in the PHY. - */ - if (((hw->mac.type == e1000_pch2lan) || - (hw->mac.type == e1000_pch_lpt)) && link) { - u32 reg; - reg = E1000_READ_REG(hw, E1000_STATUS); - if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) { - u16 emi_addr; - - reg = E1000_READ_REG(hw, E1000_TIPG); - reg &= ~E1000_TIPG_IPGT_MASK; - reg |= 0xFF; - E1000_WRITE_REG(hw, E1000_TIPG, reg); - - /* Reduce Rx latency in analog PHY */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - if (hw->mac.type == e1000_pch2lan) - emi_addr = I82579_RX_CONFIG; - else - emi_addr = I217_RX_CONFIG; - ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0); - - hw->phy.ops.release(hw); - - if (ret_val) - return ret_val; - } - } - - /* Work-around I218 hang issue */ - if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || - (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) { - ret_val = e1000_k1_workaround_lpt_lp(hw, link); - if (ret_val) - return ret_val; - } - - /* Clear link partner's EEE ability */ - hw->dev_spec.ich8lan.eee_lp_ability = 0; - - if (!link) - return E1000_SUCCESS; /* No link detected */ - - mac->get_link_status = false; - - switch (hw->mac.type) { - case e1000_pch2lan: - ret_val = e1000_k1_workaround_lv(hw); - if (ret_val) - return ret_val; - /* fall-thru */ - case e1000_pchlan: - if (hw->phy.type == e1000_phy_82578) { - ret_val = e1000_link_stall_workaround_hv(hw); - if (ret_val) - return ret_val; - } - - /* Workaround for PCHx parts in half-duplex: - * Set the number of preambles removed from the packet - * when it is passed from the PHY to the MAC to prevent - * the MAC from misinterpreting the packet type. - */ - hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); - phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; - - if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) != - E1000_STATUS_FD) - phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); - - hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); - break; - default: - break; - } - - /* Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000_check_downshift_generic(hw); - - /* Enable/Disable EEE after link up */ - if (hw->phy.type > e1000_phy_82579) { - ret_val = e1000_set_eee_pchlan(hw); - if (ret_val) - return ret_val; - } - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) - return -E1000_ERR_CONFIG; - - /* Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - mac->ops.config_collision_dist(hw); - - /* Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - - return ret_val; -} - -/** - * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers - * @hw: pointer to the HW structure - * - * Initialize family-specific function pointers for PHY, MAC, and NVM. - **/ -void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_ich8lan"); - - hw->mac.ops.init_params = e1000_init_mac_params_ich8lan; - hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan; - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - case e1000_ich10lan: - hw->phy.ops.init_params = e1000_init_phy_params_ich8lan; - break; - case e1000_pchlan: - case e1000_pch2lan: - case e1000_pch_lpt: - hw->phy.ops.init_params = e1000_init_phy_params_pchlan; - break; - default: - break; - } -} - -/** - * e1000_acquire_nvm_ich8lan - Acquire NVM mutex - * @hw: pointer to the HW structure - * - * Acquires the mutex for performing NVM operations. - **/ -STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_acquire_nvm_ich8lan"); - - E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex); - - return E1000_SUCCESS; -} - -/** - * e1000_release_nvm_ich8lan - Release NVM mutex - * @hw: pointer to the HW structure - * - * Releases the mutex used while performing NVM operations. - **/ -STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_release_nvm_ich8lan"); - - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex); - - return; -} - -/** - * e1000_acquire_swflag_ich8lan - Acquire software control flag - * @hw: pointer to the HW structure - * - * Acquires the software control flag for performing PHY and select - * MAC CSR accesses. - **/ -STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_acquire_swflag_ich8lan"); - - E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) - break; - - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SW has already locked the resource.\n"); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - - timeout = SW_FLAG_TIMEOUT; - - extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - - while (timeout) { - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) - break; - - msec_delay_irq(1); - timeout--; - } - - if (!timeout) { - DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", - E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl); - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - ret_val = -E1000_ERR_CONFIG; - goto out; - } - -out: - if (ret_val) - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - return ret_val; -} - -/** - * e1000_release_swflag_ich8lan - Release software control flag - * @hw: pointer to the HW structure - * - * Releases the software control flag for performing PHY and select - * MAC CSR accesses. - **/ -STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw) -{ - u32 extcnf_ctrl; - - DEBUGFUNC("e1000_release_swflag_ich8lan"); - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - - if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); - } else { - DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n"); - } - - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - return; -} - -/** - * e1000_check_mng_mode_ich8lan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has any manageability enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - **/ -STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_ich8lan"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return (fwsm & E1000_ICH_FWSM_FW_VALID) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/** - * e1000_check_mng_mode_pchlan - Checks management mode - * @hw: pointer to the HW structure - * - * This checks if the adapter has iAMT enabled. - * This is a function pointer entry point only called by read/write - * routines for the PHY and NVM parts. - **/ -STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) -{ - u32 fwsm; - - DEBUGFUNC("e1000_check_mng_mode_pchlan"); - - fwsm = E1000_READ_REG(hw, E1000_FWSM); - - return (fwsm & E1000_ICH_FWSM_FW_VALID) && - (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); -} - -/** - * e1000_rar_set_pch2lan - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. For 82579, RAR[0] is the base address register that is to - * contain the MAC address but RAR[1-6] are reserved for manageability (ME). - * Use SHRA[0-3] in place of those reserved for ME. - **/ -STATIC void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_pch2lan"); - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | - ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - if (index == 0) { - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); - return; - } - - /* RAR[1-6] are owned by manageability. Skip those and program the - * next address into the SHRA register array. - */ - if (index < (u32) (hw->mac.rar_entry_count)) { - s32 ret_val; - - ret_val = e1000_acquire_swflag_ich8lan(hw); - if (ret_val) - goto out; - - E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high); - E1000_WRITE_FLUSH(hw); - - e1000_release_swflag_ich8lan(hw); - - /* verify the register updates */ - if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) && - (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high)) - return; - - DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", - (index - 1), E1000_READ_REG(hw, E1000_FWSM)); - } - -out: - DEBUGOUT1("Failed to write receive address at index %d\n", index); -} - -/** - * e1000_rar_set_pch_lpt - Set receive address registers - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address register array at index to the address passed - * in by addr. For LPT, RAR[0] is the base address register that is to - * contain the MAC address. SHRA[0-10] are the shared receive address - * registers that are shared between the Host and manageability engine (ME). - **/ -STATIC void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - u32 wlock_mac; - - DEBUGFUNC("e1000_rar_set_pch_lpt"); - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - if (index == 0) { - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); - return; - } - - /* The manageability engine (ME) can lock certain SHRAR registers that - * it is using - those registers are unavailable for use. - */ - if (index < hw->mac.rar_entry_count) { - wlock_mac = E1000_READ_REG(hw, E1000_FWSM) & - E1000_FWSM_WLOCK_MAC_MASK; - wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; - - /* Check if all SHRAR registers are locked */ - if (wlock_mac == 1) - goto out; - - if ((wlock_mac == 0) || (index <= wlock_mac)) { - s32 ret_val; - - ret_val = e1000_acquire_swflag_ich8lan(hw); - - if (ret_val) - goto out; - - E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1), - rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1), - rar_high); - E1000_WRITE_FLUSH(hw); - - e1000_release_swflag_ich8lan(hw); - - /* verify the register updates */ - if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) && - (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high)) - return; - } - } - -out: - DEBUGOUT1("Failed to write receive address at index %d\n", index); -} - -#ifndef NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT -/** - * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array of the PCH2 MAC and PHY. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw, - u8 *mc_addr_list, - u32 mc_addr_count) -{ - u16 phy_reg = 0; - int i; - s32 ret_val; - - DEBUGFUNC("e1000_update_mc_addr_list_pch2lan"); - - e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) - goto release; - - for (i = 0; i < hw->mac.mta_reg_count; i++) { - hw->phy.ops.write_reg_page(hw, BM_MTA(i), - (u16)(hw->mac.mta_shadow[i] & - 0xFFFF)); - hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1), - (u16)((hw->mac.mta_shadow[i] >> 16) & - 0xFFFF)); - } - - e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - -release: - hw->phy.ops.release(hw); -} - -#endif /* NO_NON_BLOCKING_PHY_MTA_UPDATE_SUPPORT */ -/** - * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Checks if firmware is blocking the reset of the PHY. - * This is a function pointer entry point only called by - * reset routines. - **/ -STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) -{ - u32 fwsm; - bool blocked = false; - int i = 0; - - DEBUGFUNC("e1000_check_reset_block_ich8lan"); - - do { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) { - blocked = true; - msec_delay(10); - continue; - } - blocked = false; - } while (blocked && (i++ < 10)); - return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS; -} - -/** - * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states - * @hw: pointer to the HW structure - * - * Assumes semaphore already acquired. - * - **/ -STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw) -{ - u16 phy_data; - u32 strap = E1000_READ_REG(hw, E1000_STRAP); - u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> - E1000_STRAP_SMT_FREQ_SHIFT; - s32 ret_val; - - strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; - - ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~HV_SMB_ADDR_MASK; - phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); - phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; - - if (hw->phy.type == e1000_phy_i217) { - /* Restore SMBus frequency */ - if (freq--) { - phy_data &= ~HV_SMB_ADDR_FREQ_MASK; - phy_data |= (freq & (1 << 0)) << - HV_SMB_ADDR_FREQ_LOW_SHIFT; - phy_data |= (freq & (1 << 1)) << - (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); - } else { - DEBUGOUT("Unsupported SMB frequency in PHY\n"); - } - } - - return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); -} - -/** - * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * - * SW should configure the LCD from the NVM extended configuration region - * as a workaround for certain parts. - **/ -STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; - s32 ret_val = E1000_SUCCESS; - u16 word_addr, reg_data, reg_addr, phy_page = 0; - - DEBUGFUNC("e1000_sw_lcd_config_ich8lan"); - - /* Initialize the PHY from the NVM on ICH platforms. This - * is needed due to an issue where the NVM configuration is - * not properly autoloaded after power transitions. - * Therefore, after each PHY reset, we will load the - * configuration data out of the NVM manually. - */ - switch (hw->mac.type) { - case e1000_ich8lan: - if (phy->type != e1000_phy_igp_3) - return ret_val; - - if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) || - (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) { - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; - break; - } - /* Fall-thru */ - case e1000_pchlan: - case e1000_pch2lan: - case e1000_pch_lpt: - sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; - break; - default: - return ret_val; - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - data = E1000_READ_REG(hw, E1000_FEXTNVM); - if (!(data & sw_cfg_mask)) - goto release; - - /* Make sure HW does not configure LCD from PHY - * extended configuration before SW configuration - */ - data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if ((hw->mac.type < e1000_pch2lan) && - (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) - goto release; - - cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE); - cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; - cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; - if (!cnf_size) - goto release; - - cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; - cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; - - if (((hw->mac.type == e1000_pchlan) && - !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || - (hw->mac.type > e1000_pchlan)) { - /* HW configures the SMBus address and LEDs when the - * OEM and LCD Write Enable bits are set in the NVM. - * When both NVM bits are cleared, SW will configure - * them instead. - */ - ret_val = e1000_write_smbus_addr(hw); - if (ret_val) - goto release; - - data = E1000_READ_REG(hw, E1000_LEDCTL); - ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, - (u16)data); - if (ret_val) - goto release; - } - - /* Configure LCD from extended configuration region. */ - - /* cnf_base_addr is in DWORD */ - word_addr = (u16)(cnf_base_addr << 1); - - for (i = 0; i < cnf_size; i++) { - ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1, - ®_data); - if (ret_val) - goto release; - - ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1), - 1, ®_addr); - if (ret_val) - goto release; - - /* Save off the PHY page for future writes. */ - if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { - phy_page = reg_data; - continue; - } - - reg_addr &= PHY_REG_MASK; - reg_addr |= phy_page; - - ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, - reg_data); - if (ret_val) - goto release; - } - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_k1_gig_workaround_hv - K1 Si workaround - * @hw: pointer to the HW structure - * @link: link up bool flag - * - * If K1 is enabled for 1Gbps, the MAC might stall when transitioning - * from a lower speed. This workaround disables K1 whenever link is at 1Gig - * If link is down, the function will restore the default K1 setting located - * in the NVM. - **/ -STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) -{ - s32 ret_val = E1000_SUCCESS; - u16 status_reg = 0; - bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; - - DEBUGFUNC("e1000_k1_gig_workaround_hv"); - - if (hw->mac.type != e1000_pchlan) - return E1000_SUCCESS; - - /* Wrap the whole flow with the sw flag */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ - if (link) { - if (hw->phy.type == e1000_phy_82578) { - ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK); - - if (status_reg == (BM_CS_STATUS_LINK_UP | - BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - k1_enable = false; - } - - if (hw->phy.type == e1000_phy_82577) { - ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, - &status_reg); - if (ret_val) - goto release; - - status_reg &= (HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_MASK); - - if (status_reg == (HV_M_STATUS_LINK_UP | - HV_M_STATUS_AUTONEG_COMPLETE | - HV_M_STATUS_SPEED_1000)) - k1_enable = false; - } - - /* Link stall fix for link up */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x0100); - if (ret_val) - goto release; - - } else { - /* Link stall fix for link down */ - ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), - 0x4100); - if (ret_val) - goto release; - } - - ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); - -release: - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_configure_k1_ich8lan - Configure K1 power state - * @hw: pointer to the HW structure - * @enable: K1 state to configure - * - * Configure the K1 power state based on the provided parameter. - * Assumes semaphore already acquired. - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - **/ -s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) -{ - s32 ret_val; - u32 ctrl_reg = 0; - u32 ctrl_ext = 0; - u32 reg = 0; - u16 kmrn_reg = 0; - - DEBUGFUNC("e1000_configure_k1_ich8lan"); - - ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, - &kmrn_reg); - if (ret_val) - return ret_val; - - if (k1_enable) - kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; - else - kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; - - ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, - kmrn_reg); - if (ret_val) - return ret_val; - - usec_delay(20); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_reg = E1000_READ_REG(hw, E1000_CTRL); - - reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - reg |= E1000_CTRL_FRCSPD; - E1000_WRITE_REG(hw, E1000_CTRL, reg); - - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); - E1000_WRITE_FLUSH(hw); - usec_delay(20); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - usec_delay(20); - - return E1000_SUCCESS; -} - -/** - * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration - * @hw: pointer to the HW structure - * @d0_state: boolean if entering d0 or d3 device state - * - * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are - * collectively called OEM bits. The OEM Write Enable bit and SW Config bit - * in NVM determines whether HW should configure LPLU and Gbe Disable. - **/ -STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) -{ - s32 ret_val = 0; - u32 mac_reg; - u16 oem_reg; - - DEBUGFUNC("e1000_oem_bits_config_ich8lan"); - - if (hw->mac.type < e1000_pchlan) - return ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - if (hw->mac.type == e1000_pchlan) { - mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) - goto release; - } - - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM); - if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) - goto release; - - mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL); - - ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - goto release; - - oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); - - if (d0_state) { - if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) - oem_reg |= HV_OEM_BITS_LPLU; - } else { - if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) - oem_reg |= HV_OEM_BITS_GBE_DIS; - - if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | - E1000_PHY_CTRL_NOND0A_LPLU)) - oem_reg |= HV_OEM_BITS_LPLU; - } - - /* Set Restart auto-neg to activate the bits */ - if ((d0_state || (hw->mac.type != e1000_pchlan)) && - !hw->phy.ops.check_reset_block(hw)) - oem_reg |= HV_OEM_BITS_RESTART_AN; - - ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); - -release: - hw->phy.ops.release(hw); - - return ret_val; -} - - -/** - * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) -{ - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_mdio_slow_mode_hv"); - - ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data); - if (ret_val) - return ret_val; - - data |= HV_KMRN_MDIO_SLOW; - - ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data); - - return ret_val; -} - -/** - * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - **/ -STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_data; - - DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan"); - - if (hw->mac.type != e1000_pchlan) - return E1000_SUCCESS; - - /* Set MDIO slow mode before any other MDIO access */ - if (hw->phy.type == e1000_phy_82577) { - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - return ret_val; - } - - if (((hw->phy.type == e1000_phy_82577) && - ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || - ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { - /* Disable generation of early preamble */ - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431); - if (ret_val) - return ret_val; - - /* Preamble tuning for SSC */ - ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, - 0xA204); - if (ret_val) - return ret_val; - } - - if (hw->phy.type == e1000_phy_82578) { - /* Return registers to default by doing a soft reset then - * writing 0x3140 to the control register. - */ - if (hw->phy.revision < 2) { - e1000_phy_sw_reset_generic(hw); - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, - 0x3140); - } - } - - /* Select page 0 */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - hw->phy.addr = 1; - ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); - hw->phy.ops.release(hw); - if (ret_val) - return ret_val; - - /* Configure the K1 Si workaround during phy reset assuming there is - * link so that it disables K1 if link is in 1Gbps. - */ - ret_val = e1000_k1_gig_workaround_hv(hw, true); - if (ret_val) - return ret_val; - - /* Workaround for link disconnects on a busy hub in half duplex */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); - if (ret_val) - goto release; - ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, - phy_data & 0x00FF); - if (ret_val) - goto release; - - /* set MSE higher to enable link to stay up when noise is high */ - ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); -release: - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY - * @hw: pointer to the HW structure - **/ -void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) -{ - u32 mac_reg; - u16 i, phy_reg = 0; - s32 ret_val; - - DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) - goto release; - - /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ - for (i = 0; i < (hw->mac.rar_entry_count); i++) { - mac_reg = E1000_READ_REG(hw, E1000_RAL(i)); - hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), - (u16)((mac_reg >> 16) & 0xFFFF)); - - mac_reg = E1000_READ_REG(hw, E1000_RAH(i)); - hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), - (u16)(mac_reg & 0xFFFF)); - hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), - (u16)((mac_reg & E1000_RAH_AV) - >> 16)); - } - - e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - -release: - hw->phy.ops.release(hw); -} - -#ifndef CRC32_OS_SUPPORT -STATIC u32 e1000_calc_rx_da_crc(u8 mac[]) -{ - u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */ - u32 i, j, mask, crc; - - DEBUGFUNC("e1000_calc_rx_da_crc"); - - crc = 0xffffffff; - for (i = 0; i < 6; i++) { - crc = crc ^ mac[i]; - for (j = 8; j > 0; j--) { - mask = (crc & 1) * (-1); - crc = (crc >> 1) ^ (poly & mask); - } - } - return ~crc; -} - -#endif /* CRC32_OS_SUPPORT */ -/** - * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation - * with 82579 PHY - * @hw: pointer to the HW structure - * @enable: flag to enable/disable workaround when enabling/disabling jumbos - **/ -s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) -{ - s32 ret_val = E1000_SUCCESS; - u16 phy_reg, data; - u32 mac_reg; - u16 i; - - DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan"); - - if (hw->mac.type < e1000_pch2lan) - return E1000_SUCCESS; - - /* disable Rx path while enabling/disabling workaround */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20), - phy_reg | (1 << 14)); - if (ret_val) - return ret_val; - - if (enable) { - /* Write Rx addresses (rar_entry_count for RAL/H, and - * SHRAL/H) and initial CRC values to the MAC - */ - for (i = 0; i < hw->mac.rar_entry_count; i++) { - u8 mac_addr[ETH_ADDR_LEN] = {0}; - u32 addr_high, addr_low; - - addr_high = E1000_READ_REG(hw, E1000_RAH(i)); - if (!(addr_high & E1000_RAH_AV)) - continue; - addr_low = E1000_READ_REG(hw, E1000_RAL(i)); - mac_addr[0] = (addr_low & 0xFF); - mac_addr[1] = ((addr_low >> 8) & 0xFF); - mac_addr[2] = ((addr_low >> 16) & 0xFF); - mac_addr[3] = ((addr_low >> 24) & 0xFF); - mac_addr[4] = (addr_high & 0xFF); - mac_addr[5] = ((addr_high >> 8) & 0xFF); - -#ifndef CRC32_OS_SUPPORT - E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), - e1000_calc_rx_da_crc(mac_addr)); -#else /* CRC32_OS_SUPPORT */ - E1000_WRITE_REG(hw, E1000_PCH_RAICC(i), - E1000_CRC32(ETH_ADDR_LEN, mac_addr)); -#endif /* CRC32_OS_SUPPORT */ - } - - /* Write Rx addresses to the PHY */ - e1000_copy_rx_addrs_to_phy_ich8lan(hw); - - /* Enable jumbo frame workaround in the MAC */ - mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); - mac_reg &= ~(1 << 14); - mac_reg |= (7 << 15); - E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); - - mac_reg = E1000_READ_REG(hw, E1000_RCTL); - mac_reg |= E1000_RCTL_SECRC; - E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); - - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - return ret_val; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data | (1 << 0)); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - return ret_val; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - data); - if (ret_val) - return ret_val; - - /* Enable jumbo frame workaround in the PHY */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - data |= (0x37 << 5); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); - data &= ~(1 << 13); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x1A << 2); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); - ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data | - (1 << 10)); - if (ret_val) - return ret_val; - } else { - /* Write MAC register values back to h/w defaults */ - mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG); - mac_reg &= ~(0xF << 14); - E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg); - - mac_reg = E1000_READ_REG(hw, E1000_RCTL); - mac_reg &= ~E1000_RCTL_SECRC; - E1000_WRITE_REG(hw, E1000_RCTL, mac_reg); - - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - &data); - if (ret_val) - return ret_val; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_CTRL_OFFSET, - data & ~(1 << 0)); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - &data); - if (ret_val) - return ret_val; - data &= ~(0xF << 8); - data |= (0xB << 8); - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_HD_CTRL, - data); - if (ret_val) - return ret_val; - - /* Write PHY register values back to h/w defaults */ - hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data); - data &= ~(0x7F << 5); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data); - data |= (1 << 13); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data); - data &= ~(0x3FF << 2); - data |= (0x8 << 2); - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00); - if (ret_val) - return ret_val; - hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data); - ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data & - ~(1 << 10)); - if (ret_val) - return ret_val; - } - - /* re-enable Rx path after enabling/disabling workaround */ - return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg & - ~(1 << 14)); -} - -/** - * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be - * done after every PHY reset. - **/ -STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan"); - - if (hw->mac.type != e1000_pch2lan) - return E1000_SUCCESS; - - /* Set MDIO slow mode before any other MDIO access */ - ret_val = e1000_set_mdio_slow_mode_hv(hw); - if (ret_val) - return ret_val; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - /* set MSE higher to enable link to stay up when noise is high */ - ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); - if (ret_val) - goto release; - /* drop link after 5 times MSE threshold was reached */ - ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); -release: - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_k1_gig_workaround_lv - K1 Si workaround - * @hw: pointer to the HW structure - * - * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps - * Disable K1 for 1000 and 100 speeds - **/ -STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 status_reg = 0; - - DEBUGFUNC("e1000_k1_workaround_lv"); - - if (hw->mac.type != e1000_pch2lan) - return E1000_SUCCESS; - - /* Set K1 beacon duration based on 10Mbs speed */ - ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg); - if (ret_val) - return ret_val; - - if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) - == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { - if (status_reg & - (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { - u16 pm_phy_reg; - - /* LV 1G/100 Packet drop issue wa */ - ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL, - &pm_phy_reg); - if (ret_val) - return ret_val; - pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; - ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, - pm_phy_reg); - if (ret_val) - return ret_val; - } else { - u32 mac_reg; - mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4); - mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; - mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; - E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg); - } - } - - return ret_val; -} - -/** - * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware - * @hw: pointer to the HW structure - * @gate: boolean set to true to gate, false to ungate - * - * Gate/ungate the automatic PHY configuration via hardware; perform - * the configuration via software instead. - **/ -STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) -{ - u32 extcnf_ctrl; - - DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan"); - - if (hw->mac.type < e1000_pch2lan) - return; - - extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL); - - if (gate) - extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; - else - extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; - - E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl); -} - -/** - * e1000_lan_init_done_ich8lan - Check for PHY config completion - * @hw: pointer to the HW structure - * - * Check the appropriate indication the MAC has finished configuring the - * PHY after a software reset. - **/ -STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) -{ - u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; - - DEBUGFUNC("e1000_lan_init_done_ich8lan"); - - /* Wait for basic configuration completes before proceeding */ - do { - data = E1000_READ_REG(hw, E1000_STATUS); - data &= E1000_STATUS_LAN_INIT_DONE; - usec_delay(100); - } while ((!data) && --loop); - - /* If basic configuration is incomplete before the above loop - * count reaches 0, loading the configuration from NVM will - * leave the PHY in a bad state possibly resulting in no link. - */ - if (loop == 0) - DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n"); - - /* Clear the Init Done bit for the next init event */ - data = E1000_READ_REG(hw, E1000_STATUS); - data &= ~E1000_STATUS_LAN_INIT_DONE; - E1000_WRITE_REG(hw, E1000_STATUS, data); -} - -/** - * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 reg; - - DEBUGFUNC("e1000_post_phy_reset_ich8lan"); - - if (hw->phy.ops.check_reset_block(hw)) - return E1000_SUCCESS; - - /* Allow time for h/w to get to quiescent state after reset */ - msec_delay(10); - - /* Perform any necessary post-reset workarounds */ - switch (hw->mac.type) { - case e1000_pchlan: - ret_val = e1000_hv_phy_workarounds_ich8lan(hw); - if (ret_val) - return ret_val; - break; - case e1000_pch2lan: - ret_val = e1000_lv_phy_workarounds_ich8lan(hw); - if (ret_val) - return ret_val; - break; - default: - break; - } - - /* Clear the host wakeup bit after lcd reset */ - if (hw->mac.type >= e1000_pchlan) { - hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, ®); - reg &= ~BM_WUC_HOST_WU_BIT; - hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg); - } - - /* Configure the LCD with the extended configuration region in NVM */ - ret_val = e1000_sw_lcd_config_ich8lan(hw); - if (ret_val) - return ret_val; - - /* Configure the LCD with the OEM bits in NVM */ - ret_val = e1000_oem_bits_config_ich8lan(hw, true); - - if (hw->mac.type == e1000_pch2lan) { - /* Ungate automatic PHY configuration on non-managed 82579 */ - if (!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_ICH_FWSM_FW_VALID)) { - msec_delay(10); - e1000_gate_hw_phy_config_ich8lan(hw, false); - } - - /* Set EEE LPI Update Timer to 200usec */ - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - ret_val = e1000_write_emi_reg_locked(hw, - I82579_LPI_UPDATE_TIMER, - 0x1387); - hw->phy.ops.release(hw); - } - - return ret_val; -} - -/** - * e1000_phy_hw_reset_ich8lan - Performs a PHY reset - * @hw: pointer to the HW structure - * - * Resets the PHY - * This is a function pointer entry point called by drivers - * or other shared routines. - **/ -STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_phy_hw_reset_ich8lan"); - - /* Gate automatic PHY configuration by hardware on non-managed 82579 */ - if ((hw->mac.type == e1000_pch2lan) && - !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - - ret_val = e1000_phy_hw_reset_generic(hw); - if (ret_val) - return ret_val; - - return e1000_post_phy_reset_ich8lan(hw); -} - -/** - * e1000_set_lplu_state_pchlan - Set Low Power Link Up state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU state according to the active flag. For PCH, if OEM write - * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set - * the phy speed. This function will manually set the LPLU bit and restart - * auto-neg as hw would do. D3 and D0 LPLU will call the same function - * since it configures the same bit. - **/ -STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) -{ - s32 ret_val; - u16 oem_reg; - - DEBUGFUNC("e1000_set_lplu_state_pchlan"); - - ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg); - if (ret_val) - return ret_val; - - if (active) - oem_reg |= HV_OEM_BITS_LPLU; - else - oem_reg &= ~HV_OEM_BITS_LPLU; - - if (!hw->phy.ops.check_reset_block(hw)) - oem_reg |= HV_OEM_BITS_RESTART_AN; - - return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg); -} - -/** - * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D0 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan"); - - if (phy->type == e1000_phy_ife) - return E1000_SUCCESS; - - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - - if (active) { - phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* Call gig speed drop workaround on LPLU before accessing - * any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else { - phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state - * @hw: pointer to the HW structure - * @active: true to enable LPLU, false to disable - * - * Sets the LPLU D3 state according to the active flag. When - * activating LPLU this function also disables smart speed - * and vice versa. LPLU will not be activated unless the - * device autonegotiation advertisement meets standards of - * either 10 or 10/100 or 10/100/1000 at all duplexes. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 phy_ctrl; - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan"); - - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - - if (!active) { - phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (phy->type != e1000_phy_igp_3) - return E1000_SUCCESS; - - /* Call gig speed drop workaround on LPLU before accessing - * any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - } - - return ret_val; -} - -/** - * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 - * @hw: pointer to the HW structure - * @bank: pointer to the variable that returns the active bank - * - * Reads signature byte from the NVM using the flash access registers. - * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. - **/ -STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) -{ - u32 eecd; - struct e1000_nvm_info *nvm = &hw->nvm; - u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); - u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; - u8 sig_byte = 0; - s32 ret_val; - - DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan"); - - switch (hw->mac.type) { - case e1000_ich8lan: - case e1000_ich9lan: - eecd = E1000_READ_REG(hw, E1000_EECD); - if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == - E1000_EECD_SEC1VAL_VALID_MASK) { - if (eecd & E1000_EECD_SEC1VAL) - *bank = 1; - else - *bank = 0; - - return E1000_SUCCESS; - } - DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n"); - /* fall-thru */ - default: - /* set bank to 0 in case flash read fails */ - *bank = 0; - - /* Check bank 0 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, - &sig_byte); - if (ret_val) - return ret_val; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 0; - return E1000_SUCCESS; - } - - /* Check bank 1 */ - ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + - bank1_offset, - &sig_byte); - if (ret_val) - return ret_val; - if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == - E1000_ICH_NVM_SIG_VALUE) { - *bank = 1; - return E1000_SUCCESS; - } - - DEBUGOUT("ERROR: No valid NVM bank present\n"); - return -E1000_ERR_NVM; - } -} - -/** - * e1000_read_nvm_ich8lan - Read word(s) from the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to read. - * @words: Size of data to read in words - * @data: Pointer to the word(s) to read at offset. - * - * Reads a word(s) from the NVM using the flash access registers. - **/ -STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 act_offset; - s32 ret_val = E1000_SUCCESS; - u32 bank = 0; - u16 i, word; - - DEBUGFUNC("e1000_read_nvm_ich8lan"); - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - ret_val = -E1000_ERR_NVM; - goto out; - } - - nvm->ops.acquire(hw); - - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - act_offset = (bank) ? nvm->flash_bank_size : 0; - act_offset += offset; - - ret_val = E1000_SUCCESS; - for (i = 0; i < words; i++) { - if (dev_spec->shadow_ram[offset+i].modified) { - data[i] = dev_spec->shadow_ram[offset+i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, - act_offset + i, - &word); - if (ret_val) - break; - data[i] = word; - } - } - - nvm->ops.release(hw); - -out: - if (ret_val) - DEBUGOUT1("NVM read error: %d\n", ret_val); - - return ret_val; -} - -/** - * e1000_flash_cycle_init_ich8lan - Initialize flash - * @hw: pointer to the HW structure - * - * This function does initial flash setup so that a new read/write/erase cycle - * can be started. - **/ -STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) -{ - union ich8_hws_flash_status hsfsts; - s32 ret_val = -E1000_ERR_NVM; - - DEBUGFUNC("e1000_flash_cycle_init_ich8lan"); - - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* Check if the flash descriptor is valid */ - if (!hsfsts.hsf_status.fldesvalid) { - DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n"); - return -E1000_ERR_NVM; - } - - /* Clear FCERR and DAEL in hw status by writing 1 */ - hsfsts.hsf_status.flcerr = 1; - hsfsts.hsf_status.dael = 1; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - - /* Either we should have a hardware SPI cycle in progress - * bit to check against, in order to start a new cycle or - * FDONE bit should be changed in the hardware so that it - * is 1 after hardware reset, which can then be used as an - * indication whether a cycle is in progress or has been - * completed. - */ - - if (!hsfsts.hsf_status.flcinprog) { - /* There is no cycle running at present, - * so we can start a cycle. - * Begin by setting Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); - ret_val = E1000_SUCCESS; - } else { - s32 i; - - /* Otherwise poll for sometime so the current - * cycle has a chance to end before giving up. - */ - for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (!hsfsts.hsf_status.flcinprog) { - ret_val = E1000_SUCCESS; - break; - } - usec_delay(1); - } - if (ret_val == E1000_SUCCESS) { - /* Successful in waiting for previous cycle to timeout, - * now set the Flash Cycle Done. - */ - hsfsts.hsf_status.flcdone = 1; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, - hsfsts.regval); - } else { - DEBUGOUT("Flash controller busy, cannot get access\n"); - } - } - - return ret_val; -} - -/** - * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) - * @hw: pointer to the HW structure - * @timeout: maximum time to wait for completion - * - * This function starts a flash cycle and waits for its completion. - **/ -STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) -{ - union ich8_hws_flash_ctrl hsflctl; - union ich8_hws_flash_status hsfsts; - u32 i = 0; - - DEBUGFUNC("e1000_flash_cycle_ich8lan"); - - /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - hsflctl.hsf_ctrl.flcgo = 1; - - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - /* wait till FDONE bit is set to 1 */ - do { - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcdone) - break; - usec_delay(1); - } while (i++ < timeout); - - if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) - return E1000_SUCCESS; - - return -E1000_ERR_NVM; -} - -/** - * e1000_read_flash_word_ich8lan - Read word from flash - * @hw: pointer to the HW structure - * @offset: offset to data location - * @data: pointer to the location for storing the data - * - * Reads the flash word at offset into data. Offset is converted - * to bytes before read. - **/ -STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, - u16 *data) -{ - DEBUGFUNC("e1000_read_flash_word_ich8lan"); - - if (!data) - return -E1000_ERR_NVM; - - /* Must convert offset into bytes. */ - offset <<= 1; - - return e1000_read_flash_data_ich8lan(hw, offset, 2, data); -} - -/** - * e1000_read_flash_byte_ich8lan - Read byte from flash - * @hw: pointer to the HW structure - * @offset: The offset of the byte to read. - * @data: Pointer to a byte to store the value read. - * - * Reads a single byte from the NVM using the flash access registers. - **/ -STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, - u8 *data) -{ - s32 ret_val; - u16 word = 0; - - ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); - - if (ret_val) - return ret_val; - - *data = (u8)word; - - return E1000_SUCCESS; -} - -/** - * e1000_read_flash_data_ich8lan - Read byte or word from NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte or word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: Pointer to the word to store the value read. - * - * Reads a byte or word from the NVM using the flash access registers. - **/ -STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 *data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val = -E1000_ERR_NVM; - u8 count = 0; - - DEBUGFUNC("e1000_read_flash_data_ich8lan"); - - if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) - return -E1000_ERR_NVM; - flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr); - - do { - usec_delay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val != E1000_SUCCESS) - break; - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); - - ret_val = - e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_READ_COMMAND_TIMEOUT); - - /* Check if FCERR is set to 1, if set to 1, clear it - * and try the whole sequence a few more times, else - * read in (shift in) the Flash Data0, the order is - * least significant byte first msb to lsb - */ - if (ret_val == E1000_SUCCESS) { - flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0); - if (size == 1) - *data = (u8)(flash_data & 0x000000FF); - else if (size == 2) - *data = (u16)(flash_data & 0x0000FFFF); - break; - } else { - /* If we've gotten here, then things are probably - * completely hosed, but if the error condition is - * detected, it won't hurt to give it another try... - * ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr) { - /* Repeat for some time before giving up. */ - continue; - } else if (!hsfsts.hsf_status.flcdone) { - DEBUGOUT("Timeout error - flash cycle did not complete.\n"); - break; - } - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return ret_val; -} - -/** - * e1000_write_nvm_ich8lan - Write word(s) to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the word(s) to write. - * @words: Size of data to write in words - * @data: Pointer to the word(s) to write at offset. - * - * Writes a byte or word to the NVM using the flash access registers. - **/ -STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u16 i; - - DEBUGFUNC("e1000_write_nvm_ich8lan"); - - if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - nvm->ops.acquire(hw); - - for (i = 0; i < words; i++) { - dev_spec->shadow_ram[offset+i].modified = true; - dev_spec->shadow_ram[offset+i].value = data[i]; - } - - nvm->ops.release(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM - * @hw: pointer to the HW structure - * - * The NVM checksum is updated by calling the generic update_nvm_checksum, - * which writes the checksum to the shadow ram. The changes in the shadow - * ram are then committed to the EEPROM by processing each bank at a time - * checking for the modified bit and writing only the pending changes. - * After a successful commit, the shadow ram is cleared and is ready for - * future writes. - **/ -STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 i, act_offset, new_bank_offset, old_bank_offset, bank; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_update_nvm_checksum_ich8lan"); - - ret_val = e1000_update_nvm_checksum_generic(hw); - if (ret_val) - goto out; - - if (nvm->type != e1000_nvm_flash_sw) - goto out; - - nvm->ops.acquire(hw); - - /* We're writing to the opposite bank so if we're on bank 1, - * write to bank 0 etc. We also need to erase the segment that - * is going to be written - */ - ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); - if (ret_val != E1000_SUCCESS) { - DEBUGOUT("Could not detect valid bank, assuming bank 0\n"); - bank = 0; - } - - if (bank == 0) { - new_bank_offset = nvm->flash_bank_size; - old_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); - if (ret_val) - goto release; - } else { - old_bank_offset = nvm->flash_bank_size; - new_bank_offset = 0; - ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); - if (ret_val) - goto release; - } - - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - /* Determine whether to write the value stored - * in the other NVM bank or a modified value stored - * in the shadow RAM - */ - if (dev_spec->shadow_ram[i].modified) { - data = dev_spec->shadow_ram[i].value; - } else { - ret_val = e1000_read_flash_word_ich8lan(hw, i + - old_bank_offset, - &data); - if (ret_val) - break; - } - - /* If the word is 0x13, then make sure the signature bits - * (15:14) are 11b until the commit has completed. - * This will allow us to write 10b which indicates the - * signature is valid. We want to do this after the write - * has completed so that we don't mark the segment valid - * while the write is still in progress - */ - if (i == E1000_ICH_NVM_SIG_WORD) - data |= E1000_ICH_NVM_SIG_MASK; - - /* Convert offset to bytes. */ - act_offset = (i + new_bank_offset) << 1; - - usec_delay(100); - /* Write the bytes to the new bank. */ - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset, - (u8)data); - if (ret_val) - break; - - usec_delay(100); - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset + 1, - (u8)(data >> 8)); - if (ret_val) - break; - } - - /* Don't bother writing the segment valid bits if sector - * programming failed. - */ - if (ret_val) { - DEBUGOUT("Flash commit failed.\n"); - goto release; - } - - /* Finally validate the new segment by setting bit 15:14 - * to 10b in word 0x13 , this can be done without an - * erase as well since these bits are 11 to start with - * and we need to change bit 14 to 0b - */ - act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; - ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); - if (ret_val) - goto release; - - data &= 0xBFFF; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, - act_offset * 2 + 1, - (u8)(data >> 8)); - if (ret_val) - goto release; - - /* And invalidate the previously valid segment by setting - * its signature word (0x13) high_byte to 0b. This can be - * done without an erase because flash erase sets all bits - * to 1's. We can write 1's to 0's without an erase - */ - act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; - ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); - if (ret_val) - goto release; - - /* Great! Everything worked, we can now clear the cached entries. */ - for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { - dev_spec->shadow_ram[i].modified = false; - dev_spec->shadow_ram[i].value = 0xFFFF; - } - -release: - nvm->ops.release(hw); - - /* Reload the EEPROM, or else modifications will not appear - * until after the next adapter reset. - */ - if (!ret_val) { - nvm->ops.reload(hw); - msec_delay(10); - } - -out: - if (ret_val) - DEBUGOUT1("NVM update error: %d\n", ret_val); - - return ret_val; -} - -/** - * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. - * If the bit is 0, that the EEPROM had been modified, but the checksum was not - * calculated, in which case we need to calculate the checksum and set bit 6. - **/ -STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 data; - u16 word; - u16 valid_csum_mask; - - DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan"); - - /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, - * the checksum needs to be fixed. This bit is an indication that - * the NVM was prepared by OEM software and did not calculate - * the checksum...a likely scenario. - */ - switch (hw->mac.type) { - case e1000_pch_lpt: - word = NVM_COMPAT; - valid_csum_mask = NVM_COMPAT_VALID_CSUM; - break; - default: - word = NVM_FUTURE_INIT_WORD1; - valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; - break; - } - - ret_val = hw->nvm.ops.read(hw, word, 1, &data); - if (ret_val) - return ret_val; - - if (!(data & valid_csum_mask)) { - data |= valid_csum_mask; - ret_val = hw->nvm.ops.write(hw, word, 1, &data); - if (ret_val) - return ret_val; - ret_val = hw->nvm.ops.update(hw); - if (ret_val) - return ret_val; - } - - return e1000_validate_nvm_checksum_generic(hw); -} - -/** - * e1000_write_flash_data_ich8lan - Writes bytes to the NVM - * @hw: pointer to the HW structure - * @offset: The offset (in bytes) of the byte/word to read. - * @size: Size of data to read, 1=byte 2=word - * @data: The byte(s) to write to the NVM. - * - * Writes one/two bytes to the NVM using the flash access registers. - **/ -STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, - u8 size, u16 data) -{ - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - u32 flash_data = 0; - s32 ret_val; - u8 count = 0; - - DEBUGFUNC("e1000_write_ich8_data"); - - if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) - return -E1000_ERR_NVM; - - flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + - hw->nvm.flash_base_addr); - - do { - usec_delay(1); - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val != E1000_SUCCESS) - break; - hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - - /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ - hsflctl.hsf_ctrl.fldbcount = size - 1; - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr); - - if (size == 1) - flash_data = (u32)data & 0x00FF; - else - flash_data = (u32)data; - - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); - - /* check if FCERR is set to 1 , if set to 1, clear it - * and try the whole sequence a few more times else done - */ - ret_val = - e1000_flash_cycle_ich8lan(hw, - ICH_FLASH_WRITE_COMMAND_TIMEOUT); - if (ret_val == E1000_SUCCESS) - break; - - /* If we're here, then things are most likely - * completely hosed, but if the error condition - * is detected, it won't hurt to give it another - * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr) - /* Repeat for some time before giving up. */ - continue; - if (!hsfsts.hsf_status.flcdone) { - DEBUGOUT("Timeout error - flash cycle did not complete.\n"); - break; - } - } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); - - return ret_val; -} - -/** - * e1000_write_flash_byte_ich8lan - Write a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The index of the byte to read. - * @data: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - **/ -STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, - u8 data) -{ - u16 word = (u16)data; - - DEBUGFUNC("e1000_write_flash_byte_ich8lan"); - - return e1000_write_flash_data_ich8lan(hw, offset, 1, word); -} - -/** - * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM - * @hw: pointer to the HW structure - * @offset: The offset of the byte to write. - * @byte: The byte to write to the NVM. - * - * Writes a single byte to the NVM using the flash access registers. - * Goes through a retry algorithm before giving up. - **/ -STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, - u32 offset, u8 byte) -{ - s32 ret_val; - u16 program_retries; - - DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan"); - - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (!ret_val) - return ret_val; - - for (program_retries = 0; program_retries < 100; program_retries++) { - DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset); - usec_delay(100); - ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); - if (ret_val == E1000_SUCCESS) - break; - } - if (program_retries == 100) - return -E1000_ERR_NVM; - - return E1000_SUCCESS; -} - -/** - * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM - * @hw: pointer to the HW structure - * @bank: 0 for first bank, 1 for second bank, etc. - * - * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. - * bank N is 4096 * N + flash_reg_addr. - **/ -STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - union ich8_hws_flash_status hsfsts; - union ich8_hws_flash_ctrl hsflctl; - u32 flash_linear_addr; - /* bank size is in 16bit words - adjust to bytes */ - u32 flash_bank_size = nvm->flash_bank_size * 2; - s32 ret_val; - s32 count = 0; - s32 j, iteration, sector_size; - - DEBUGFUNC("e1000_erase_flash_bank_ich8lan"); - - hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS); - - /* Determine HW Sector size: Read BERASE bits of hw flash status - * register - * 00: The Hw sector is 256 bytes, hence we need to erase 16 - * consecutive sectors. The start index for the nth Hw sector - * can be calculated as = bank * 4096 + n * 256 - * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. - * The start index for the nth Hw sector can be calculated - * as = bank * 4096 - * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 - * (ich9 only, otherwise error condition) - * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 - */ - switch (hsfsts.hsf_status.berasesz) { - case 0: - /* Hw sector size 256 */ - sector_size = ICH_FLASH_SEG_SIZE_256; - iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; - break; - case 1: - sector_size = ICH_FLASH_SEG_SIZE_4K; - iteration = 1; - break; - case 2: - sector_size = ICH_FLASH_SEG_SIZE_8K; - iteration = 1; - break; - case 3: - sector_size = ICH_FLASH_SEG_SIZE_64K; - iteration = 1; - break; - default: - return -E1000_ERR_NVM; - } - - /* Start with the base address, then add the sector offset. */ - flash_linear_addr = hw->nvm.flash_base_addr; - flash_linear_addr += (bank) ? flash_bank_size : 0; - - for (j = 0; j < iteration; j++) { - do { - u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; - - /* Steps */ - ret_val = e1000_flash_cycle_init_ich8lan(hw); - if (ret_val) - return ret_val; - - /* Write a value 11 (block Erase) in Flash - * Cycle field in hw flash control - */ - hsflctl.regval = - E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL); - - hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; - E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, - hsflctl.regval); - - /* Write the last 24 bits of an index within the - * block into Flash Linear address field in Flash - * Address. - */ - flash_linear_addr += (j * sector_size); - E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, - flash_linear_addr); - - ret_val = e1000_flash_cycle_ich8lan(hw, timeout); - if (ret_val == E1000_SUCCESS) - break; - - /* Check if FCERR is set to 1. If 1, - * clear it and try the whole sequence - * a few more times else Done - */ - hsfsts.regval = E1000_READ_FLASH_REG16(hw, - ICH_FLASH_HSFSTS); - if (hsfsts.hsf_status.flcerr) - /* repeat for some time before giving up */ - continue; - else if (!hsfsts.hsf_status.flcdone) - return ret_val; - } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); - } - - return E1000_SUCCESS; -} - -/** - * e1000_valid_led_default_ich8lan - Set the default LED settings - * @hw: pointer to the HW structure - * @data: Pointer to the LED settings - * - * Reads the LED default settings from the NVM to data. If the NVM LED - * settings is all 0's or F's, set the LED default to a valid LED default - * setting. - **/ -STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_ich8lan"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT_ICH8LAN; - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init_pchlan - store LED configurations - * @hw: pointer to the HW structure - * - * PCH does not control LEDs via the LEDCTL register, rather it uses - * the PHY LED configuration register. - * - * PCH also does not have an "always on" or "always off" mode which - * complicates the ID feature. Instead of using the "on" mode to indicate - * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()), - * use "link_up" mode. The LEDs will still ID on request if there is no - * link based on logic in e1000_led_[on|off]_pchlan(). - **/ -STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; - const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; - u16 data, i, temp, shift; - - DEBUGFUNC("e1000_id_led_init_pchlan"); - - /* Get default ID LED modes */ - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - return ret_val; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; - shift = (i * 5); - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_on << shift); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode1 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_on << shift); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); - mac->ledctl_mode2 |= (ledctl_off << shift); - break; - default: - /* Do nothing */ - break; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_bus_info_ich8lan - Get/Set the bus type and width - * @hw: pointer to the HW structure - * - * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability - * register, so the the bus width is hard coded. - **/ -STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - - DEBUGFUNC("e1000_get_bus_info_ich8lan"); - - ret_val = e1000_get_bus_info_pcie_generic(hw); - - /* ICH devices are "PCI Express"-ish. They have - * a configuration space, but do not contain - * PCI Express Capability registers, so bus width - * must be hardcoded. - */ - if (bus->width == e1000_bus_width_unknown) - bus->width = e1000_bus_width_pcie_x1; - - return ret_val; -} - -/** - * e1000_reset_hw_ich8lan - Reset the hardware - * @hw: pointer to the HW structure - * - * Does a full reset of the hardware which includes a reset of the PHY and - * MAC. - **/ -STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u16 kum_cfg; - u32 ctrl, reg; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw_ich8lan"); - - /* Prevent the PCI-E bus from sticking if there is no TLP connection - * on the last TLP read/write transaction when MAC is reset. - */ - ret_val = e1000_disable_pcie_master_generic(hw); - if (ret_val) - DEBUGOUT("PCI-E Master disable polling has failed.\n"); - - DEBUGOUT("Masking off all interrupts\n"); - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC - * with the global reset. - */ - E1000_WRITE_REG(hw, E1000_RCTL, 0); - E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(hw); - - msec_delay(10); - - /* Workaround for ICH8 bit corruption issue in FIFO memory */ - if (hw->mac.type == e1000_ich8lan) { - /* Set Tx and Rx buffer allocation to 8k apiece. */ - E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K); - /* Set Packet Buffer Size to 16k. */ - E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K); - } - - if (hw->mac.type == e1000_pchlan) { - /* Save the NVM K1 bit setting*/ - ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); - if (ret_val) - return ret_val; - - if (kum_cfg & E1000_NVM_K1_ENABLE) - dev_spec->nvm_k1_enabled = true; - else - dev_spec->nvm_k1_enabled = false; - } - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - if (!hw->phy.ops.check_reset_block(hw)) { - /* Full-chip reset requires MAC and PHY reset at the same - * time to make sure the interface between MAC and the - * external PHY is reset. - */ - ctrl |= E1000_CTRL_PHY_RST; - - /* Gate automatic PHY configuration by hardware on - * non-managed 82579 - */ - if ((hw->mac.type == e1000_pch2lan) && - !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID)) - e1000_gate_hw_phy_config_ich8lan(hw, true); - } - ret_val = e1000_acquire_swflag_ich8lan(hw); - DEBUGOUT("Issuing a global reset to ich8lan\n"); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST)); - /* cannot issue a flush here because it hangs the hardware */ - msec_delay(20); - - /* Set Phy Config Counter to 50msec */ - if (hw->mac.type == e1000_pch2lan) { - reg = E1000_READ_REG(hw, E1000_FEXTNVM3); - reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; - reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; - E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg); - } - - if (!ret_val) - E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex); - - if (ctrl & E1000_CTRL_PHY_RST) { - ret_val = hw->phy.ops.get_cfg_done(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_post_phy_reset_ich8lan(hw); - if (ret_val) - return ret_val; - } - - /* For PCH, this write will make sure that any noise - * will be detected as a CRC error and be dropped rather than show up - * as a bad packet to the DMA engine. - */ - if (hw->mac.type == e1000_pchlan) - E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565); - - E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); - E1000_READ_REG(hw, E1000_ICR); - - reg = E1000_READ_REG(hw, E1000_KABGTXD); - reg |= E1000_KABGTXD_BGSQLBIAS; - E1000_WRITE_REG(hw, E1000_KABGTXD, reg); - - return E1000_SUCCESS; -} - -/** - * e1000_init_hw_ich8lan - Initialize the hardware - * @hw: pointer to the HW structure - * - * Prepares the hardware for transmit and receive by doing the following: - * - initialize hardware bits - * - initialize LED identification - * - setup receive address registers - * - setup flow control - * - setup transmit descriptors - * - clear statistics - **/ -STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl_ext, txdctl, snoop; - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_init_hw_ich8lan"); - - e1000_initialize_hw_bits_ich8lan(hw); - - /* Initialize identification LED */ - ret_val = mac->ops.id_led_init(hw); - /* An error is not fatal and we should not stop init due to this */ - if (ret_val) - DEBUGOUT("Error initializing identification LED\n"); - - /* Setup the receive address. */ - e1000_init_rx_addrs_generic(hw, mac->rar_entry_count); - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - for (i = 0; i < mac->mta_reg_count; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); - - /* The 82578 Rx buffer will stall if wakeup is enabled in host and - * the ME. Disable wakeup by clearing the host wakeup bit. - * Reset the phy after disabling host wakeup to reset the Rx buffer. - */ - if (hw->phy.type == e1000_phy_82578) { - hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i); - i &= ~BM_WUC_HOST_WU_BIT; - hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i); - ret_val = e1000_phy_hw_reset_ich8lan(hw); - if (ret_val) - return ret_val; - } - - /* Setup link and flow control */ - ret_val = mac->ops.setup_link(hw); - - /* Set the transmit descriptor write-back policy for both queues */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0)); - txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB); - txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl); - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1)); - txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | - E1000_TXDCTL_FULL_TX_DESC_WB); - txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | - E1000_TXDCTL_MAX_TX_DESC_PREFETCH); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl); - - /* ICH8 has opposite polarity of no_snoop bits. - * By default, we should use snoop behavior. - */ - if (mac->type == e1000_ich8lan) - snoop = PCIE_ICH8_SNOOP_ALL; - else - snoop = (u32) ~(PCIE_NO_SNOOP_ALL); - e1000_set_pcie_no_snoop_generic(hw, snoop); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs_ich8lan(hw); - - return ret_val; -} - -/** - * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits - * @hw: pointer to the HW structure - * - * Sets/Clears required hardware bits necessary for correctly setting up the - * hardware for transmit and receive. - **/ -STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - - DEBUGFUNC("e1000_initialize_hw_bits_ich8lan"); - - /* Extended Device Control */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= (1 << 22); - /* Enable PHY low-power state when MAC is at D3 w/o WoL */ - if (hw->mac.type >= e1000_pchlan) - reg |= E1000_CTRL_EXT_PHYPDEN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* Transmit Descriptor Control 0 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(0)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg); - - /* Transmit Descriptor Control 1 */ - reg = E1000_READ_REG(hw, E1000_TXDCTL(1)); - reg |= (1 << 22); - E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg); - - /* Transmit Arbitration Control 0 */ - reg = E1000_READ_REG(hw, E1000_TARC(0)); - if (hw->mac.type == e1000_ich8lan) - reg |= (1 << 28) | (1 << 29); - reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); - E1000_WRITE_REG(hw, E1000_TARC(0), reg); - - /* Transmit Arbitration Control 1 */ - reg = E1000_READ_REG(hw, E1000_TARC(1)); - if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) - reg &= ~(1 << 28); - else - reg |= (1 << 28); - reg |= (1 << 24) | (1 << 26) | (1 << 30); - E1000_WRITE_REG(hw, E1000_TARC(1), reg); - - /* Device Status */ - if (hw->mac.type == e1000_ich8lan) { - reg = E1000_READ_REG(hw, E1000_STATUS); - reg &= ~(1 << 31); - E1000_WRITE_REG(hw, E1000_STATUS, reg); - } - - /* work-around descriptor data corruption issue during nfs v2 udp - * traffic, just disable the nfs filtering capability - */ - reg = E1000_READ_REG(hw, E1000_RFCTL); - reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); - - /* Disable IPv6 extension header parsing because some malformed - * IPv6 headers can hang the Rx. - */ - if (hw->mac.type == e1000_ich8lan) - reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); - E1000_WRITE_REG(hw, E1000_RFCTL, reg); - - /* Enable ECC on Lynxpoint */ - if (hw->mac.type == e1000_pch_lpt) { - reg = E1000_READ_REG(hw, E1000_PBECCSTS); - reg |= E1000_PBECCSTS_ECC_ENABLE; - E1000_WRITE_REG(hw, E1000_PBECCSTS, reg); - - reg = E1000_READ_REG(hw, E1000_CTRL); - reg |= E1000_CTRL_MEHE; - E1000_WRITE_REG(hw, E1000_CTRL, reg); - } - - return; -} - -/** - * e1000_setup_link_ich8lan - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_setup_link_ich8lan"); - - if (hw->phy.ops.check_reset_block(hw)) - return E1000_SUCCESS; - - /* ICH parts do not have a word in the NVM to determine - * the default flow control setting, so we explicitly - * set it to full. - */ - if (hw->fc.requested_mode == e1000_fc_default) - hw->fc.requested_mode = e1000_fc_full; - - /* Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Continue to configure the copper link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - return ret_val; - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82579) || - (hw->phy.type == e1000_phy_i217) || - (hw->phy.type == e1000_phy_82577)) { - E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time); - - ret_val = hw->phy.ops.write_reg(hw, - PHY_REG(BM_PORT_CTRL_PAGE, 27), - hw->fc.pause_time); - if (ret_val) - return ret_val; - } - - return e1000_set_fc_watermarks_generic(hw); -} - -/** - * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface - * @hw: pointer to the HW structure - * - * Configures the kumeran interface to the PHY to wait the appropriate time - * when polling the PHY, then call the generic setup_copper_link to finish - * configuring the copper link. - **/ -STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - u16 reg_data; - - DEBUGFUNC("e1000_setup_copper_link_ich8lan"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Set the mac to wait the maximum time between each iteration - * and increase the max iterations when polling the phy; - * this fixes erroneous timeouts at 10Mbps. - */ - ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS, - 0xFFFF); - if (ret_val) - return ret_val; - ret_val = e1000_read_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_INBAND_PARAM, - ®_data); - if (ret_val) - return ret_val; - reg_data |= 0x3F; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_INBAND_PARAM, - reg_data); - if (ret_val) - return ret_val; - - switch (hw->phy.type) { - case e1000_phy_igp_3: - ret_val = e1000_copper_link_setup_igp(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_bm: - case e1000_phy_82578: - ret_val = e1000_copper_link_setup_m88(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_82577: - case e1000_phy_82579: - ret_val = e1000_copper_link_setup_82577(hw); - if (ret_val) - return ret_val; - break; - case e1000_phy_ife: - ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, - ®_data); - if (ret_val) - return ret_val; - - reg_data &= ~IFE_PMC_AUTO_MDIX; - - switch (hw->phy.mdix) { - case 1: - reg_data &= ~IFE_PMC_FORCE_MDIX; - break; - case 2: - reg_data |= IFE_PMC_FORCE_MDIX; - break; - case 0: - default: - reg_data |= IFE_PMC_AUTO_MDIX; - break; - } - ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, - reg_data); - if (ret_val) - return ret_val; - break; - default: - break; - } - - return e1000_setup_copper_link_generic(hw); -} - -/** - * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface - * @hw: pointer to the HW structure - * - * Calls the PHY specific link setup function and then calls the - * generic setup_copper_link to finish configuring the link for - * Lynxpoint PCH devices - **/ -STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_copper_link_pch_lpt"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - ret_val = e1000_copper_link_setup_82577(hw); - if (ret_val) - return ret_val; - - return e1000_setup_copper_link_generic(hw); -} - -/** - * e1000_get_link_up_info_ich8lan - Get current link speed and duplex - * @hw: pointer to the HW structure - * @speed: pointer to store current link speed - * @duplex: pointer to store the current link duplex - * - * Calls the generic get_speed_and_duplex to retrieve the current link - * information and then calls the Kumeran lock loss workaround for links at - * gigabit speeds. - **/ -STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 ret_val; - - DEBUGFUNC("e1000_get_link_up_info_ich8lan"); - - ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex); - if (ret_val) - return ret_val; - - if ((hw->mac.type == e1000_ich8lan) && - (hw->phy.type == e1000_phy_igp_3) && - (*speed == SPEED_1000)) { - ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); - } - - return ret_val; -} - -/** - * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround - * @hw: pointer to the HW structure - * - * Work-around for 82566 Kumeran PCS lock loss: - * On link status change (i.e. PCI reset, speed change) and link is up and - * speed is gigabit- - * 0) if workaround is optionally disabled do nothing - * 1) wait 1ms for Kumeran link to come up - * 2) check Kumeran Diagnostic register PCS lock loss bit - * 3) if not set the link is locked (all is good), otherwise... - * 4) reset the PHY - * 5) repeat up to 10 times - * Note: this is only called for IGP3 copper when speed is 1gb. - **/ -STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 phy_ctrl; - s32 ret_val; - u16 i, data; - bool link; - - DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan"); - - if (!dev_spec->kmrn_lock_loss_workaround_enabled) - return E1000_SUCCESS; - - /* Make sure link is up before proceeding. If not just return. - * Attempting this while link is negotiating fouled up link - * stability - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (!link) - return E1000_SUCCESS; - - for (i = 0; i < 10; i++) { - /* read once to clear */ - ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - return ret_val; - /* and again to get new status */ - ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data); - if (ret_val) - return ret_val; - - /* check for PCS lock */ - if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) - return E1000_SUCCESS; - - /* Issue PHY reset */ - hw->phy.ops.reset(hw); - msec_delay_irq(5); - } - /* Disable GigE link negotiation */ - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - /* Call gig speed drop workaround on Gig disable before accessing - * any PHY registers - */ - e1000_gig_downshift_workaround_ich8lan(hw); - - /* unable to acquire PCS lock */ - return -E1000_ERR_PHY; -} - -/** - * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state - * @hw: pointer to the HW structure - * @state: boolean value used to set the current Kumeran workaround state - * - * If ICH8, set the current Kumeran workaround state (enabled - true - * /disabled - false). - **/ -void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - - DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan"); - - if (hw->mac.type != e1000_ich8lan) { - DEBUGOUT("Workaround applies to ICH8 only.\n"); - return; - } - - dev_spec->kmrn_lock_loss_workaround_enabled = state; - - return; -} - -/** - * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 - * @hw: pointer to the HW structure - * - * Workaround for 82566 power-down on D3 entry: - * 1) disable gigabit link - * 2) write VR power-down enable - * 3) read it back - * Continue if successful, else issue LCD reset and repeat - **/ -void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) -{ - u32 reg; - u16 data; - u8 retry = 0; - - DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan"); - - if (hw->phy.type != e1000_phy_igp_3) - return; - - /* Try the workaround twice (if needed) */ - do { - /* Disable link */ - reg = E1000_READ_REG(hw, E1000_PHY_CTRL); - reg |= (E1000_PHY_CTRL_GBE_DISABLE | - E1000_PHY_CTRL_NOND0A_GBE_DISABLE); - E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg); - - /* Call gig speed drop workaround on Gig disable before - * accessing any PHY registers - */ - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - /* Write VR power-down enable */ - hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); - data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - hw->phy.ops.write_reg(hw, IGP3_VR_CTRL, - data | IGP3_VR_CTRL_MODE_SHUTDOWN); - - /* Read it back and test */ - hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data); - data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; - if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) - break; - - /* Issue PHY reset and repeat at most one more time */ - reg = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST); - retry++; - } while (retry); -} - -/** - * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working - * @hw: pointer to the HW structure - * - * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), - * LPLU, Gig disable, MDIC PHY reset): - * 1) Set Kumeran Near-end loopback - * 2) Clear Kumeran Near-end loopback - * Should only be called for ICH8[m] devices with any 1G Phy. - **/ -void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val; - u16 reg_data; - - DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan"); - - if ((hw->mac.type != e1000_ich8lan) || - (hw->phy.type == e1000_phy_ife)) - return; - - ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - ®_data); - if (ret_val) - return; - reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; - ret_val = e1000_write_kmrn_reg_generic(hw, - E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); - if (ret_val) - return; - reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; - e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, - reg_data); -} - -/** - * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx - * @hw: pointer to the HW structure - * - * During S0 to Sx transition, it is possible the link remains at gig - * instead of negotiating to a lower speed. Before going to Sx, set - * 'Gig Disable' to force link speed negotiation to a lower speed based on - * the LPLU setting in the NVM or custom setting. For PCH and newer parts, - * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also - * needs to be written. - * Parts that support (and are linked to a partner which support) EEE in - * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power - * than 10Mbps w/o EEE. - **/ -void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) -{ - struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; - u32 phy_ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_suspend_workarounds_ich8lan"); - - phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL); - phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; - - if (hw->phy.type == e1000_phy_i217) { - u16 phy_reg, device_id = hw->device_id; - - if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || - (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V)) { - u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6); - - E1000_WRITE_REG(hw, E1000_FEXTNVM6, - fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); - } - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - goto out; - - if (!dev_spec->eee_disable) { - u16 eee_advert; - - ret_val = - e1000_read_emi_reg_locked(hw, - I217_EEE_ADVERTISEMENT, - &eee_advert); - if (ret_val) - goto release; - - /* Disable LPLU if both link partners support 100BaseT - * EEE and 100Full is advertised on both ends of the - * link, and enable Auto Enable LPI since there will - * be no driver to enable LPI while in Sx. - */ - if ((eee_advert & I82579_EEE_100_SUPPORTED) && - (dev_spec->eee_lp_ability & - I82579_EEE_100_SUPPORTED) && - (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { - phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | - E1000_PHY_CTRL_NOND0A_LPLU); - - /* Set Auto Enable LPI after link up */ - hw->phy.ops.read_reg_locked(hw, - I217_LPI_GPIO_CTRL, - &phy_reg); - phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; - hw->phy.ops.write_reg_locked(hw, - I217_LPI_GPIO_CTRL, - phy_reg); - } - } - - /* For i217 Intel Rapid Start Technology support, - * when the system is going into Sx and no manageability engine - * is present, the driver must configure proxy to reset only on - * power good. LPI (Low Power Idle) state must also reset only - * on power good, as well as the MTA (Multicast table array). - * The SMBus release must also be disabled on LCD reset. - */ - if (!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_ICH_FWSM_FW_VALID)) { - /* Enable proxy to reset only on power good. */ - hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL, - &phy_reg); - phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; - hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, - phy_reg); - - /* Set bit enable LPI (EEE) to reset only on - * power good. - */ - hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg); - phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; - hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg); - - /* Disable the SMB release on LCD reset. */ - hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg); - phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; - hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); - } - - /* Enable MTA to reset for Intel Rapid Start Technology - * Support - */ - hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg); - phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; - hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); - -release: - hw->phy.ops.release(hw); - } -out: - E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl); - - if (hw->mac.type == e1000_ich8lan) - e1000_gig_downshift_workaround_ich8lan(hw); - - if (hw->mac.type >= e1000_pchlan) { - e1000_oem_bits_config_ich8lan(hw, false); - - /* Reset PHY to activate OEM bits on 82577/8 */ - if (hw->mac.type == e1000_pchlan) - e1000_phy_hw_reset_generic(hw); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - e1000_write_smbus_addr(hw); - hw->phy.ops.release(hw); - } - - return; -} - -/** - * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 - * @hw: pointer to the HW structure - * - * During Sx to S0 transitions on non-managed devices or managed devices - * on which PHY resets are not blocked, if the PHY registers cannot be - * accessed properly by the s/w toggle the LANPHYPC value to power cycle - * the PHY. - * On i217, setup Intel Rapid Start Technology. - **/ -void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_resume_workarounds_pchlan"); - - if (hw->mac.type < e1000_pch2lan) - return; - - ret_val = e1000_init_phy_workarounds_pchlan(hw); - if (ret_val) { - DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val); - return; - } - - /* For i217 Intel Rapid Start Technology support when the system - * is transitioning from Sx and no manageability engine is present - * configure SMBus to restore on reset, disable proxy, and enable - * the reset on MTA (Multicast table array). - */ - if (hw->phy.type == e1000_phy_i217) { - u16 phy_reg; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) { - DEBUGOUT("Failed to setup iRST\n"); - return; - } - - /* Clear Auto Enable LPI after link up */ - hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); - phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; - hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); - - if (!(E1000_READ_REG(hw, E1000_FWSM) & - E1000_ICH_FWSM_FW_VALID)) { - /* Restore clear on SMB if no manageability engine - * is present - */ - ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, - &phy_reg); - if (ret_val) - goto release; - phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; - hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg); - - /* Disable Proxy */ - hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0); - } - /* Enable reset on MTA */ - ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG, - &phy_reg); - if (ret_val) - goto release; - phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; - hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg); -release: - if (ret_val) - DEBUGOUT1("Error %d in resume workarounds\n", ret_val); - hw->phy.ops.release(hw); - } -} - -/** - * e1000_cleanup_led_ich8lan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - **/ -STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - 0); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - return E1000_SUCCESS; -} - -/** - * e1000_led_on_ich8lan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - **/ -STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_led_on_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - return E1000_SUCCESS; -} - -/** - * e1000_led_off_ich8lan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - **/ -STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_led_off_ich8lan"); - - if (hw->phy.type == e1000_phy_ife) - return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, - (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - return E1000_SUCCESS; -} - -/** - * e1000_setup_led_pchlan - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use. - **/ -STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_setup_led_pchlan"); - - return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, - (u16)hw->mac.ledctl_mode1); -} - -/** - * e1000_cleanup_led_pchlan - Restore the default LED operation - * @hw: pointer to the HW structure - * - * Return the LED back to the default configuration. - **/ -STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_pchlan"); - - return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, - (u16)hw->mac.ledctl_default); -} - -/** - * e1000_led_on_pchlan - Turn LEDs on - * @hw: pointer to the HW structure - * - * Turn on the LEDs. - **/ -STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode2; - u32 i, led; - - DEBUGFUNC("e1000_led_on_pchlan"); - - /* If no link, then turn LED on by setting the invert bit - * for each LED that's mode is "link_up" in ledctl_mode2. - */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); -} - -/** - * e1000_led_off_pchlan - Turn LEDs off - * @hw: pointer to the HW structure - * - * Turn off the LEDs. - **/ -STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw) -{ - u16 data = (u16)hw->mac.ledctl_mode1; - u32 i, led; - - DEBUGFUNC("e1000_led_off_pchlan"); - - /* If no link, then turn LED off by clearing the invert bit - * for each LED that's mode is "link_up" in ledctl_mode1. - */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - for (i = 0; i < 3; i++) { - led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; - if ((led & E1000_PHY_LED0_MODE_MASK) != - E1000_LEDCTL_MODE_LINK_UP) - continue; - if (led & E1000_PHY_LED0_IVRT) - data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); - else - data |= (E1000_PHY_LED0_IVRT << (i * 5)); - } - } - - return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data); -} - -/** - * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset - * @hw: pointer to the HW structure - * - * Read appropriate register for the config done bit for completion status - * and configure the PHY through s/w for EEPROM-less parts. - * - * NOTE: some silicon which is EEPROM-less will fail trying to read the - * config done bit, so only an error is logged and continues. If we were - * to return with error, EEPROM-less silicon would not be able to be reset - * or change link. - **/ -STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u32 bank = 0; - u32 status; - - DEBUGFUNC("e1000_get_cfg_done_ich8lan"); - - e1000_get_cfg_done_generic(hw); - - /* Wait for indication from h/w that it has completed basic config */ - if (hw->mac.type >= e1000_ich10lan) { - e1000_lan_init_done_ich8lan(hw); - } else { - ret_val = e1000_get_auto_rd_done_generic(hw); - if (ret_val) { - /* When auto config read does not complete, do not - * return with an error. This can happen in situations - * where there is no eeprom and prevents getting link. - */ - DEBUGOUT("Auto Read Done did not complete\n"); - ret_val = E1000_SUCCESS; - } - } - - /* Clear PHY Reset Asserted bit */ - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_PHYRA) - E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA); - else - DEBUGOUT("PHY Reset Asserted not set - needs delay\n"); - - /* If EEPROM is not marked present, init the IGP 3 PHY manually */ - if (hw->mac.type <= e1000_ich9lan) { - if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) && - (hw->phy.type == e1000_phy_igp_3)) { - e1000_phy_init_script_igp3(hw); - } - } else { - if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { - /* Maybe we should do a basic PHY config */ - DEBUGOUT("EEPROM not present\n"); - ret_val = -E1000_ERR_CONFIG; - } - } - - return ret_val; -} - -/** - * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, remove the link. - **/ -STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) -{ - /* If the management interface is not enabled, then power down */ - if (!(hw->mac.ops.check_mng_mode(hw) || - hw->phy.ops.check_reset_block(hw))) - e1000_power_down_phy_copper(hw); - - return; -} - -/** - * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters - * @hw: pointer to the HW structure - * - * Clears hardware counters specific to the silicon family and calls - * clear_hw_cntrs_generic to clear all general purpose counters. - **/ -STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) -{ - u16 phy_data; - s32 ret_val; - - DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan"); - - e1000_clear_hw_cntrs_base_generic(hw); - - E1000_READ_REG(hw, E1000_ALGNERRC); - E1000_READ_REG(hw, E1000_RXERRC); - E1000_READ_REG(hw, E1000_TNCRS); - E1000_READ_REG(hw, E1000_CEXTERR); - E1000_READ_REG(hw, E1000_TSCTC); - E1000_READ_REG(hw, E1000_TSCTFC); - - E1000_READ_REG(hw, E1000_MGTPRC); - E1000_READ_REG(hw, E1000_MGTPDC); - E1000_READ_REG(hw, E1000_MGTPTC); - - E1000_READ_REG(hw, E1000_IAC); - E1000_READ_REG(hw, E1000_ICRXOC); - - /* Clear PHY statistics registers */ - if ((hw->phy.type == e1000_phy_82578) || - (hw->phy.type == e1000_phy_82579) || - (hw->phy.type == e1000_phy_i217) || - (hw->phy.type == e1000_phy_82577)) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return; - ret_val = hw->phy.ops.set_page(hw, - HV_STATS_PAGE << IGP_PAGE_SHIFT); - if (ret_val) - goto release; - hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); - hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); -release: - hw->phy.ops.release(hw); - } -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.h deleted file mode 100755 index 8c5e9c32..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_ich8lan.h +++ /dev/null @@ -1,313 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_ICH8LAN_H_ -#define _E1000_ICH8LAN_H_ - -#define ICH_FLASH_GFPREG 0x0000 -#define ICH_FLASH_HSFSTS 0x0004 -#define ICH_FLASH_HSFCTL 0x0006 -#define ICH_FLASH_FADDR 0x0008 -#define ICH_FLASH_FDATA0 0x0010 - -/* Requires up to 10 seconds when MNG might be accessing part. */ -#define ICH_FLASH_READ_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 10000000 -#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 - -#define ICH_CYCLE_READ 0 -#define ICH_CYCLE_WRITE 2 -#define ICH_CYCLE_ERASE 3 - -#define FLASH_GFPREG_BASE_MASK 0x1FFF -#define FLASH_SECTOR_ADDR_SHIFT 12 - -#define ICH_FLASH_SEG_SIZE_256 256 -#define ICH_FLASH_SEG_SIZE_4K 4096 -#define ICH_FLASH_SEG_SIZE_8K 8192 -#define ICH_FLASH_SEG_SIZE_64K 65536 - -#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ -/* FW established a valid mode */ -#define E1000_ICH_FWSM_FW_VALID 0x00008000 -#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */ -#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000 - -#define E1000_ICH_MNG_IAMT_MODE 0x2 - -#define E1000_FWSM_WLOCK_MAC_MASK 0x0380 -#define E1000_FWSM_WLOCK_MAC_SHIFT 7 -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -#define E1000_FWSM_ULP_CFG_DONE 0x00000400 /* Low power cfg done */ -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ - -/* Shared Receive Address Registers */ -#define E1000_SHRAL_PCH_LPT(_i) (0x05408 + ((_i) * 8)) -#define E1000_SHRAH_PCH_LPT(_i) (0x0540C + ((_i) * 8)) - -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -#define E1000_H2ME 0x05B50 /* Host to ME */ -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -#define E1000_H2ME_ULP 0x00000800 /* ULP Indication Bit */ -#define E1000_H2ME_ENFORCE_SETTINGS 0x00001000 /* Enforce Settings */ - -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ - (ID_LED_OFF1_OFF2 << 8) | \ - (ID_LED_OFF1_ON2 << 4) | \ - (ID_LED_DEF1_DEF2)) - -#define E1000_ICH_NVM_SIG_WORD 0x13 -#define E1000_ICH_NVM_SIG_MASK 0xC000 -#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 -#define E1000_ICH_NVM_SIG_VALUE 0x80 - -#define E1000_ICH8_LAN_INIT_TIMEOUT 1500 - -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -/* FEXT register bit definition */ -#define E1000_FEXT_PHY_CABLE_DISCONNECTED 0x00000004 - -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -#define E1000_FEXTNVM_SW_CONFIG 1 -#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* different on ICH8M */ - -#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000 -#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000 - -#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 -#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 - -#define E1000_FEXTNVM6_REQ_PLL_CLK 0x00000100 -#define E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION 0x00000200 - -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -#define E1000_FEXTNVM7_DISABLE_SMB_PERST 0x00000020 - -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL - -#define E1000_ICH_RAR_ENTRIES 7 -#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */ -#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */ - -#define PHY_PAGE_SHIFT 5 -#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ - ((reg) & MAX_PHY_REG_ADDRESS)) -#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ -#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ - -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 -#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 -#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 - -/* PHY Wakeup Registers and defines */ -#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17) -#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0) -#define BM_WUC PHY_REG(BM_WUC_PAGE, 1) -#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2) -#define BM_WUS PHY_REG(BM_WUC_PAGE, 3) -#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2))) -#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2))) -#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2))) -#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2))) -#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1))) - -#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */ -#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */ -#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */ -#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */ -#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */ -#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */ -#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */ - -#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ -#define HV_MUX_DATA_CTRL PHY_REG(776, 16) -#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400 -#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004 -#define HV_STATS_PAGE 778 -/* Half-duplex collision counts */ -#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision */ -#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17) -#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. */ -#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19) -#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Collision */ -#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21) -#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision */ -#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24) -#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision */ -#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26) -#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */ -#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28) -#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Tx with no CRS */ -#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30) - -#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */ - -#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ -#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ - -/* SMBus Control Phy Register */ -#define CV_SMB_CTRL PHY_REG(769, 23) -#define CV_SMB_CTRL_FORCE_SMBUS 0x0001 - -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -/* I218 Ultra Low Power Configuration 1 Register */ -#define I218_ULP_CONFIG1 PHY_REG(779, 16) -#define I218_ULP_CONFIG1_START 0x0001 /* Start auto ULP config */ -#define I218_ULP_CONFIG1_IND 0x0004 /* Pwr up from ULP indication */ -#define I218_ULP_CONFIG1_STICKY_ULP 0x0010 /* Set sticky ULP mode */ -#define I218_ULP_CONFIG1_INBAND_EXIT 0x0020 /* Inband on ULP exit */ -#define I218_ULP_CONFIG1_WOL_HOST 0x0040 /* WoL Host on ULP exit */ -#define I218_ULP_CONFIG1_RESET_TO_SMBUS 0x0100 /* Reset to SMBus mode */ -#define I218_ULP_CONFIG1_DISABLE_SMB_PERST 0x1000 /* Disable on PERST# */ - -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -/* SMBus Address Phy Register */ -#define HV_SMB_ADDR PHY_REG(768, 26) -#define HV_SMB_ADDR_MASK 0x007F -#define HV_SMB_ADDR_PEC_EN 0x0200 -#define HV_SMB_ADDR_VALID 0x0080 -#define HV_SMB_ADDR_FREQ_MASK 0x1100 -#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8 -#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12 - -/* Strapping Option Register - RO */ -#define E1000_STRAP 0x0000C -#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 -#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 -#define E1000_STRAP_SMT_FREQ_MASK 0x00003000 -#define E1000_STRAP_SMT_FREQ_SHIFT 12 - -/* OEM Bits Phy Register */ -#define HV_OEM_BITS PHY_REG(768, 25) -#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ -#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ -#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ - -/* KMRN Mode Control */ -#define HV_KMRN_MODE_CTRL PHY_REG(769, 16) -#define HV_KMRN_MDIO_SLOW 0x0400 - -/* KMRN FIFO Control and Status */ -#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) -#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 -#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 - -/* PHY Power Management Control */ -#define HV_PM_CTRL PHY_REG(770, 17) -#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100 -#define HV_PM_CTRL_K1_ENABLE 0x4000 - -#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in ms */ - -/* Inband Control */ -#define I217_INBAND_CTRL PHY_REG(770, 18) -#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK 0x3F00 -#define I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT 8 - -/* Low Power Idle GPIO Control */ -#define I217_LPI_GPIO_CTRL PHY_REG(772, 18) -#define I217_LPI_GPIO_CTRL_AUTO_EN_LPI 0x0800 - -/* PHY Low Power Idle Control */ -#define I82579_LPI_CTRL PHY_REG(772, 20) -#define I82579_LPI_CTRL_100_ENABLE 0x2000 -#define I82579_LPI_CTRL_1000_ENABLE 0x4000 -#define I82579_LPI_CTRL_ENABLE_MASK 0x6000 - -/* 82579 DFT Control */ -#define I82579_DFT_CTRL PHY_REG(769, 20) -#define I82579_DFT_CTRL_GATE_PHY_RESET 0x0040 /* Gate PHY Reset on MAC Reset */ - -/* Extended Management Interface (EMI) Registers */ -#define I82579_EMI_ADDR 0x10 -#define I82579_EMI_DATA 0x11 -#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ -#define I82579_MSE_THRESHOLD 0x084F /* 82579 Mean Square Error Threshold */ -#define I82577_MSE_THRESHOLD 0x0887 /* 82577 Mean Square Error Threshold */ -#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ -#define I82579_RX_CONFIG 0x3412 /* Receive configuration */ -#define I82579_EEE_PCS_STATUS 0x182E /* IEEE MMD Register 3.1 >> 8 */ -#define I82579_EEE_CAPABILITY 0x0410 /* IEEE MMD Register 3.20 */ -#define I82579_EEE_ADVERTISEMENT 0x040E /* IEEE MMD Register 7.60 */ -#define I82579_EEE_LP_ABILITY 0x040F /* IEEE MMD Register 7.61 */ -#define I82579_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE */ -#define I82579_EEE_1000_SUPPORTED (1 << 2) /* 1000BaseTx EEE */ -#define I217_EEE_PCS_STATUS 0x9401 /* IEEE MMD Register 3.1 */ -#define I217_EEE_CAPABILITY 0x8000 /* IEEE MMD Register 3.20 */ -#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */ -#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */ -#define I217_RX_CONFIG 0xB20C /* Receive configuration */ - -#define E1000_EEE_RX_LPI_RCVD 0x0400 /* Tx LP idle received */ -#define E1000_EEE_TX_LPI_RCVD 0x0800 /* Rx LP idle received */ - -/* Intel Rapid Start Technology Support */ -#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70) -#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080 -#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28) -#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000 -#define I217_CGFREG PHY_REG(772, 29) -#define I217_CGFREG_ENABLE_MTA_RESET 0x0002 -#define I217_MEMPWR PHY_REG(772, 26) -#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010 - -/* Receive Address Initial CRC Calculation */ -#define E1000_PCH_RAICC(_n) (0x05F50 + ((_n) * 4)) - -#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) -#define E1000_PCI_REVISION_ID_REG 0x08 -#endif /* defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT) */ -void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, - bool state); -void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw); -void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw); -void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw); -void e1000_resume_workarounds_pchlan(struct e1000_hw *hw); -s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable); -void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw); -s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable); -s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data); -s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data); -s32 e1000_set_eee_pchlan(struct e1000_hw *hw); -#if defined(NAHUM6LP_HW) && defined(ULP_SUPPORT) -s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx); -s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); -#endif /* NAHUM6LP_HW && ULP_SUPPORT */ -#endif /* _E1000_ICH8LAN_H_ */ -void e1000_demote_ltr(struct e1000_hw *hw, bool demote, bool link); diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c deleted file mode 100755 index c8ec049b..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c +++ /dev/null @@ -1,2247 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); -STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); -STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw); -STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); - -/** - * e1000_init_mac_ops_generic - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_mac_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - DEBUGFUNC("e1000_init_mac_ops_generic"); - - /* General Setup */ - mac->ops.init_params = e1000_null_ops_generic; - mac->ops.init_hw = e1000_null_ops_generic; - mac->ops.reset_hw = e1000_null_ops_generic; - mac->ops.setup_physical_interface = e1000_null_ops_generic; - mac->ops.get_bus_info = e1000_null_ops_generic; - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; - mac->ops.read_mac_addr = e1000_read_mac_addr_generic; - mac->ops.config_collision_dist = e1000_config_collision_dist_generic; - mac->ops.clear_hw_cntrs = e1000_null_mac_generic; - /* LED */ - mac->ops.cleanup_led = e1000_null_ops_generic; - mac->ops.setup_led = e1000_null_ops_generic; - mac->ops.blink_led = e1000_null_ops_generic; - mac->ops.led_on = e1000_null_ops_generic; - mac->ops.led_off = e1000_null_ops_generic; - /* LINK */ - mac->ops.setup_link = e1000_null_ops_generic; - mac->ops.get_link_up_info = e1000_null_link_info; - mac->ops.check_for_link = e1000_null_ops_generic; - /* Management */ - mac->ops.check_mng_mode = e1000_null_mng_mode; - /* VLAN, MC, etc. */ - mac->ops.update_mc_addr_list = e1000_null_update_mc; - mac->ops.clear_vfta = e1000_null_mac_generic; - mac->ops.write_vfta = e1000_null_write_vfta; - mac->ops.rar_set = e1000_rar_set_generic; - mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; -} - -/** - * e1000_null_ops_generic - No-op function, returns 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_ops_generic"); - UNREFERENCED_1PARAMETER(hw); - return E1000_SUCCESS; -} - -/** - * e1000_null_mac_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mac_generic"); - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_null_link_info - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) -{ - DEBUGFUNC("e1000_null_link_info"); - UNREFERENCED_3PARAMETER(hw, s, d); - return E1000_SUCCESS; -} - -/** - * e1000_null_mng_mode - No-op function, return false - * @hw: pointer to the HW structure - **/ -bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mng_mode"); - UNREFERENCED_1PARAMETER(hw); - return false; -} - -/** - * e1000_null_update_mc - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_update_mc"); - UNREFERENCED_3PARAMETER(hw, h, a); - return; -} - -/** - * e1000_null_write_vfta - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) -{ - DEBUGFUNC("e1000_null_write_vfta"); - UNREFERENCED_3PARAMETER(hw, a, b); - return; -} - -/** - * e1000_null_rar_set - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_rar_set"); - UNREFERENCED_3PARAMETER(hw, h, a); - return; -} - -/** - * e1000_get_bus_info_pci_generic - Get PCI(x) bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. - **/ -s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - u32 status = E1000_READ_REG(hw, E1000_STATUS); - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_bus_info_pci_generic"); - - /* PCI or PCI-X? */ - bus->type = (status & E1000_STATUS_PCIX_MODE) - ? e1000_bus_type_pcix - : e1000_bus_type_pci; - - /* Bus speed */ - if (bus->type == e1000_bus_type_pci) { - bus->speed = (status & E1000_STATUS_PCI66) - ? e1000_bus_speed_66 - : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - bus->speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - bus->speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - bus->speed = e1000_bus_speed_133; - break; - default: - bus->speed = e1000_bus_speed_reserved; - break; - } - } - - /* Bus width */ - bus->width = (status & E1000_STATUS_BUS64) - ? e1000_bus_width_64 - : e1000_bus_width_32; - - /* Which PCI(-X) function? */ - mac->ops.set_lan_id(hw); - - return ret_val; -} - -/** - * e1000_get_bus_info_pcie_generic - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - **/ -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u16 pcie_link_status; - - DEBUGFUNC("e1000_get_bus_info_pcie_generic"); - - bus->type = e1000_bus_type_pci_express; - - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, - &pcie_link_status); - if (ret_val) { - bus->width = e1000_bus_width_unknown; - bus->speed = e1000_bus_speed_unknown; - } else { - switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { - case PCIE_LINK_SPEED_2500: - bus->speed = e1000_bus_speed_2500; - break; - case PCIE_LINK_SPEED_5000: - bus->speed = e1000_bus_speed_5000; - break; - default: - bus->speed = e1000_bus_speed_unknown; - break; - } - - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); - } - - mac->ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - **/ -STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/** - * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading PCI config space. - **/ -void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u16 pci_header_type; - u32 status; - - e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); - if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { - status = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (status & E1000_STATUS_FUNC_MASK) - >> E1000_STATUS_FUNC_SHIFT; - } else { - bus->func = 0; - } -} - -/** - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - **/ -void e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/** - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - DEBUGFUNC("e1000_clear_vfta_generic"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - DEBUGFUNC("e1000_write_vfta_generic"); - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_init_rx_addrs_generic - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setup the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - **/ -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ADDR_LEN] = {0}; - - DEBUGFUNC("e1000_init_rx_addrs_generic"); - - /* Setup the receive address */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); -} - -/** - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - **/ -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ADDR_LEN]; - - DEBUGFUNC("e1000_check_alt_mac_addr_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); - if (ret_val) - return ret_val; - - /* not supported on older hardware or 82573 */ - if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) - return E1000_SUCCESS; - - /* Alternate MAC address is handled by the option ROM for 82580 - * and newer. SW support not required. - */ - if (hw->mac.type >= e1000_82580) - return E1000_SUCCESS; - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if ((nvm_alt_mac_addr_offset == 0xFFFF) || - (nvm_alt_mac_addr_offset == 0x0000)) - /* There is no Alternate MAC Address */ - return E1000_SUCCESS; - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - if (hw->bus.func == E1000_FUNC_2) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; - - if (hw->bus.func == E1000_FUNC_3) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (alt_mac_addr[0] & 0x01) { - DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); - return E1000_SUCCESS; - } - - /* We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - - return E1000_SUCCESS; -} - -/** - * e1000_rar_set_generic - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_generic"); - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_hash_mc_addr_generic - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. - **/ -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -/** - * e1000_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_generic"); - - /* clear mta_shadow */ - memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ADDR_LEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value - * @hw: pointer to the HW structure - * - * In certain situations, a system BIOS may report that the PCIx maximum - * memory read byte count (MMRBC) value is higher than than the actual - * value. We check the PCIx command register with the current PCIx status - * register. - **/ -void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) -{ - u16 cmd_mmrbc; - u16 pcix_cmd; - u16 pcix_stat_hi_word; - u16 stat_mmrbc; - - DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); - - /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ - if (hw->bus.type != e1000_bus_type_pcix) - return; - - e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { - pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - } -} - -/** - * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - **/ -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); - - E1000_READ_REG(hw, E1000_CRCERRS); - E1000_READ_REG(hw, E1000_SYMERRS); - E1000_READ_REG(hw, E1000_MPC); - E1000_READ_REG(hw, E1000_SCC); - E1000_READ_REG(hw, E1000_ECOL); - E1000_READ_REG(hw, E1000_MCC); - E1000_READ_REG(hw, E1000_LATECOL); - E1000_READ_REG(hw, E1000_COLC); - E1000_READ_REG(hw, E1000_DC); - E1000_READ_REG(hw, E1000_SEC); - E1000_READ_REG(hw, E1000_RLEC); - E1000_READ_REG(hw, E1000_XONRXC); - E1000_READ_REG(hw, E1000_XONTXC); - E1000_READ_REG(hw, E1000_XOFFRXC); - E1000_READ_REG(hw, E1000_XOFFTXC); - E1000_READ_REG(hw, E1000_FCRUC); - E1000_READ_REG(hw, E1000_GPRC); - E1000_READ_REG(hw, E1000_BPRC); - E1000_READ_REG(hw, E1000_MPRC); - E1000_READ_REG(hw, E1000_GPTC); - E1000_READ_REG(hw, E1000_GORCL); - E1000_READ_REG(hw, E1000_GORCH); - E1000_READ_REG(hw, E1000_GOTCL); - E1000_READ_REG(hw, E1000_GOTCH); - E1000_READ_REG(hw, E1000_RNBC); - E1000_READ_REG(hw, E1000_RUC); - E1000_READ_REG(hw, E1000_RFC); - E1000_READ_REG(hw, E1000_ROC); - E1000_READ_REG(hw, E1000_RJC); - E1000_READ_REG(hw, E1000_TORL); - E1000_READ_REG(hw, E1000_TORH); - E1000_READ_REG(hw, E1000_TOTL); - E1000_READ_REG(hw, E1000_TOTH); - E1000_READ_REG(hw, E1000_TPR); - E1000_READ_REG(hw, E1000_TPT); - E1000_READ_REG(hw, E1000_MPTC); - E1000_READ_REG(hw, E1000_BPTC); -} - -/** - * e1000_check_for_copper_link_generic - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link"); - - /* We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) - return E1000_SUCCESS; - - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) - return E1000_SUCCESS; /* No link detected */ - - mac->get_link_status = false; - - /* Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000_check_downshift_generic(hw); - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) - return -E1000_ERR_CONFIG; - - /* Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - mac->ops.config_collision_dist(hw); - - /* Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - - return ret_val; -} - -/** - * e1000_check_for_fiber_link_generic - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_fiber_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && - !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { - /* If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - autoneg failed\n"); - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -s32 e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 nvm_data; - u16 nvm_offset = 0; - - DEBUGFUNC("e1000_set_default_fc_generic"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->mac.type == e1000_i350) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); - ret_val = hw->nvm.ops.read(hw, - NVM_INIT_CONTROL2_REG + - nvm_offset, - 1, &nvm_data); - } else { - ret_val = hw->nvm.ops.read(hw, - NVM_INIT_CONTROL2_REG, - 1, &nvm_data); - } - - - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - - return E1000_SUCCESS; -} - -/** - * e1000_setup_link_generic - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -s32 e1000_setup_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_setup_link_generic"); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) - return E1000_SUCCESS; - - /* If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - return ret_val; - } - - /* Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - return ret_val; - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - return e1000_set_fc_watermarks_generic(hw); -} - -/** - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - **/ -s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - - DEBUGFUNC("e1000_commit_fc_settings_generic"); - - /* Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric Rx - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->txcw = txcw; - - return E1000_SUCCESS; -} - -/** - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - **/ -s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val; - - DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); - - /* If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - msec_delay(10); - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = true; - /* AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the - * link up if we detect a signal. This will allow us to - * communicate with non-autonegotiating link partners. - */ - ret_val = mac->ops.check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - mac->autoneg_failed = false; - } else { - mac->autoneg_failed = false; - DEBUGOUT("Valid Link Found\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - **/ -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - hw->mac.ops.config_collision_dist(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - return ret_val; - - /* Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - DEBUGOUT("No signal detected\n"); - } - - return ret_val; -} - -/** - * e1000_config_collision_dist_generic - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw) -{ - u32 tctl; - - DEBUGFUNC("e1000_config_collision_dist_generic"); - - tctl = E1000_READ_REG(hw, E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - **/ -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) -{ - u32 fcrtl = 0, fcrth = 0; - - DEBUGFUNC("e1000_set_fc_watermarks_generic"); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); - E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - - return E1000_SUCCESS; -} - -/** - * e1000_force_mac_fc_generic - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - **/ -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_force_mac_fc_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_config_fc_after_link_up_generic - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - **/ -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up_generic"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000_force_mac_fc_generic(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000_force_mac_fc_generic(hw); - } - - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have SerDes media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) && - mac->autoneg) { - /* Read the PCS_LSTS and check to see if AutoNeg - * has completed. - */ - pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { - DEBUGOUT("PCS Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (PCS_ANADV) and the Auto_Negotiation Base - * Page Ability Register (PCS_LPAB) to determine how - * flow control was negotiated. - */ - pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); - pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); - - /* Two bits in the Auto Negotiation Advertisement Register - * (PCS_ANADV) and two bits in the Auto Negotiation Base - * Page Ability Register (PCS_LPAB) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | e1000_fc_full - * - */ - if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; - E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); - - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - **/ -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - **/ -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, - u16 *speed, u16 *duplex) -{ - DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); - UNREFERENCED_1PARAMETER(hw); - - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return E1000_SUCCESS; -} - -/** - * e1000_get_hw_semaphore_generic - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_generic"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_put_hw_semaphore_generic - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/** - * e1000_get_auto_rd_done_generic - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - **/ -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) -{ - s32 i = 0; - - DEBUGFUNC("e1000_get_auto_rd_done_generic"); - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msec_delay(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - DEBUGOUT("Auto read by HW from NVM has not completed.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/** - * e1000_valid_led_default_generic - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init_generic - - * @hw: pointer to the HW structure - * - **/ -s32 e1000_id_led_init_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init_generic"); - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - return ret_val; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - **/ -s32 e1000_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - - DEBUGFUNC("e1000_setup_led_generic"); - - if (hw->mac.ops.setup_led != e1000_setup_led_generic) - return -E1000_ERR_CONFIG; - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - } - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -s32 e1000_cleanup_led_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_generic"); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - return E1000_SUCCESS; -} - -/** - * e1000_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - **/ -s32 e1000_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - DEBUGFUNC("e1000_blink_led_generic"); - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* Set the blink bit for each LED that's "on" (0x0E) - * (or "off" if inverted) in ledctl_mode2. The blink - * logic in hardware only works when mode is set to "on" - * so it must be changed accordingly when the mode is - * "off" and inverted. - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 32; i += 8) { - u32 mode = (hw->mac.ledctl_mode2 >> i) & - E1000_LEDCTL_LED0_MODE_MASK; - u32 led_default = hw->mac.ledctl_default >> i; - - if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_ON)) || - ((led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_OFF))) { - ledctl_blink &= - ~(E1000_LEDCTL_LED0_MODE_MASK << i); - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_MODE_LED_ON) << i; - } - } - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); - - return E1000_SUCCESS; -} - -/** - * e1000_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -s32 e1000_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_on_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - **/ -s32 e1000_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_off_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - **/ -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return; - - if (no_snoop) { - gcr = E1000_READ_REG(hw, E1000_GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - E1000_WRITE_REG(hw, E1000_GCR, gcr); - } -} - -/** - * e1000_disable_pcie_master_generic - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns E1000_SUCCESS if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - **/ -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - - DEBUGFUNC("e1000_disable_pcie_master_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return E1000_SUCCESS; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - while (timeout) { - if (!(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE) || - E1000_REMOVED(hw->hw_addr)) - break; - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return E1000_SUCCESS; -} - -/** - * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - **/ -void e1000_reset_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_reset_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); -} - -/** - * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - **/ -void e1000_update_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_update_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - E1000_WRITE_REG(hw, E1000_AIT, - mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); - } - } -} - -/** - * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotiation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - **/ -STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_generic"); - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - return -E1000_ERR_CONFIG; - } - - return E1000_SUCCESS; -} - -/** - * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Validate the MDI/MDIx setting, allowing for auto-crossover during forced - * operation. - **/ -s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); - UNREFERENCED_1PARAMETER(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register - * @hw: pointer to the HW structure - * @reg: 32bit register offset such as E1000_SCTL - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes an address/data control type register. There are several of these - * and they all have the format address << 8 | data and bit 31 is polled for - * completion. - **/ -s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) -{ - u32 i, regvalue = 0; - - DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); - - /* Set up the address and data */ - regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - E1000_WRITE_REG(hw, reg, regvalue); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - usec_delay(5); - regvalue = E1000_READ_REG(hw, reg); - if (regvalue & E1000_GEN_CTL_READY) - break; - } - if (!(regvalue & E1000_GEN_CTL_READY)) { - DEBUGOUT1("Reg %08x did not indicate ready\n", reg); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.h deleted file mode 100755 index 5a7ce4a4..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.h +++ /dev/null @@ -1,95 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_MAC_H_ -#define _E1000_MAC_H_ - -void e1000_init_mac_ops_generic(struct e1000_hw *hw); -#ifndef E1000_REMOVED -#define E1000_REMOVED(a) (0) -#endif /* E1000_REMOVED */ -void e1000_null_mac_generic(struct e1000_hw *hw); -s32 e1000_null_ops_generic(struct e1000_hw *hw); -s32 e1000_null_link_info(struct e1000_hw *hw, u16 *s, u16 *d); -bool e1000_null_mng_mode(struct e1000_hw *hw); -void e1000_null_update_mc(struct e1000_hw *hw, u8 *h, u32 a); -void e1000_null_write_vfta(struct e1000_hw *hw, u32 a, u32 b); -void e1000_null_rar_set(struct e1000_hw *hw, u8 *h, u32 a); -s32 e1000_blink_led_generic(struct e1000_hw *hw); -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw); -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_cleanup_led_generic(struct e1000_hw *hw); -s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw); -s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw); -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw); -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw); -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw); -s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw); -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw); -void e1000_set_lan_id_single_port(struct e1000_hw *hw); -void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw); -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw *hw, - u16 *speed, u16 *duplex); -s32 e1000_id_led_init_generic(struct e1000_hw *hw); -s32 e1000_led_on_generic(struct e1000_hw *hw); -s32 e1000_led_off_generic(struct e1000_hw *hw); -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count); -s32 e1000_set_default_fc_generic(struct e1000_hw *hw); -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw); -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw); -s32 e1000_setup_led_generic(struct e1000_hw *hw); -s32 e1000_setup_link_generic(struct e1000_hw *hw); -s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw *hw); -s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data); - -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr); - -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw); -void e1000_clear_vfta_generic(struct e1000_hw *hw); -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count); -void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw); -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw); -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw); -void e1000_reset_adaptive_generic(struct e1000_hw *hw); -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop); -void e1000_update_adaptive_generic(struct e1000_hw *hw); -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value); - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.c deleted file mode 100755 index 30db8920..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.c +++ /dev/null @@ -1,573 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -/** - * e1000_calculate_checksum - Calculate checksum for buffer - * @buffer: pointer to EEPROM - * @length: size of EEPROM to calculate a checksum for - * - * Calculates the checksum for some buffer on a specified length. The - * checksum calculated is returned. - **/ -u8 e1000_calculate_checksum(u8 *buffer, u32 length) -{ - u32 i; - u8 sum = 0; - - DEBUGFUNC("e1000_calculate_checksum"); - - if (!buffer) - return 0; - - for (i = 0; i < length; i++) - sum += buffer[i]; - - return (u8) (0 - sum); -} - -/** - * e1000_mng_enable_host_if_generic - Checks host interface is enabled - * @hw: pointer to the HW structure - * - * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND - * - * This function checks whether the HOST IF is enabled for command operation - * and also checks whether the previous command is completed. It busy waits - * in case of previous command is not completed. - **/ -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw) -{ - u32 hicr; - u8 i; - - DEBUGFUNC("e1000_mng_enable_host_if_generic"); - - if (!hw->mac.arc_subsystem_valid) { - DEBUGOUT("ARC subsystem not valid.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - /* check the previous command is completed */ - for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay_irq(1); - } - - if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { - DEBUGOUT("Previous command timeout failed .\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_mng_mode_generic - Generic check management mode - * @hw: pointer to the HW structure - * - * Reads the firmware semaphore register and returns true (>0) if - * manageability is enabled, else false (0). - **/ -bool e1000_check_mng_mode_generic(struct e1000_hw *hw) -{ - u32 fwsm = E1000_READ_REG(hw, E1000_FWSM); - - DEBUGFUNC("e1000_check_mng_mode_generic"); - - - return (fwsm & E1000_FWSM_MODE_MASK) == - (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); -} - -/** - * e1000_enable_tx_pkt_filtering_generic - Enable packet filtering on Tx - * @hw: pointer to the HW structure - * - * Enables packet filtering on transmit packets if manageability is enabled - * and host interface is enabled. - **/ -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw) -{ - struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; - u32 *buffer = (u32 *)&hw->mng_cookie; - u32 offset; - s32 ret_val, hdr_csum, csum; - u8 i, len; - - DEBUGFUNC("e1000_enable_tx_pkt_filtering_generic"); - - hw->mac.tx_pkt_filtering = true; - - /* No manageability, no filtering */ - if (!hw->mac.ops.check_mng_mode(hw)) { - hw->mac.tx_pkt_filtering = false; - return hw->mac.tx_pkt_filtering; - } - - /* If we can't read from the host interface for whatever - * reason, disable filtering. - */ - ret_val = e1000_mng_enable_host_if_generic(hw); - if (ret_val != E1000_SUCCESS) { - hw->mac.tx_pkt_filtering = false; - return hw->mac.tx_pkt_filtering; - } - - /* Read in the header. Length and offset are in dwords. */ - len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; - offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; - for (i = 0; i < len; i++) - *(buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - offset + i); - hdr_csum = hdr->checksum; - hdr->checksum = 0; - csum = e1000_calculate_checksum((u8 *)hdr, - E1000_MNG_DHCP_COOKIE_LENGTH); - /* If either the checksums or signature don't match, then - * the cookie area isn't considered valid, in which case we - * take the safe route of assuming Tx filtering is enabled. - */ - if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { - hw->mac.tx_pkt_filtering = true; - return hw->mac.tx_pkt_filtering; - } - - /* Cookie area is valid, make the final check for filtering. */ - if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) - hw->mac.tx_pkt_filtering = false; - - return hw->mac.tx_pkt_filtering; -} - -/** - * e1000_mng_write_cmd_header_generic - Writes manageability command header - * @hw: pointer to the HW structure - * @hdr: pointer to the host interface command header - * - * Writes the command header after does the checksum calculation. - **/ -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr) -{ - u16 i, length = sizeof(struct e1000_host_mng_command_header); - - DEBUGFUNC("e1000_mng_write_cmd_header_generic"); - - /* Write the whole command header structure with new checksum. */ - - hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); - - length >>= 2; - /* Write the relevant command block into the ram area. */ - for (i = 0; i < length; i++) { - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *) hdr + i)); - E1000_WRITE_FLUSH(hw); - } - - return E1000_SUCCESS; -} - -/** - * e1000_mng_host_if_write_generic - Write to the manageability host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface buffer - * @length: size of the buffer - * @offset: location in the buffer to write to - * @sum: sum of the data (not checksum) - * - * This function writes the buffer content at the offset given on the host if. - * It also does alignment considerations to do the writes in most efficient - * way. Also fills up the sum of the buffer in *buffer parameter. - **/ -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum) -{ - u8 *tmp; - u8 *bufptr = buffer; - u32 data = 0; - u16 remaining, i, j, prev_bytes; - - DEBUGFUNC("e1000_mng_host_if_write_generic"); - - /* sum = only sum of the data and it is not checksum */ - - if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) - return -E1000_ERR_PARAM; - - tmp = (u8 *)&data; - prev_bytes = offset & 0x3; - offset >>= 2; - - if (prev_bytes) { - data = E1000_READ_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset); - for (j = prev_bytes; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset, data); - length -= j - prev_bytes; - offset++; - } - - remaining = length & 0x3; - length -= remaining; - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant command block into the - * ram area. - */ - for (i = 0; i < length; i++) { - for (j = 0; j < sizeof(u32); j++) { - *(tmp + j) = *bufptr++; - *sum += *(tmp + j); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, - data); - } - if (remaining) { - for (j = 0; j < sizeof(u32); j++) { - if (j < remaining) - *(tmp + j) = *bufptr++; - else - *(tmp + j) = 0; - - *sum += *(tmp + j); - } - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, offset + i, - data); - } - - return E1000_SUCCESS; -} - -/** - * e1000_mng_write_dhcp_info_generic - Writes DHCP info to host interface - * @hw: pointer to the HW structure - * @buffer: pointer to the host interface - * @length: size of the buffer - * - * Writes the DHCP information to the host interface. - **/ -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, u8 *buffer, - u16 length) -{ - struct e1000_host_mng_command_header hdr; - s32 ret_val; - u32 hicr; - - DEBUGFUNC("e1000_mng_write_dhcp_info_generic"); - - hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; - hdr.command_length = length; - hdr.reserved1 = 0; - hdr.reserved2 = 0; - hdr.checksum = 0; - - /* Enable the host interface */ - ret_val = e1000_mng_enable_host_if_generic(hw); - if (ret_val) - return ret_val; - - /* Populate the host interface with the contents of "buffer". */ - ret_val = e1000_mng_host_if_write_generic(hw, buffer, length, - sizeof(hdr), &(hdr.checksum)); - if (ret_val) - return ret_val; - - /* Write the manageability command header */ - ret_val = e1000_mng_write_cmd_header_generic(hw, &hdr); - if (ret_val) - return ret_val; - - /* Tell the ARC a new command is pending. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - return E1000_SUCCESS; -} - -/** - * e1000_enable_mng_pass_thru - Check if management passthrough is needed - * @hw: pointer to the HW structure - * - * Verifies the hardware needs to leave interface enabled so that frames can - * be directed to and from the management interface. - **/ -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw) -{ - u32 manc; - u32 fwsm, factps; - - DEBUGFUNC("e1000_enable_mng_pass_thru"); - - if (!hw->mac.asf_firmware_present) - return false; - - manc = E1000_READ_REG(hw, E1000_MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN)) - return false; - - if (hw->mac.has_fwsm) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - factps = E1000_READ_REG(hw, E1000_FACTPS); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((fwsm & E1000_FWSM_MODE_MASK) == - (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) - return true; - } else if ((hw->mac.type == e1000_82574) || - (hw->mac.type == e1000_82583)) { - u16 data; - - factps = E1000_READ_REG(hw, E1000_FACTPS); - e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data); - - if (!(factps & E1000_FACTPS_MNGCG) && - ((data & E1000_NVM_INIT_CTRL2_MNGM) == - (e1000_mng_mode_pt << 13))) - return true; - } else if ((manc & E1000_MANC_SMBUS_EN) && - !(manc & E1000_MANC_ASF_EN)) { - return true; - } - - return false; -} - -/** - * e1000_host_interface_command - Writes buffer to host interface - * @hw: pointer to the HW structure - * @buffer: contains a command to write - * @length: the byte length of the buffer, must be multiple of 4 bytes - * - * Writes a buffer to the Host Interface. Upon success, returns E1000_SUCCESS - * else returns E1000_ERR_HOST_INTERFACE_COMMAND. - **/ -s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length) -{ - u32 hicr, i; - - DEBUGFUNC("e1000_host_interface_command"); - - if (!(hw->mac.arc_subsystem_valid)) { - DEBUGOUT("Hardware doesn't support host interface command.\n"); - return E1000_SUCCESS; - } - - if (!hw->mac.asf_firmware_present) { - DEBUGOUT("Firmware is not present.\n"); - return E1000_SUCCESS; - } - - if (length == 0 || length & 0x3 || - length > E1000_HI_MAX_BLOCK_BYTE_LENGTH) { - DEBUGOUT("Buffer length failure.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant command block - * into the ram area. - */ - for (i = 0; i < length; i++) - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, i, - *((u32 *)buffer + i)); - - /* Setting this bit tells the ARC that a new command is pending. */ - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay(1); - } - - /* Check command successful completion. */ - if (i == E1000_HI_COMMAND_TIMEOUT || - (!(E1000_READ_REG(hw, E1000_HICR) & E1000_HICR_SV))) { - DEBUGOUT("Command has failed with no status valid.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - for (i = 0; i < length; i++) - *((u32 *)buffer + i) = E1000_READ_REG_ARRAY_DWORD(hw, - E1000_HOST_IF, - i); - - return E1000_SUCCESS; -} -/** - * e1000_load_firmware - Writes proxy FW code buffer to host interface - * and execute. - * @hw: pointer to the HW structure - * @buffer: contains a firmware to write - * @length: the byte length of the buffer, must be multiple of 4 bytes - * - * Upon success returns E1000_SUCCESS, returns E1000_ERR_CONFIG if not enabled - * in HW else returns E1000_ERR_HOST_INTERFACE_COMMAND. - **/ -s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length) -{ - u32 hicr, hibba, fwsm, icr, i; - - DEBUGFUNC("e1000_load_firmware"); - - if (hw->mac.type < e1000_i210) { - DEBUGOUT("Hardware doesn't support loading FW by the driver\n"); - return -E1000_ERR_CONFIG; - } - - /* Check that the host interface is enabled. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_EN)) { - DEBUGOUT("E1000_HOST_EN bit disabled.\n"); - return -E1000_ERR_CONFIG; - } - if (!(hicr & E1000_HICR_MEMORY_BASE_EN)) { - DEBUGOUT("E1000_HICR_MEMORY_BASE_EN bit disabled.\n"); - return -E1000_ERR_CONFIG; - } - - if (length == 0 || length & 0x3 || length > E1000_HI_FW_MAX_LENGTH) { - DEBUGOUT("Buffer length failure.\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - /* Clear notification from ROM-FW by reading ICR register */ - icr = E1000_READ_REG(hw, E1000_ICR_V2); - - /* Reset ROM-FW */ - hicr = E1000_READ_REG(hw, E1000_HICR); - hicr |= E1000_HICR_FW_RESET_ENABLE; - E1000_WRITE_REG(hw, E1000_HICR, hicr); - hicr |= E1000_HICR_FW_RESET; - E1000_WRITE_REG(hw, E1000_HICR, hicr); - E1000_WRITE_FLUSH(hw); - - /* Wait till MAC notifies about its readiness after ROM-FW reset */ - for (i = 0; i < (E1000_HI_COMMAND_TIMEOUT * 2); i++) { - icr = E1000_READ_REG(hw, E1000_ICR_V2); - if (icr & E1000_ICR_MNG) - break; - msec_delay(1); - } - - /* Check for timeout */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("FW reset failed.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Wait till MAC is ready to accept new FW code */ - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - fwsm = E1000_READ_REG(hw, E1000_FWSM); - if ((fwsm & E1000_FWSM_FW_VALID) && - ((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT == - E1000_FWSM_HI_EN_ONLY_MODE)) - break; - msec_delay(1); - } - - /* Check for timeout */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("FW reset failed.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - /* Calculate length in DWORDs */ - length >>= 2; - - /* The device driver writes the relevant FW code block - * into the ram area in DWORDs via 1kB ram addressing window. - */ - for (i = 0; i < length; i++) { - if (!(i % E1000_HI_FW_BLOCK_DWORD_LENGTH)) { - /* Point to correct 1kB ram window */ - hibba = E1000_HI_FW_BASE_ADDRESS + - ((E1000_HI_FW_BLOCK_DWORD_LENGTH << 2) * - (i / E1000_HI_FW_BLOCK_DWORD_LENGTH)); - - E1000_WRITE_REG(hw, E1000_HIBBA, hibba); - } - - E1000_WRITE_REG_ARRAY_DWORD(hw, E1000_HOST_IF, - i % E1000_HI_FW_BLOCK_DWORD_LENGTH, - *((u32 *)buffer + i)); - } - - /* Setting this bit tells the ARC that a new FW is ready to execute. */ - hicr = E1000_READ_REG(hw, E1000_HICR); - E1000_WRITE_REG(hw, E1000_HICR, hicr | E1000_HICR_C); - - for (i = 0; i < E1000_HI_COMMAND_TIMEOUT; i++) { - hicr = E1000_READ_REG(hw, E1000_HICR); - if (!(hicr & E1000_HICR_C)) - break; - msec_delay(1); - } - - /* Check for successful FW start. */ - if (i == E1000_HI_COMMAND_TIMEOUT) { - DEBUGOUT("New FW did not start within timeout period.\n"); - return -E1000_ERR_HOST_INTERFACE_COMMAND; - } - - return E1000_SUCCESS; -} - - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.h deleted file mode 100755 index e6f92c0c..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_manage.h +++ /dev/null @@ -1,95 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_MANAGE_H_ -#define _E1000_MANAGE_H_ - -bool e1000_check_mng_mode_generic(struct e1000_hw *hw); -bool e1000_enable_tx_pkt_filtering_generic(struct e1000_hw *hw); -s32 e1000_mng_enable_host_if_generic(struct e1000_hw *hw); -s32 e1000_mng_host_if_write_generic(struct e1000_hw *hw, u8 *buffer, - u16 length, u16 offset, u8 *sum); -s32 e1000_mng_write_cmd_header_generic(struct e1000_hw *hw, - struct e1000_host_mng_command_header *hdr); -s32 e1000_mng_write_dhcp_info_generic(struct e1000_hw *hw, - u8 *buffer, u16 length); -bool e1000_enable_mng_pass_thru(struct e1000_hw *hw); -u8 e1000_calculate_checksum(u8 *buffer, u32 length); -s32 e1000_host_interface_command(struct e1000_hw *hw, u8 *buffer, u32 length); -s32 e1000_load_firmware(struct e1000_hw *hw, u8 *buffer, u32 length); - -enum e1000_mng_mode { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_if_only -}; - -#define E1000_FACTPS_MNGCG 0x20000000 - -#define E1000_FWSM_MODE_MASK 0xE -#define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 -#define E1000_FWSM_HI_EN_ONLY_MODE 0x4 - -#define E1000_MNG_IAMT_MODE 0x3 -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 -#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1 -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2 - -#define E1000_VFTA_ENTRY_SHIFT 5 -#define E1000_VFTA_ENTRY_MASK 0x7F -#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F - -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Num of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Num of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Process HI cmd limit */ -#define E1000_HI_FW_BASE_ADDRESS 0x10000 -#define E1000_HI_FW_MAX_LENGTH (64 * 1024) /* Num of bytes */ -#define E1000_HI_FW_BLOCK_DWORD_LENGTH 256 /* Num of DWORDs per page */ -#define E1000_HICR_MEMORY_BASE_EN 0x200 /* MB Enable bit - RO */ -#define E1000_HICR_EN 0x01 /* Enable bit - RO */ -/* Driver sets this bit when done to put command in RAM */ -#define E1000_HICR_C 0x02 -#define E1000_HICR_SV 0x04 /* Status Validity */ -#define E1000_HICR_FW_RESET_ENABLE 0x40 -#define E1000_HICR_FW_RESET 0x80 - -/* Intel(R) Active Management Technology signature */ -#define E1000_IAMT_SIGNATURE 0x544D4149 - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.c deleted file mode 100755 index 7ec4c564..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.c +++ /dev/null @@ -1,777 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_mbx.h" - -/** - * e1000_null_mbx_check_for_flag - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_null_mbx_check_for_flag(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG mbx_id) -{ - DEBUGFUNC("e1000_null_mbx_check_flag"); - UNREFERENCED_2PARAMETER(hw, mbx_id); - - return E1000_SUCCESS; -} - -/** - * e1000_null_mbx_transact - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_null_mbx_transact(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG *msg, - u16 E1000_UNUSEDARG size, - u16 E1000_UNUSEDARG mbx_id) -{ - DEBUGFUNC("e1000_null_mbx_rw_msg"); - UNREFERENCED_4PARAMETER(hw, msg, size, mbx_id); - - return E1000_SUCCESS; -} - -/** - * e1000_read_mbx - Reads a message from the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to read - * - * returns SUCCESS if it successfully read message from buffer - **/ -s32 e1000_read_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_read_mbx"); - - /* limit read to size of mailbox */ - if (size > mbx->size) - size = mbx->size; - - if (mbx->ops.read) - ret_val = mbx->ops.read(hw, msg, size, mbx_id); - - return ret_val; -} - -/** - * e1000_write_mbx - Write a message to the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully copied message into the buffer - **/ -s32 e1000_write_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_mbx"); - - if (size > mbx->size) - ret_val = -E1000_ERR_MBX; - - else if (mbx->ops.write) - ret_val = mbx->ops.write(hw, msg, size, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_msg - checks to see if someone sent us mail - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_msg(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_msg"); - - if (mbx->ops.check_for_msg) - ret_val = mbx->ops.check_for_msg(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_ack - checks to see if someone sent us ACK - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_ack(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_ack"); - - if (mbx->ops.check_for_ack) - ret_val = mbx->ops.check_for_ack(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_check_for_rst - checks to see if other side has reset - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the Status bit was found or else ERR_MBX - **/ -s32 e1000_check_for_rst(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_rst"); - - if (mbx->ops.check_for_rst) - ret_val = mbx->ops.check_for_rst(hw, mbx_id); - - return ret_val; -} - -/** - * e1000_poll_for_msg - Wait for message notification - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message notification - **/ -STATIC s32 e1000_poll_for_msg(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - int countdown = mbx->timeout; - - DEBUGFUNC("e1000_poll_for_msg"); - - if (!countdown || !mbx->ops.check_for_msg) - goto out; - - while (countdown && mbx->ops.check_for_msg(hw, mbx_id)) { - countdown--; - if (!countdown) - break; - usec_delay(mbx->usec_delay); - } - - /* if we failed, all future posted messages fail until reset */ - if (!countdown) - mbx->timeout = 0; -out: - return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; -} - -/** - * e1000_poll_for_ack - Wait for message acknowledgement - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message acknowledgement - **/ -STATIC s32 e1000_poll_for_ack(struct e1000_hw *hw, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - int countdown = mbx->timeout; - - DEBUGFUNC("e1000_poll_for_ack"); - - if (!countdown || !mbx->ops.check_for_ack) - goto out; - - while (countdown && mbx->ops.check_for_ack(hw, mbx_id)) { - countdown--; - if (!countdown) - break; - usec_delay(mbx->usec_delay); - } - - /* if we failed, all future posted messages fail until reset */ - if (!countdown) - mbx->timeout = 0; -out: - return countdown ? E1000_SUCCESS : -E1000_ERR_MBX; -} - -/** - * e1000_read_posted_mbx - Wait for message notification and receive message - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully received a message notification and - * copied it into the receive buffer. - **/ -s32 e1000_read_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_read_posted_mbx"); - - if (!mbx->ops.read) - goto out; - - ret_val = e1000_poll_for_msg(hw, mbx_id); - - /* if ack received read message, otherwise we timed out */ - if (!ret_val) - ret_val = mbx->ops.read(hw, msg, size, mbx_id); -out: - return ret_val; -} - -/** - * e1000_write_posted_mbx - Write a message to the mailbox, wait for ack - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully copied message into the buffer and - * received an ack to that message within delay * timeout period - **/ -s32 e1000_write_posted_mbx(struct e1000_hw *hw, u32 *msg, u16 size, u16 mbx_id) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_write_posted_mbx"); - - /* exit if either we can't write or there isn't a defined timeout */ - if (!mbx->ops.write || !mbx->timeout) - goto out; - - /* send msg */ - ret_val = mbx->ops.write(hw, msg, size, mbx_id); - - /* if msg sent wait until we receive an ack */ - if (!ret_val) - ret_val = e1000_poll_for_ack(hw, mbx_id); -out: - return ret_val; -} - -/** - * e1000_init_mbx_ops_generic - Initialize mbx function pointers - * @hw: pointer to the HW structure - * - * Sets the function pointers to no-op functions - **/ -void e1000_init_mbx_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - mbx->ops.init_params = e1000_null_ops_generic; - mbx->ops.read = e1000_null_mbx_transact; - mbx->ops.write = e1000_null_mbx_transact; - mbx->ops.check_for_msg = e1000_null_mbx_check_for_flag; - mbx->ops.check_for_ack = e1000_null_mbx_check_for_flag; - mbx->ops.check_for_rst = e1000_null_mbx_check_for_flag; - mbx->ops.read_posted = e1000_read_posted_mbx; - mbx->ops.write_posted = e1000_write_posted_mbx; -} - -/** - * e1000_read_v2p_mailbox - read v2p mailbox - * @hw: pointer to the HW structure - * - * This function is used to read the v2p mailbox without losing the read to - * clear status bits. - **/ -STATIC u32 e1000_read_v2p_mailbox(struct e1000_hw *hw) -{ - u32 v2p_mailbox = E1000_READ_REG(hw, E1000_V2PMAILBOX(0)); - - v2p_mailbox |= hw->dev_spec.vf.v2p_mailbox; - hw->dev_spec.vf.v2p_mailbox |= v2p_mailbox & E1000_V2PMAILBOX_R2C_BITS; - - return v2p_mailbox; -} - -/** - * e1000_check_for_bit_vf - Determine if a status bit was set - * @hw: pointer to the HW structure - * @mask: bitmask for bits to be tested and cleared - * - * This function is used to check for the read to clear bits within - * the V2P mailbox. - **/ -STATIC s32 e1000_check_for_bit_vf(struct e1000_hw *hw, u32 mask) -{ - u32 v2p_mailbox = e1000_read_v2p_mailbox(hw); - s32 ret_val = -E1000_ERR_MBX; - - if (v2p_mailbox & mask) - ret_val = E1000_SUCCESS; - - hw->dev_spec.vf.v2p_mailbox &= ~mask; - - return ret_val; -} - -/** - * e1000_check_for_msg_vf - checks to see if the PF has sent mail - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the PF has set the Status bit or else ERR_MBX - **/ -STATIC s32 e1000_check_for_msg_vf(struct e1000_hw *hw, - u16 E1000_UNUSEDARG mbx_id) -{ - s32 ret_val = -E1000_ERR_MBX; - - UNREFERENCED_1PARAMETER(mbx_id); - DEBUGFUNC("e1000_check_for_msg_vf"); - - if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFSTS)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.reqs++; - } - - return ret_val; -} - -/** - * e1000_check_for_ack_vf - checks to see if the PF has ACK'd - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns SUCCESS if the PF has set the ACK bit or else ERR_MBX - **/ -STATIC s32 e1000_check_for_ack_vf(struct e1000_hw *hw, - u16 E1000_UNUSEDARG mbx_id) -{ - s32 ret_val = -E1000_ERR_MBX; - - UNREFERENCED_1PARAMETER(mbx_id); - DEBUGFUNC("e1000_check_for_ack_vf"); - - if (!e1000_check_for_bit_vf(hw, E1000_V2PMAILBOX_PFACK)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.acks++; - } - - return ret_val; -} - -/** - * e1000_check_for_rst_vf - checks to see if the PF has reset - * @hw: pointer to the HW structure - * @mbx_id: id of mailbox to check - * - * returns true if the PF has set the reset done bit or else false - **/ -STATIC s32 e1000_check_for_rst_vf(struct e1000_hw *hw, - u16 E1000_UNUSEDARG mbx_id) -{ - s32 ret_val = -E1000_ERR_MBX; - - UNREFERENCED_1PARAMETER(mbx_id); - DEBUGFUNC("e1000_check_for_rst_vf"); - - if (!e1000_check_for_bit_vf(hw, (E1000_V2PMAILBOX_RSTD | - E1000_V2PMAILBOX_RSTI))) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.rsts++; - } - - return ret_val; -} - -/** - * e1000_obtain_mbx_lock_vf - obtain mailbox lock - * @hw: pointer to the HW structure - * - * return SUCCESS if we obtained the mailbox lock - **/ -STATIC s32 e1000_obtain_mbx_lock_vf(struct e1000_hw *hw) -{ - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_obtain_mbx_lock_vf"); - - /* Take ownership of the buffer */ - E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_VFU); - - /* reserve mailbox for vf use */ - if (e1000_read_v2p_mailbox(hw) & E1000_V2PMAILBOX_VFU) - ret_val = E1000_SUCCESS; - - return ret_val; -} - -/** - * e1000_write_mbx_vf - Write a message to the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to write - * - * returns SUCCESS if it successfully copied message into the buffer - **/ -STATIC s32 e1000_write_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 E1000_UNUSEDARG mbx_id) -{ - s32 ret_val; - u16 i; - - UNREFERENCED_1PARAMETER(mbx_id); - - DEBUGFUNC("e1000_write_mbx_vf"); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_vf(hw); - if (ret_val) - goto out_no_write; - - /* flush msg and acks as we are overwriting the message buffer */ - e1000_check_for_msg_vf(hw, 0); - e1000_check_for_ack_vf(hw, 0); - - /* copy the caller specified message to the mailbox memory buffer */ - for (i = 0; i < size; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(0), i, msg[i]); - - /* update stats */ - hw->mbx.stats.msgs_tx++; - - /* Drop VFU and interrupt the PF to tell it a message has been sent */ - E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_REQ); - -out_no_write: - return ret_val; -} - -/** - * e1000_read_mbx_vf - Reads a message from the inbox intended for vf - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @mbx_id: id of mailbox to read - * - * returns SUCCESS if it successfully read message from buffer - **/ -STATIC s32 e1000_read_mbx_vf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 E1000_UNUSEDARG mbx_id) -{ - s32 ret_val = E1000_SUCCESS; - u16 i; - - DEBUGFUNC("e1000_read_mbx_vf"); - UNREFERENCED_1PARAMETER(mbx_id); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_vf(hw); - if (ret_val) - goto out_no_read; - - /* copy the message from the mailbox memory buffer */ - for (i = 0; i < size; i++) - msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(0), i); - - /* Acknowledge receipt and release mailbox, then we're done */ - E1000_WRITE_REG(hw, E1000_V2PMAILBOX(0), E1000_V2PMAILBOX_ACK); - - /* update stats */ - hw->mbx.stats.msgs_rx++; - -out_no_read: - return ret_val; -} - -/** - * e1000_init_mbx_params_vf - set initial values for vf mailbox - * @hw: pointer to the HW structure - * - * Initializes the hw->mbx struct to correct values for vf mailbox - */ -s32 e1000_init_mbx_params_vf(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - - /* start mailbox as timed out and let the reset_hw call set the timeout - * value to begin communications */ - mbx->timeout = 0; - mbx->usec_delay = E1000_VF_MBX_INIT_DELAY; - - mbx->size = E1000_VFMAILBOX_SIZE; - - mbx->ops.read = e1000_read_mbx_vf; - mbx->ops.write = e1000_write_mbx_vf; - mbx->ops.read_posted = e1000_read_posted_mbx; - mbx->ops.write_posted = e1000_write_posted_mbx; - mbx->ops.check_for_msg = e1000_check_for_msg_vf; - mbx->ops.check_for_ack = e1000_check_for_ack_vf; - mbx->ops.check_for_rst = e1000_check_for_rst_vf; - - mbx->stats.msgs_tx = 0; - mbx->stats.msgs_rx = 0; - mbx->stats.reqs = 0; - mbx->stats.acks = 0; - mbx->stats.rsts = 0; - - return E1000_SUCCESS; -} - -STATIC s32 e1000_check_for_bit_pf(struct e1000_hw *hw, u32 mask) -{ - u32 mbvficr = E1000_READ_REG(hw, E1000_MBVFICR); - s32 ret_val = -E1000_ERR_MBX; - - if (mbvficr & mask) { - ret_val = E1000_SUCCESS; - E1000_WRITE_REG(hw, E1000_MBVFICR, mask); - } - - return ret_val; -} - -/** - * e1000_check_for_msg_pf - checks to see if the VF has sent mail - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -STATIC s32 e1000_check_for_msg_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_msg_pf"); - - if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFREQ_VF1 << vf_number)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.reqs++; - } - - return ret_val; -} - -/** - * e1000_check_for_ack_pf - checks to see if the VF has ACKed - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -STATIC s32 e1000_check_for_ack_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_ack_pf"); - - if (!e1000_check_for_bit_pf(hw, E1000_MBVFICR_VFACK_VF1 << vf_number)) { - ret_val = E1000_SUCCESS; - hw->mbx.stats.acks++; - } - - return ret_val; -} - -/** - * e1000_check_for_rst_pf - checks to see if the VF has reset - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * returns SUCCESS if the VF has set the Status bit or else ERR_MBX - **/ -STATIC s32 e1000_check_for_rst_pf(struct e1000_hw *hw, u16 vf_number) -{ - u32 vflre = E1000_READ_REG(hw, E1000_VFLRE); - s32 ret_val = -E1000_ERR_MBX; - - DEBUGFUNC("e1000_check_for_rst_pf"); - - if (vflre & (1 << vf_number)) { - ret_val = E1000_SUCCESS; - E1000_WRITE_REG(hw, E1000_VFLRE, (1 << vf_number)); - hw->mbx.stats.rsts++; - } - - return ret_val; -} - -/** - * e1000_obtain_mbx_lock_pf - obtain mailbox lock - * @hw: pointer to the HW structure - * @vf_number: the VF index - * - * return SUCCESS if we obtained the mailbox lock - **/ -STATIC s32 e1000_obtain_mbx_lock_pf(struct e1000_hw *hw, u16 vf_number) -{ - s32 ret_val = -E1000_ERR_MBX; - u32 p2v_mailbox; - - DEBUGFUNC("e1000_obtain_mbx_lock_pf"); - - /* Take ownership of the buffer */ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_PFU); - - /* reserve mailbox for vf use */ - p2v_mailbox = E1000_READ_REG(hw, E1000_P2VMAILBOX(vf_number)); - if (p2v_mailbox & E1000_P2VMAILBOX_PFU) - ret_val = E1000_SUCCESS; - - return ret_val; -} - -/** - * e1000_write_mbx_pf - Places a message in the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @vf_number: the VF index - * - * returns SUCCESS if it successfully copied message into the buffer - **/ -STATIC s32 e1000_write_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) -{ - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_write_mbx_pf"); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); - if (ret_val) - goto out_no_write; - - /* flush msg and acks as we are overwriting the message buffer */ - e1000_check_for_msg_pf(hw, vf_number); - e1000_check_for_ack_pf(hw, vf_number); - - /* copy the caller specified message to the mailbox memory buffer */ - for (i = 0; i < size; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i, msg[i]); - - /* Interrupt VF to tell it a message has been sent and release buffer*/ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_STS); - - /* update stats */ - hw->mbx.stats.msgs_tx++; - -out_no_write: - return ret_val; - -} - -/** - * e1000_read_mbx_pf - Read a message from the mailbox - * @hw: pointer to the HW structure - * @msg: The message buffer - * @size: Length of buffer - * @vf_number: the VF index - * - * This function copies a message from the mailbox buffer to the caller's - * memory buffer. The presumption is that the caller knows that there was - * a message due to a VF request so no polling for message is needed. - **/ -STATIC s32 e1000_read_mbx_pf(struct e1000_hw *hw, u32 *msg, u16 size, - u16 vf_number) -{ - s32 ret_val; - u16 i; - - DEBUGFUNC("e1000_read_mbx_pf"); - - /* lock the mailbox to prevent pf/vf race condition */ - ret_val = e1000_obtain_mbx_lock_pf(hw, vf_number); - if (ret_val) - goto out_no_read; - - /* copy the message to the mailbox memory buffer */ - for (i = 0; i < size; i++) - msg[i] = E1000_READ_REG_ARRAY(hw, E1000_VMBMEM(vf_number), i); - - /* Acknowledge the message and release buffer */ - E1000_WRITE_REG(hw, E1000_P2VMAILBOX(vf_number), E1000_P2VMAILBOX_ACK); - - /* update stats */ - hw->mbx.stats.msgs_rx++; - -out_no_read: - return ret_val; -} - -/** - * e1000_init_mbx_params_pf - set initial values for pf mailbox - * @hw: pointer to the HW structure - * - * Initializes the hw->mbx struct to correct values for pf mailbox - */ -s32 e1000_init_mbx_params_pf(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - - switch (hw->mac.type) { - case e1000_82576: - case e1000_i350: - case e1000_i354: - mbx->timeout = 0; - mbx->usec_delay = 0; - - mbx->size = E1000_VFMAILBOX_SIZE; - - mbx->ops.read = e1000_read_mbx_pf; - mbx->ops.write = e1000_write_mbx_pf; - mbx->ops.read_posted = e1000_read_posted_mbx; - mbx->ops.write_posted = e1000_write_posted_mbx; - mbx->ops.check_for_msg = e1000_check_for_msg_pf; - mbx->ops.check_for_ack = e1000_check_for_ack_pf; - mbx->ops.check_for_rst = e1000_check_for_rst_pf; - - mbx->stats.msgs_tx = 0; - mbx->stats.msgs_rx = 0; - mbx->stats.reqs = 0; - mbx->stats.acks = 0; - mbx->stats.rsts = 0; - default: - return E1000_SUCCESS; - } -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.h deleted file mode 100755 index e9524fc8..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mbx.h +++ /dev/null @@ -1,105 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_MBX_H_ -#define _E1000_MBX_H_ - -#include "e1000_api.h" - -/* Define mailbox register bits */ -#define E1000_V2PMAILBOX_REQ 0x00000001 /* Request for PF Ready bit */ -#define E1000_V2PMAILBOX_ACK 0x00000002 /* Ack PF message received */ -#define E1000_V2PMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ -#define E1000_V2PMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ -#define E1000_V2PMAILBOX_PFSTS 0x00000010 /* PF wrote a message in the MB */ -#define E1000_V2PMAILBOX_PFACK 0x00000020 /* PF ack the previous VF msg */ -#define E1000_V2PMAILBOX_RSTI 0x00000040 /* PF has reset indication */ -#define E1000_V2PMAILBOX_RSTD 0x00000080 /* PF has indicated reset done */ -#define E1000_V2PMAILBOX_R2C_BITS 0x000000B0 /* All read to clear bits */ - -#define E1000_P2VMAILBOX_STS 0x00000001 /* Initiate message send to VF */ -#define E1000_P2VMAILBOX_ACK 0x00000002 /* Ack message recv'd from VF */ -#define E1000_P2VMAILBOX_VFU 0x00000004 /* VF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_PFU 0x00000008 /* PF owns the mailbox buffer */ -#define E1000_P2VMAILBOX_RVFU 0x00000010 /* Reset VFU - used when VF stuck */ - -#define E1000_MBVFICR_VFREQ_MASK 0x000000FF /* bits for VF messages */ -#define E1000_MBVFICR_VFREQ_VF1 0x00000001 /* bit for VF 1 message */ -#define E1000_MBVFICR_VFACK_MASK 0x00FF0000 /* bits for VF acks */ -#define E1000_MBVFICR_VFACK_VF1 0x00010000 /* bit for VF 1 ack */ - -#define E1000_VFMAILBOX_SIZE 16 /* 16 32 bit words - 64 bytes */ - -/* If it's a E1000_VF_* msg then it originates in the VF and is sent to the - * PF. The reverse is true if it is E1000_PF_*. - * Message ACK's are the value or'd with 0xF0000000 - */ -/* Msgs below or'd with this are the ACK */ -#define E1000_VT_MSGTYPE_ACK 0x80000000 -/* Msgs below or'd with this are the NACK */ -#define E1000_VT_MSGTYPE_NACK 0x40000000 -/* Indicates that VF is still clear to send requests */ -#define E1000_VT_MSGTYPE_CTS 0x20000000 -#define E1000_VT_MSGINFO_SHIFT 16 -/* bits 23:16 are used for extra info for certain messages */ -#define E1000_VT_MSGINFO_MASK (0xFF << E1000_VT_MSGINFO_SHIFT) - -#define E1000_VF_RESET 0x01 /* VF requests reset */ -#define E1000_VF_SET_MAC_ADDR 0x02 /* VF requests to set MAC addr */ -#define E1000_VF_SET_MULTICAST 0x03 /* VF requests to set MC addr */ -#define E1000_VF_SET_MULTICAST_COUNT_MASK (0x1F << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_MULTICAST_OVERFLOW (0x80 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_VLAN 0x04 /* VF requests to set VLAN */ -#define E1000_VF_SET_VLAN_ADD (0x01 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_LPE 0x05 /* reqs to set VMOLR.LPE */ -#define E1000_VF_SET_PROMISC 0x06 /* reqs to clear VMOLR.ROPE/MPME*/ -#define E1000_VF_SET_PROMISC_UNICAST (0x01 << E1000_VT_MSGINFO_SHIFT) -#define E1000_VF_SET_PROMISC_MULTICAST (0x02 << E1000_VT_MSGINFO_SHIFT) - -#define E1000_PF_CONTROL_MSG 0x0100 /* PF control message */ - -#define E1000_VF_MBX_INIT_TIMEOUT 2000 /* number of retries on mailbox */ -#define E1000_VF_MBX_INIT_DELAY 500 /* microseconds between retries */ - -s32 e1000_read_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_write_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_read_posted_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_write_posted_mbx(struct e1000_hw *, u32 *, u16, u16); -s32 e1000_check_for_msg(struct e1000_hw *, u16); -s32 e1000_check_for_ack(struct e1000_hw *, u16); -s32 e1000_check_for_rst(struct e1000_hw *, u16); -void e1000_init_mbx_ops_generic(struct e1000_hw *hw); -s32 e1000_init_mbx_params_vf(struct e1000_hw *); -s32 e1000_init_mbx_params_pf(struct e1000_hw *); - -#endif /* _E1000_MBX_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.c deleted file mode 100755 index 8be437a8..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.c +++ /dev/null @@ -1,1377 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw); - -/** - * e1000_init_nvm_ops_generic - Initialize NVM function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_nvm_ops_generic(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - DEBUGFUNC("e1000_init_nvm_ops_generic"); - - /* Initialize function pointers */ - nvm->ops.init_params = e1000_null_ops_generic; - nvm->ops.acquire = e1000_null_ops_generic; - nvm->ops.read = e1000_null_read_nvm; - nvm->ops.release = e1000_null_nvm_generic; - nvm->ops.reload = e1000_reload_nvm_generic; - nvm->ops.update = e1000_null_ops_generic; - nvm->ops.valid_led_default = e1000_null_led_default; - nvm->ops.validate = e1000_null_ops_generic; - nvm->ops.write = e1000_null_write_nvm; -} - -/** - * e1000_null_nvm_read - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_read_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return E1000_SUCCESS; -} - -/** - * e1000_null_nvm_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_nvm_generic"); - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_null_led_default - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_null_led_default"); - UNREFERENCED_2PARAMETER(hw, data); - return E1000_SUCCESS; -} - -/** - * e1000_null_write_nvm - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b, - u16 E1000_UNUSEDARG *c) -{ - DEBUGFUNC("e1000_null_write_nvm"); - UNREFERENCED_4PARAMETER(hw, a, b, c); - return E1000_SUCCESS; -} - -/** - * e1000_raise_eec_clk - Raise EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Enable/Raise the EEPROM clock bit. - **/ -STATIC void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd | E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_lower_eec_clk - Lower EEPROM clock - * @hw: pointer to the HW structure - * @eecd: pointer to the EEPROM - * - * Clear/Lower the EEPROM clock bit. - **/ -STATIC void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) -{ - *eecd = *eecd & ~E1000_EECD_SK; - E1000_WRITE_REG(hw, E1000_EECD, *eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(hw->nvm.delay_usec); -} - -/** - * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM - * @hw: pointer to the HW structure - * @data: data to send to the EEPROM - * @count: number of bits to shift out - * - * We need to shift 'count' bits out to the EEPROM. So, the value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - **/ -STATIC void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u32 mask; - - DEBUGFUNC("e1000_shift_out_eec_bits"); - - mask = 0x01 << (count - 1); - if (nvm->type == e1000_nvm_eeprom_microwire) - eecd &= ~E1000_EECD_DO; - else - if (nvm->type == e1000_nvm_eeprom_spi) - eecd |= E1000_EECD_DO; - - do { - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - - mask >>= 1; - } while (mask); - - eecd &= ~E1000_EECD_DI; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM - * @hw: pointer to the HW structure - * @count: number of bits to shift in - * - * In order to read a register from the EEPROM, we need to shift 'count' bits - * in from the EEPROM. Bits are "shifted in" by raising the clock input to - * the EEPROM (setting the SK bit), and then reading the value of the data out - * "DO" bit. During this "shifting in" process the data in "DI" bit should - * always be clear. - **/ -STATIC u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) -{ - u32 eecd; - u32 i; - u16 data; - - DEBUGFUNC("e1000_shift_in_eec_bits"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; - - for (i = 0; i < count; i++) { - data <<= 1; - e1000_raise_eec_clk(hw, &eecd); - - eecd = E1000_READ_REG(hw, E1000_EECD); - - eecd &= ~E1000_EECD_DI; - if (eecd & E1000_EECD_DO) - data |= 1; - - e1000_lower_eec_clk(hw, &eecd); - } - - return data; -} - -/** - * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion - * @hw: pointer to the HW structure - * @ee_reg: EEPROM flag for polling - * - * Polls the EEPROM status bit for either read or write completion based - * upon the value of 'ee_reg'. - **/ -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) -{ - u32 attempts = 100000; - u32 i, reg = 0; - - DEBUGFUNC("e1000_poll_eerd_eewr_done"); - - for (i = 0; i < attempts; i++) { - if (ee_reg == E1000_NVM_POLL_READ) - reg = E1000_READ_REG(hw, E1000_EERD); - else - reg = E1000_READ_REG(hw, E1000_EEWR); - - if (reg & E1000_NVM_RW_REG_DONE) - return E1000_SUCCESS; - - usec_delay(5); - } - - return -E1000_ERR_NVM; -} - -/** - * e1000_acquire_nvm_generic - Generic request for access to EEPROM - * @hw: pointer to the HW structure - * - * Set the EEPROM access request bit and wait for EEPROM access grant bit. - * Return successful if access grant bit set, else clear the request for - * EEPROM access and return -E1000_ERR_NVM (-1). - **/ -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - s32 timeout = E1000_NVM_GRANT_ATTEMPTS; - - DEBUGFUNC("e1000_acquire_nvm_generic"); - - E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); - eecd = E1000_READ_REG(hw, E1000_EECD); - - while (timeout) { - if (eecd & E1000_EECD_GNT) - break; - usec_delay(5); - eecd = E1000_READ_REG(hw, E1000_EECD); - timeout--; - } - - if (!timeout) { - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - DEBUGOUT("Could not acquire NVM grant\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_standby_nvm - Return EEPROM to standby state - * @hw: pointer to the HW structure - * - * Return the EEPROM to a standby state. - **/ -STATIC void e1000_standby_nvm(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - - DEBUGFUNC("e1000_standby_nvm"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_raise_eec_clk(hw, &eecd); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - - e1000_lower_eec_clk(hw, &eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - eecd &= ~E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(nvm->delay_usec); - } -} - -/** - * e1000_stop_nvm - Terminate EEPROM command - * @hw: pointer to the HW structure - * - * Terminates the current command by inverting the EEPROM's chip select pin. - **/ -void e1000_stop_nvm(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_stop_nvm"); - - eecd = E1000_READ_REG(hw, E1000_EECD); - if (hw->nvm.type == e1000_nvm_eeprom_spi) { - /* Pull CS high */ - eecd |= E1000_EECD_CS; - e1000_lower_eec_clk(hw, &eecd); - } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - e1000_raise_eec_clk(hw, &eecd); - e1000_lower_eec_clk(hw, &eecd); - } -} - -/** - * e1000_release_nvm_generic - Release exclusive access to EEPROM - * @hw: pointer to the HW structure - * - * Stop any current commands to the EEPROM and clear the EEPROM request bit. - **/ -void e1000_release_nvm_generic(struct e1000_hw *hw) -{ - u32 eecd; - - DEBUGFUNC("e1000_release_nvm_generic"); - - e1000_stop_nvm(hw); - - eecd = E1000_READ_REG(hw, E1000_EECD); - eecd &= ~E1000_EECD_REQ; - E1000_WRITE_REG(hw, E1000_EECD, eecd); -} - -/** - * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write - * @hw: pointer to the HW structure - * - * Setups the EEPROM for reading and writing. - **/ -STATIC s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 eecd = E1000_READ_REG(hw, E1000_EECD); - u8 spi_stat_reg; - - DEBUGFUNC("e1000_ready_nvm_eeprom"); - - if (nvm->type == e1000_nvm_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - /* Set CS */ - eecd |= E1000_EECD_CS; - E1000_WRITE_REG(hw, E1000_EECD, eecd); - } else if (nvm->type == e1000_nvm_eeprom_spi) { - u16 timeout = NVM_MAX_RETRY_SPI; - - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - E1000_WRITE_REG(hw, E1000_EECD, eecd); - E1000_WRITE_FLUSH(hw); - usec_delay(1); - - /* Read "Status Register" repeatedly until the LSB is cleared. - * The EEPROM will signal that the command has been completed - * by clearing bit 0 of the internal status register. If it's - * not cleared within 'timeout', then error out. - */ - while (timeout) { - e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, - hw->nvm.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); - if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) - break; - - usec_delay(5); - e1000_standby_nvm(hw); - timeout--; - } - - if (!timeout) { - DEBUGOUT("SPI NVM Status error\n"); - return -E1000_ERR_NVM; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_nvm_spi - Read EEPROM's using SPI - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - **/ -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u16 word_in; - u8 read_opcode = NVM_READ_OPCODE_SPI; - - DEBUGFUNC("e1000_read_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_standby_nvm(hw); - - if ((nvm->address_bits == 8) && (offset >= 128)) - read_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); - - /* Read the data. SPI NVMs increment the address with each byte - * read and will roll over if reading beyond the end. This allows - * us to read the whole NVM from any offset - */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_eec_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_nvm_microwire - Reads EEPROM's using microwire - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM. - **/ -s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i = 0; - s32 ret_val; - u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; - - DEBUGFUNC("e1000_read_nvm_microwire"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)(offset + i), - nvm->address_bits); - - /* Read the data. For microwire, each word requires the - * overhead of setup and tear-down. - */ - data[i] = e1000_shift_in_eec_bits(hw, 16); - e1000_standby_nvm(hw); - } - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_nvm_eerd - Reads EEPROM using EERD register - * @hw: pointer to the HW structure - * @offset: offset of word in the EEPROM to read - * @words: number of words to read - * @data: word read from the EEPROM - * - * Reads a 16 bit word from the EEPROM using the EERD register. - **/ -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - u32 i, eerd = 0; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_read_nvm_eerd"); - - /* A check for invalid values: offset too large, too many words, - * too many words for the offset, and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + - E1000_NVM_RW_REG_START; - - E1000_WRITE_REG(hw, E1000_EERD, eerd); - ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); - if (ret_val) - break; - - data[i] = (E1000_READ_REG(hw, E1000_EERD) >> - E1000_NVM_RW_REG_DATA); - } - - return ret_val; -} - -/** - * e1000_write_nvm_spi - Write to EEPROM using SPI - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using SPI interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val = -E1000_ERR_NVM; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_spi"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - while (widx < words) { - u8 write_opcode = NVM_WRITE_OPCODE_SPI; - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) { - nvm->ops.release(hw); - return ret_val; - } - - e1000_standby_nvm(hw); - - /* Send the WRITE ENABLE command (8 bit opcode) */ - e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, - nvm->opcode_bits); - - e1000_standby_nvm(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the - * opcode - */ - if ((nvm->address_bits == 8) && (offset >= 128)) - write_opcode |= NVM_A8_OPCODE_SPI; - - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); - e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), - nvm->address_bits); - - /* Loop to allow for up to whole page write of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_eec_bits(hw, word_out, 16); - widx++; - - if ((((offset + widx) * 2) % nvm->page_size) == 0) { - e1000_standby_nvm(hw); - break; - } - } - msec_delay(10); - nvm->ops.release(hw); - } - - return ret_val; -} - -/** - * e1000_write_nvm_microwire - Writes EEPROM using microwire - * @hw: pointer to the HW structure - * @offset: offset within the EEPROM to be written to - * @words: number of words to write - * @data: 16 bit word(s) to be written to the EEPROM - * - * Writes data to EEPROM at offset using microwire interface. - * - * If e1000_update_nvm_checksum is not called after this function , the - * EEPROM will most likely contain an invalid checksum. - **/ -s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data) -{ - struct e1000_nvm_info *nvm = &hw->nvm; - s32 ret_val; - u32 eecd; - u16 words_written = 0; - u16 widx = 0; - - DEBUGFUNC("e1000_write_nvm_microwire"); - - /* A check for invalid values: offset too large, too many words, - * and not enough words. - */ - if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || - (words == 0)) { - DEBUGOUT("nvm parameter(s) out of bounds\n"); - return -E1000_ERR_NVM; - } - - ret_val = nvm->ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_ready_nvm_eeprom(hw); - if (ret_val) - goto release; - - e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - - e1000_standby_nvm(hw); - - while (words_written < words) { - e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, - nvm->opcode_bits); - - e1000_shift_out_eec_bits(hw, (u16)(offset + words_written), - nvm->address_bits); - - e1000_shift_out_eec_bits(hw, data[words_written], 16); - - e1000_standby_nvm(hw); - - for (widx = 0; widx < 200; widx++) { - eecd = E1000_READ_REG(hw, E1000_EECD); - if (eecd & E1000_EECD_DO) - break; - usec_delay(50); - } - - if (widx == 200) { - DEBUGOUT("NVM Write did not complete\n"); - ret_val = -E1000_ERR_NVM; - goto release; - } - - e1000_standby_nvm(hw); - - words_written++; - } - - e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, - (u16)(nvm->opcode_bits + 2)); - - e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2)); - -release: - nvm->ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_pba_string_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 offset; - u16 length; - - DEBUGFUNC("e1000_read_pba_string_generic"); - - if ((hw->mac.type >= e1000_i210) && - !e1000_get_flash_presence_i210(hw)) { - DEBUGOUT("Flashless no PBA string\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - - if (pba_num == NULL) { - DEBUGOUT("PBA string buffer was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if nvm_data is not ptr guard the PBA must be in legacy format which - * means pba_ptr is actually our second data word for the PBA number - * and we can decode it into an ascii string - */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM PBA number is not stored as string\n"); - - /* make sure callers buffer is big enough to store the PBA */ - if (pba_num_size < E1000_PBANUM_LENGTH) { - DEBUGOUT("PBA string buffer too small\n"); - return E1000_ERR_NO_SPACE; - } - - /* extract hex string from data and pba_ptr */ - pba_num[0] = (nvm_data >> 12) & 0xF; - pba_num[1] = (nvm_data >> 8) & 0xF; - pba_num[2] = (nvm_data >> 4) & 0xF; - pba_num[3] = nvm_data & 0xF; - pba_num[4] = (pba_ptr >> 12) & 0xF; - pba_num[5] = (pba_ptr >> 8) & 0xF; - pba_num[6] = '-'; - pba_num[7] = 0; - pba_num[8] = (pba_ptr >> 4) & 0xF; - pba_num[9] = pba_ptr & 0xF; - - /* put a null character on the end of our string */ - pba_num[10] = '\0'; - - /* switch all the data but the '-' to hex char */ - for (offset = 0; offset < 10; offset++) { - if (pba_num[offset] < 0xA) - pba_num[offset] += '0'; - else if (pba_num[offset] < 0x10) - pba_num[offset] += 'A' - 0xA; - } - - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - /* check if pba_num buffer is big enough */ - if (pba_num_size < (((u32)length * 2) - 1)) { - DEBUGOUT("PBA string buffer too small\n"); - return -E1000_ERR_NO_SPACE; - } - - /* trim pba length from start of string */ - pba_ptr++; - length--; - - for (offset = 0; offset < length; offset++) { - ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - pba_num[offset * 2] = (u8)(nvm_data >> 8); - pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); - } - pba_num[offset * 2] = '\0'; - - return E1000_SUCCESS; -} - -/** - * e1000_read_pba_length_generic - Read device part number length - * @hw: pointer to the HW structure - * @pba_num_size: size of part number buffer - * - * Reads the product board assembly (PBA) number length from the EEPROM and - * stores the value in pba_num_size. - **/ -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size) -{ - s32 ret_val; - u16 nvm_data; - u16 pba_ptr; - u16 length; - - DEBUGFUNC("e1000_read_pba_length_generic"); - - if (pba_num_size == NULL) { - DEBUGOUT("PBA buffer size was null\n"); - return -E1000_ERR_INVALID_ARGUMENT; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - /* if data is not ptr guard the PBA must be in legacy format */ - if (nvm_data != NVM_PBA_PTR_GUARD) { - *pba_num_size = E1000_PBANUM_LENGTH; - return E1000_SUCCESS; - } - - ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (length == 0xFFFF || length == 0) { - DEBUGOUT("NVM PBA number section invalid length\n"); - return -E1000_ERR_NVM_PBA_SECTION; - } - - /* Convert from length in u16 values to u8 chars, add 1 for NULL, - * and subtract 2 because length field is included in length. - */ - *pba_num_size = ((u32)length * 2) - 1; - - return E1000_SUCCESS; -} - -/** - * e1000_read_pba_num_generic - Read device part number - * @hw: pointer to the HW structure - * @pba_num: pointer to device part number - * - * Reads the product board assembly (PBA) number from the EEPROM and stores - * the value in pba_num. - **/ -s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num) -{ - s32 ret_val; - u16 nvm_data; - - DEBUGFUNC("e1000_read_pba_num_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } else if (nvm_data == NVM_PBA_PTR_GUARD) { - DEBUGOUT("NVM Not Supported\n"); - return -E1000_NOT_IMPLEMENTED; - } - *pba_num = (u32)(nvm_data << 16); - - ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - *pba_num |= nvm_data; - - return E1000_SUCCESS; -} - - -/** - * e1000_read_pba_raw - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @max_pba_block_size: PBA block size limit - * @pba: pointer to output PBA structure - * - * Reads PBA from EEPROM image when eeprom_buf is not NULL. - * Reads PBA from physical EEPROM device when eeprom_buf is NULL. - * - **/ -s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 max_pba_block_size, - struct e1000_pba *pba) -{ - s32 ret_val; - u16 pba_block_size; - - if (pba == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, - &pba->word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; - pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba->word[0] == NVM_PBA_PTR_GUARD) { - if (pba->pba_block == NULL) - return -E1000_ERR_PARAM; - - ret_val = e1000_get_pba_block_size(hw, eeprom_buf, - eeprom_buf_size, - &pba_block_size); - if (ret_val) - return ret_val; - - if (pba_block_size > max_pba_block_size) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, pba->word[1], - pba_block_size, - pba->pba_block); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > (u32)(pba->word[1] + - pba_block_size)) { - memcpy(pba->pba_block, - &eeprom_buf[pba->word[1]], - pba_block_size * sizeof(u16)); - } else { - return -E1000_ERR_PARAM; - } - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_write_pba_raw - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @pba: pointer to PBA structure - * - * Writes PBA to EEPROM image when eeprom_buf is not NULL. - * Writes PBA to physical EEPROM device when eeprom_buf is NULL. - * - **/ -s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, struct e1000_pba *pba) -{ - s32 ret_val; - - if (pba == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_write_nvm(hw, NVM_PBA_OFFSET_0, 2, - &pba->word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0]; - eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba->word[0] == NVM_PBA_PTR_GUARD) { - if (pba->pba_block == NULL) - return -E1000_ERR_PARAM; - - if (eeprom_buf == NULL) { - ret_val = e1000_write_nvm(hw, pba->word[1], - pba->pba_block[0], - pba->pba_block); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > (u32)(pba->word[1] + - pba->pba_block[0])) { - memcpy(&eeprom_buf[pba->word[1]], - pba->pba_block, - pba->pba_block[0] * sizeof(u16)); - } else { - return -E1000_ERR_PARAM; - } - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_pba_block_size - * @hw: pointer to the HW structure - * @eeprom_buf: optional pointer to EEPROM image - * @eeprom_buf_size: size of EEPROM image in words - * @pba_data_size: pointer to output variable - * - * Returns the size of the PBA block in words. Function operates on EEPROM - * image if the eeprom_buf pointer is not NULL otherwise it accesses physical - * EEPROM device. - * - **/ -s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 *pba_block_size) -{ - s32 ret_val; - u16 pba_word[2]; - u16 length; - - DEBUGFUNC("e1000_get_pba_block_size"); - - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > NVM_PBA_OFFSET_1) { - pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0]; - pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1]; - } else { - return -E1000_ERR_PARAM; - } - } - - if (pba_word[0] == NVM_PBA_PTR_GUARD) { - if (eeprom_buf == NULL) { - ret_val = e1000_read_nvm(hw, pba_word[1] + 0, 1, - &length); - if (ret_val) - return ret_val; - } else { - if (eeprom_buf_size > pba_word[1]) - length = eeprom_buf[pba_word[1] + 0]; - else - return -E1000_ERR_PARAM; - } - - if (length == 0xFFFF || length == 0) - return -E1000_ERR_NVM_PBA_SECTION; - } else { - /* PBA number in legacy format, there is no PBA Block. */ - length = 0; - } - - if (pba_block_size != NULL) - *pba_block_size = length; - - return E1000_SUCCESS; -} - -/** - * e1000_read_mac_addr_generic - Read device MAC address - * @hw: pointer to the HW structure - * - * Reads the device MAC address from the EEPROM and stores the value. - * Since devices with two ports use the same EEPROM, we increment the - * last bit in the MAC address for the second port. - **/ -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) -{ - u32 rar_high; - u32 rar_low; - u16 i; - - rar_high = E1000_READ_REG(hw, E1000_RAH(0)); - rar_low = E1000_READ_REG(hw, E1000_RAL(0)); - - for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); - - for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) - hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return E1000_SUCCESS; -} - -/** - * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum - * @hw: pointer to the HW structure - * - * Calculates the EEPROM checksum by reading/adding each word of the EEPROM - * and then verifies that the sum of the EEPROM is equal to 0xBABA. - **/ -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_validate_nvm_checksum_generic"); - - for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - checksum += nvm_data; - } - - if (checksum != (u16) NVM_SUM) { - DEBUGOUT("NVM Checksum Invalid\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_update_nvm_checksum_generic - Update EEPROM checksum - * @hw: pointer to the HW structure - * - * Updates the EEPROM checksum by reading/adding each word of the EEPROM - * up to the checksum. Then calculates the EEPROM checksum and writes the - * value to the EEPROM. - **/ -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 checksum = 0; - u16 i, nvm_data; - - DEBUGFUNC("e1000_update_nvm_checksum"); - - for (i = 0; i < NVM_CHECKSUM_REG; i++) { - ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error while updating checksum.\n"); - return ret_val; - } - checksum += nvm_data; - } - checksum = (u16) NVM_SUM - checksum; - ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); - if (ret_val) - DEBUGOUT("NVM Write Error while updating checksum.\n"); - - return ret_val; -} - -/** - * e1000_reload_nvm_generic - Reloads EEPROM - * @hw: pointer to the HW structure - * - * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the - * extended control register. - **/ -STATIC void e1000_reload_nvm_generic(struct e1000_hw *hw) -{ - u32 ctrl_ext; - - DEBUGFUNC("e1000_reload_nvm_generic"); - - usec_delay(10); - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_get_fw_version - Get firmware version information - * @hw: pointer to the HW structure - * @fw_vers: pointer to output version structure - * - * unsupported/not present features return 0 in version structure - **/ -void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) -{ - u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; - u8 q, hval, rem, result; - u16 comb_verh, comb_verl, comb_offset; - - memset(fw_vers, 0, sizeof(struct e1000_fw_version)); - - /* basic eeprom version numbers, bits used vary by part and by tool - * used to create the nvm images */ - /* Check which data format we have */ - switch (hw->mac.type) { - case e1000_i211: - e1000_read_invm_version(hw, fw_vers); - return; - case e1000_82575: - case e1000_82576: - case e1000_82580: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - /* Use this format, unless EETRACK ID exists, - * then use alternate format - */ - if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); - goto etrack_id; - } - break; - case e1000_i210: - if (!(e1000_get_flash_presence_i210(hw))) { - e1000_read_invm_version(hw, fw_vers); - return; - } - /* fall through */ - case e1000_i350: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - /* find combo image version */ - hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); - if ((comb_offset != 0x0) && - (comb_offset != NVM_VER_INVALID)) { - - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset - + 1), 1, &comb_verh); - hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), - 1, &comb_verl); - - /* get Option Rom version if it exists and is valid */ - if ((comb_verh && comb_verl) && - ((comb_verh != NVM_VER_INVALID) && - (comb_verl != NVM_VER_INVALID))) { - - fw_vers->or_valid = true; - fw_vers->or_major = - comb_verl >> NVM_COMB_VER_SHFT; - fw_vers->or_build = - (comb_verl << NVM_COMB_VER_SHFT) - | (comb_verh >> NVM_COMB_VER_SHFT); - fw_vers->or_patch = - comb_verh & NVM_COMB_VER_MASK; - } - } - break; - default: - hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); - return; - } - hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); - fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) - >> NVM_MAJOR_SHIFT; - - /* check for old style version format in newer images*/ - if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { - eeprom_verl = (fw_version & NVM_COMB_VER_MASK); - } else { - eeprom_verl = (fw_version & NVM_MINOR_MASK) - >> NVM_MINOR_SHIFT; - } - /* Convert minor value to hex before assigning to output struct - * Val to be converted will not be higher than 99, per tool output - */ - q = eeprom_verl / NVM_HEX_CONV; - hval = q * NVM_HEX_TENS; - rem = eeprom_verl % NVM_HEX_CONV; - result = hval + rem; - fw_vers->eep_minor = result; - -etrack_id: - if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { - hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); - hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); - fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) - | eeprom_verl; - } - return; -} - - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.h deleted file mode 100755 index dee1f62f..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_nvm.h +++ /dev/null @@ -1,98 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_NVM_H_ -#define _E1000_NVM_H_ - -struct e1000_pba { - u16 word[2]; - u16 *pba_block; -}; - -struct e1000_fw_version { - u32 etrack_id; - u16 eep_major; - u16 eep_minor; - u16 eep_build; - - u8 invm_major; - u8 invm_minor; - u8 invm_img_type; - - bool or_valid; - u16 or_major; - u16 or_build; - u16 or_patch; -}; - - -void e1000_init_nvm_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -void e1000_null_nvm_generic(struct e1000_hw *hw); -s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data); -s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c); -s32 e1000_acquire_nvm_generic(struct e1000_hw *hw); - -s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg); -s32 e1000_read_mac_addr_generic(struct e1000_hw *hw); -s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num); -s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, - u32 pba_num_size); -s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size); -s32 e1000_read_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 max_pba_block_size, - struct e1000_pba *pba); -s32 e1000_write_pba_raw(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, struct e1000_pba *pba); -s32 e1000_get_pba_block_size(struct e1000_hw *hw, u16 *eeprom_buf, - u32 eeprom_buf_size, u16 *pba_block_size); -s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data); -s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw); -s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); -s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, - u16 *data); -s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw); -void e1000_stop_nvm(struct e1000_hw *hw); -void e1000_release_nvm_generic(struct e1000_hw *hw); -void e1000_get_fw_version(struct e1000_hw *hw, - struct e1000_fw_version *fw_vers); - -#define E1000_STM_OPCODE 0xDB00 - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.c deleted file mode 100755 index 7270edfa..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.c +++ /dev/null @@ -1,83 +0,0 @@ -/****************************************************************************** - - Copyright (c) 2001-2014, Intel Corporation - All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - POSSIBILITY OF SUCH DAMAGE. - -******************************************************************************/ -/*$FreeBSD$*/ - -#include "e1000_api.h" - -/* - * NOTE: the following routines using the e1000 - * naming style are provided to the shared - * code but are OS specific - */ - -void -e1000_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - return; -} - -void -e1000_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - *value = 0; - return; -} - -void -e1000_pci_set_mwi(struct e1000_hw *hw) -{ -} - -void -e1000_pci_clear_mwi(struct e1000_hw *hw) -{ -} - - -/* - * Read the PCI Express capabilities - */ -int32_t -e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - return E1000_NOT_IMPLEMENTED; -} - -/* - * Write the PCI Express capabilities - */ -int32_t -e1000_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) -{ - return E1000_NOT_IMPLEMENTED; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.h deleted file mode 100755 index 438641e2..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_osdep.h +++ /dev/null @@ -1,182 +0,0 @@ -/****************************************************************************** - - Copyright (c) 2001-2014, Intel Corporation - All rights reserved. - - Redistribution and use in source and binary forms, with or without - modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - POSSIBILITY OF SUCH DAMAGE. - -******************************************************************************/ -/*$FreeBSD$*/ - -#ifndef _E1000_OSDEP_H_ -#define _E1000_OSDEP_H_ - -#include <stdint.h> -#include <stdio.h> -#include <stdarg.h> -#include <string.h> -#include <rte_common.h> -#include <rte_cycles.h> -#include <rte_log.h> -#include <rte_debug.h> - -#include "../e1000_logs.h" - -#define DELAY(x) rte_delay_us(x) -#define usec_delay(x) DELAY(x) -#define usec_delay_irq(x) DELAY(x) -#define msec_delay(x) DELAY(1000*(x)) -#define msec_delay_irq(x) DELAY(1000*(x)) - -#define DEBUGFUNC(F) DEBUGOUT(F "\n"); -#define DEBUGOUT(S, args...) PMD_DRV_LOG_RAW(DEBUG, S, ##args) -#define DEBUGOUT1(S, args...) DEBUGOUT(S, ##args) -#define DEBUGOUT2(S, args...) DEBUGOUT(S, ##args) -#define DEBUGOUT3(S, args...) DEBUGOUT(S, ##args) -#define DEBUGOUT6(S, args...) DEBUGOUT(S, ##args) -#define DEBUGOUT7(S, args...) DEBUGOUT(S, ##args) - -#define UNREFERENCED_PARAMETER(_p) -#define UNREFERENCED_1PARAMETER(_p) -#define UNREFERENCED_2PARAMETER(_p, _q) -#define UNREFERENCED_3PARAMETER(_p, _q, _r) -#define UNREFERENCED_4PARAMETER(_p, _q, _r, _s) - -#define FALSE 0 -#define TRUE 1 - -#define CMD_MEM_WRT_INVALIDATE 0x0010 /* BIT_4 */ - -/* Mutex used in the shared code */ -#define E1000_MUTEX uintptr_t -#define E1000_MUTEX_INIT(mutex) (*(mutex) = 0) -#define E1000_MUTEX_LOCK(mutex) (*(mutex) = 1) -#define E1000_MUTEX_UNLOCK(mutex) (*(mutex) = 0) - -typedef uint64_t u64; -typedef uint32_t u32; -typedef uint16_t u16; -typedef uint8_t u8; -typedef int64_t s64; -typedef int32_t s32; -typedef int16_t s16; -typedef int8_t s8; -typedef int bool; - -#define __le16 u16 -#define __le32 u32 -#define __le64 u64 - -#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, E1000_STATUS) - -#define E1000_PCI_REG(reg) (*((volatile uint32_t *)(reg))) - -#define E1000_PCI_REG_WRITE(reg, value) do { \ - E1000_PCI_REG((reg)) = (value); \ -} while (0) - -#define E1000_PCI_REG_ADDR(hw, reg) \ - ((volatile uint32_t *)((char *)(hw)->hw_addr + (reg))) - -#define E1000_PCI_REG_ARRAY_ADDR(hw, reg, index) \ - E1000_PCI_REG_ADDR((hw), (reg) + ((index) << 2)) - -static inline uint32_t e1000_read_addr(volatile void* addr) -{ - return E1000_PCI_REG(addr); -} - -/* Necessary defines */ -#define E1000_MRQC_ENABLE_MASK 0x00000007 -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 -#define E1000_ALL_FULL_DUPLEX ( \ - ADVERTISE_10_FULL | ADVERTISE_100_FULL | ADVERTISE_1000_FULL) - -#define M88E1543_E_PHY_ID 0x01410EA0 -#define NAHUM6LP_HW -#define ULP_SUPPORT - -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 - -/* Register READ/WRITE macros */ - -#define E1000_READ_REG(hw, reg) \ - e1000_read_addr(E1000_PCI_REG_ADDR((hw), (reg))) - -#define E1000_WRITE_REG(hw, reg, value) \ - E1000_PCI_REG_WRITE(E1000_PCI_REG_ADDR((hw), (reg)), (value)) - -#define E1000_READ_REG_ARRAY(hw, reg, index) \ - E1000_PCI_REG(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index))) - -#define E1000_WRITE_REG_ARRAY(hw, reg, index, value) \ - E1000_PCI_REG_WRITE(E1000_PCI_REG_ARRAY_ADDR((hw), (reg), (index)), (value)) - -#define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY -#define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY - -#define E1000_ACCESS_PANIC(x, hw, reg, value) \ - rte_panic("%s:%u\t" RTE_STR(x) "(%p, 0x%x, 0x%x)", \ - __FILE__, __LINE__, (hw), (reg), (unsigned int)(value)) - -/* - * To be able to do IO write, we need to map IO BAR - * (bar 2/4 depending on device). - * Right now mapping multiple BARs is not supported by DPDK. - * Fortunatelly we need it only for legacy hw support. - */ - -#define E1000_WRITE_REG_IO(hw, reg, value) \ - E1000_WRITE_REG(hw, reg, value) - -/* - * Not implemented. - */ - -#define E1000_READ_FLASH_REG(hw, reg) \ - (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG, hw, reg, 0), 0) - -#define E1000_READ_FLASH_REG16(hw, reg) \ - (E1000_ACCESS_PANIC(E1000_READ_FLASH_REG16, hw, reg, 0), 0) - -#define E1000_WRITE_FLASH_REG(hw, reg, value) \ - E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG, hw, reg, value) - -#define E1000_WRITE_FLASH_REG16(hw, reg, value) \ - E1000_ACCESS_PANIC(E1000_WRITE_FLASH_REG16, hw, reg, value) - -#define STATIC static - -#ifndef ETH_ADDR_LEN -#define ETH_ADDR_LEN 6 -#endif - -#define false FALSE -#define true TRUE - -#endif /* _E1000_OSDEP_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.c deleted file mode 100755 index e214f179..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.c +++ /dev/null @@ -1,4273 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw); -STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set); -STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page); -STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read); - -/* Cable length tables */ -STATIC const u16 e1000_m88_cable_length_table[] = { - 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; -#define M88E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_m88_cable_length_table) / \ - sizeof(e1000_m88_cable_length_table[0])) - -STATIC const u16 e1000_igp_2_cable_length_table[] = { - 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, - 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, - 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, - 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, - 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, - 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, - 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, - 124}; -#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ - (sizeof(e1000_igp_2_cable_length_table) / \ - sizeof(e1000_igp_2_cable_length_table[0])) - -/** - * e1000_init_phy_ops_generic - Initialize PHY function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_phy_ops_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - DEBUGFUNC("e1000_init_phy_ops_generic"); - - /* Initialize function pointers */ - phy->ops.init_params = e1000_null_ops_generic; - phy->ops.acquire = e1000_null_ops_generic; - phy->ops.check_polarity = e1000_null_ops_generic; - phy->ops.check_reset_block = e1000_null_ops_generic; - phy->ops.commit = e1000_null_ops_generic; - phy->ops.force_speed_duplex = e1000_null_ops_generic; - phy->ops.get_cfg_done = e1000_null_ops_generic; - phy->ops.get_cable_length = e1000_null_ops_generic; - phy->ops.get_info = e1000_null_ops_generic; - phy->ops.set_page = e1000_null_set_page; - phy->ops.read_reg = e1000_null_read_reg; - phy->ops.read_reg_locked = e1000_null_read_reg; - phy->ops.read_reg_page = e1000_null_read_reg; - phy->ops.release = e1000_null_phy_generic; - phy->ops.reset = e1000_null_ops_generic; - phy->ops.set_d0_lplu_state = e1000_null_lplu_state; - phy->ops.set_d3_lplu_state = e1000_null_lplu_state; - phy->ops.write_reg = e1000_null_write_reg; - phy->ops.write_reg_locked = e1000_null_write_reg; - phy->ops.write_reg_page = e1000_null_write_reg; - phy->ops.power_up = e1000_null_phy_generic; - phy->ops.power_down = e1000_null_phy_generic; - phy->ops.read_i2c_byte = e1000_read_i2c_byte_null; - phy->ops.write_i2c_byte = e1000_write_i2c_byte_null; - phy->ops.cfg_on_link_up = e1000_null_ops_generic; -} - -/** - * e1000_null_set_page - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_null_set_page"); - UNREFERENCED_2PARAMETER(hw, data); - return E1000_SUCCESS; -} - -/** - * e1000_null_read_reg - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_null_read_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return E1000_SUCCESS; -} - -/** - * e1000_null_phy_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_phy_generic"); - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_null_lplu_state - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw, - bool E1000_UNUSEDARG active) -{ - DEBUGFUNC("e1000_null_lplu_state"); - UNREFERENCED_2PARAMETER(hw, active); - return E1000_SUCCESS; -} - -/** - * e1000_null_write_reg - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_null_write_reg"); - UNREFERENCED_3PARAMETER(hw, offset, data); - return E1000_SUCCESS; -} - -/** - * e1000_read_i2c_byte_null - No-op function, return 0 - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: data value read - * - **/ -s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG byte_offset, - u8 E1000_UNUSEDARG dev_addr, - u8 E1000_UNUSEDARG *data) -{ - DEBUGFUNC("e1000_read_i2c_byte_null"); - UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); - return E1000_SUCCESS; -} - -/** - * e1000_write_i2c_byte_null - No-op function, return 0 - * @hw: pointer to hardware structure - * @byte_offset: byte offset to write - * @dev_addr: device address - * @data: data value to write - * - **/ -s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG byte_offset, - u8 E1000_UNUSEDARG dev_addr, - u8 E1000_UNUSEDARG data) -{ - DEBUGFUNC("e1000_write_i2c_byte_null"); - UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data); - return E1000_SUCCESS; -} - -/** - * e1000_check_reset_block_generic - Check if PHY reset is blocked - * @hw: pointer to the HW structure - * - * Read the PHY management control register and check whether a PHY reset - * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise - * return E1000_BLK_PHY_RESET (12). - **/ -s32 e1000_check_reset_block_generic(struct e1000_hw *hw) -{ - u32 manc; - - DEBUGFUNC("e1000_check_reset_block"); - - manc = E1000_READ_REG(hw, E1000_MANC); - - return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? - E1000_BLK_PHY_RESET : E1000_SUCCESS; -} - -/** - * e1000_get_phy_id - Retrieve the PHY ID and revision - * @hw: pointer to the HW structure - * - * Reads the PHY registers and stores the PHY ID and possibly the PHY - * revision in the hardware structure. - **/ -s32 e1000_get_phy_id(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val = E1000_SUCCESS; - u16 phy_id; - u16 retry_count = 0; - - DEBUGFUNC("e1000_get_phy_id"); - - if (!phy->ops.read_reg) - return E1000_SUCCESS; - - while (retry_count < 2) { - ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); - if (ret_val) - return ret_val; - - phy->id = (u32)(phy_id << 16); - usec_delay(20); - ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); - if (ret_val) - return ret_val; - - phy->id |= (u32)(phy_id & PHY_REVISION_MASK); - phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); - - if (phy->id != 0 && phy->id != PHY_REVISION_MASK) - return E1000_SUCCESS; - - retry_count++; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_reset_dsp_generic - Reset PHY DSP - * @hw: pointer to the HW structure - * - * Reset the digital signal processor. - **/ -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_phy_reset_dsp_generic"); - - if (!hw->phy.ops.write_reg) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); - if (ret_val) - return ret_val; - - return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); -} - -/** - * e1000_read_phy_reg_mdic - Read MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the MDI control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - DEBUGFUNC("e1000_read_phy_reg_mdic"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay_irq(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { - DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n", - offset, - (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); - return -E1000_ERR_PHY; - } - *data = (u16) mdic; - - /* Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - usec_delay_irq(100); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_mdic - Write MDI control register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write to register at offset - * - * Writes data to MDI control register in the PHY at offset. - **/ -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, mdic = 0; - - DEBUGFUNC("e1000_write_phy_reg_mdic"); - - if (offset > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", offset); - return -E1000_ERR_PARAM; - } - - /* Set up Op-code, Phy Address, and register offset in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = (((u32)data) | - (offset << E1000_MDIC_REG_SHIFT) | - (phy->addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - E1000_WRITE_REG(hw, E1000_MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed - * Increasing the time out as testing showed failures with - * the lower time out - */ - for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { - usec_delay_irq(50); - mdic = E1000_READ_REG(hw, E1000_MDIC); - if (mdic & E1000_MDIC_READY) - break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) { - DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n", - offset, - (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT); - return -E1000_ERR_PHY; - } - - /* Allow some time after each MDIC transaction to avoid - * reading duplicate data in the next MDIC transaction. - */ - if (hw->mac.type == e1000_pch2lan) - usec_delay_irq(100); - - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg_i2c - Read PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the i2c interface and stores the - * retrieved information in data. - **/ -s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - - DEBUGFUNC("e1000_read_phy_reg_i2c"); - - /* Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - (E1000_I2CCMD_OPCODE_READ)); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - - /* Need to byte-swap the 16-bit value. */ - *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_i2c - Write PHY register using i2c - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset using the i2c interface. - **/ -s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) -{ - struct e1000_phy_info *phy = &hw->phy; - u32 i, i2ccmd = 0; - u16 phy_data_swapped; - - DEBUGFUNC("e1000_write_phy_reg_i2c"); - - /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ - if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { - DEBUGOUT1("PHY I2C Address %d is out of range.\n", - hw->phy.addr); - return -E1000_ERR_CONFIG; - } - - /* Swap the data bytes for the I2C interface */ - phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); - - /* Set up Op-code, Phy Address, and register address in the I2CCMD - * register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | - phy_data_swapped); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) - break; - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} - -/** - * e1000_read_sfp_data_byte - Reads SFP module data. - * @hw: pointer to the HW structure - * @offset: byte location offset to be read - * @data: read data buffer pointer - * - * Reads one byte from SFP module data stored - * in SFP resided EEPROM memory or SFP diagnostic area. - * Function should be called with - * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access - * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters - * access - **/ -s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) -{ - u32 i = 0; - u32 i2ccmd = 0; - u32 data_local = 0; - - DEBUGFUNC("e1000_read_sfp_data_byte"); - - if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { - DEBUGOUT("I2CCMD command address exceeds upper limit\n"); - return -E1000_ERR_PHY; - } - - /* Set up Op-code, EEPROM Address,in the I2CCMD - * register. The MAC will take care of interfacing with the - * EEPROM to retrieve the desired data. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_READ); - - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - - /* Poll the ready bit to see if the I2C read completed */ - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - data_local = E1000_READ_REG(hw, E1000_I2CCMD); - if (data_local & E1000_I2CCMD_READY) - break; - } - if (!(data_local & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (data_local & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - *data = (u8) data_local & 0xFF; - - return E1000_SUCCESS; -} - -/** - * e1000_write_sfp_data_byte - Writes SFP module data. - * @hw: pointer to the HW structure - * @offset: byte location offset to write to - * @data: data to write - * - * Writes one byte to SFP module data stored - * in SFP resided EEPROM memory or SFP diagnostic area. - * Function should be called with - * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access - * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters - * access - **/ -s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data) -{ - u32 i = 0; - u32 i2ccmd = 0; - u32 data_local = 0; - - DEBUGFUNC("e1000_write_sfp_data_byte"); - - if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { - DEBUGOUT("I2CCMD command address exceeds upper limit\n"); - return -E1000_ERR_PHY; - } - /* The programming interface is 16 bits wide - * so we need to read the whole word first - * then update appropriate byte lane and write - * the updated word back. - */ - /* Set up Op-code, EEPROM Address,in the I2CCMD - * register. The MAC will take care of interfacing - * with an EEPROM to write the data given. - */ - i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_READ); - /* Set a command to read single word */ - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { - usec_delay(50); - /* Poll the ready bit to see if lastly - * launched I2C operation completed - */ - i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD); - if (i2ccmd & E1000_I2CCMD_READY) { - /* Check if this is READ or WRITE phase */ - if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) == - E1000_I2CCMD_OPCODE_READ) { - /* Write the selected byte - * lane and update whole word - */ - data_local = i2ccmd & 0xFF00; - data_local |= data; - i2ccmd = ((offset << - E1000_I2CCMD_REG_ADDR_SHIFT) | - E1000_I2CCMD_OPCODE_WRITE | data_local); - E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd); - } else { - break; - } - } - } - if (!(i2ccmd & E1000_I2CCMD_READY)) { - DEBUGOUT("I2CCMD Write did not complete\n"); - return -E1000_ERR_PHY; - } - if (i2ccmd & E1000_I2CCMD_ERROR) { - DEBUGOUT("I2CCMD Error bit set\n"); - return -E1000_ERR_PHY; - } - return E1000_SUCCESS; -} - -/** - * e1000_read_phy_reg_m88 - Read m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_read_phy_reg_m88"); - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_m88 - Write m88 PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_write_phy_reg_m88"); - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_set_page_igp - Set page as on IGP-like PHY(s) - * @hw: pointer to the HW structure - * @page: page to set (shifted left when necessary) - * - * Sets PHY page required for PHY register access. Assumes semaphore is - * already acquired. Note, this function sets phy.addr to 1 so the caller - * must set it appropriately (if necessary) after this function returns. - **/ -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page) -{ - DEBUGFUNC("e1000_set_page_igp"); - - DEBUGOUT1("Setting page 0x%x\n", page); - - hw->phy.addr = 1; - - return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page); -} - -/** - * __e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("__e1000_read_phy_reg_igp"); - - if (!locked) { - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (!ret_val) - ret_val = e1000_read_phy_reg_mdic(hw, - MAX_PHY_REG_ADDRESS & offset, - data); - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_phy_reg_igp - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores the - * retrieved information in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000_read_phy_reg_igp_locked - Read igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_igp(hw, offset, data, true); -} - -/** - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_write_phy_reg_igp"); - - if (!locked) { - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - if (offset > MAX_PHY_MULTI_PAGE_REG) - ret_val = e1000_write_phy_reg_mdic(hw, - IGP01E1000_PHY_PAGE_SELECT, - (u16)offset); - if (!ret_val) - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & - offset, - data); - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_igp - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_igp(hw, offset, data, false); -} - -/** - * e1000_write_phy_reg_igp_locked - Write igp PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. - * Assumes semaphore already acquired. - **/ -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_igp(hw, offset, data, true); -} - -/** - * __e1000_read_kmrn_reg - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then reads the PHY register at offset - * using the kumeran interface. The information retrieved is stored in data. - * Release any acquired semaphores before exiting. - **/ -STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked) -{ - u32 kmrnctrlsta; - - DEBUGFUNC("__e1000_read_kmrn_reg"); - - if (!locked) { - s32 ret_val = E1000_SUCCESS; - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA); - *data = (u16)kmrnctrlsta; - - if (!locked) - hw->phy.ops.release(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_read_kmrn_reg_generic - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset using the - * kumeran interface. The information retrieved is stored in data. - * Release the acquired semaphore before exiting. - **/ -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000_read_kmrn_reg_locked - Read kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset using the kumeran interface. The - * information retrieved is stored in data. - * Assumes semaphore already acquired. - **/ -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_kmrn_reg(hw, offset, data, true); -} - -/** - * __e1000_write_kmrn_reg - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary. Then write the data to PHY register - * at the offset using the kumeran interface. Release any acquired semaphores - * before exiting. - **/ -STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, - bool locked) -{ - u32 kmrnctrlsta; - - DEBUGFUNC("e1000_write_kmrn_reg_generic"); - - if (!locked) { - s32 ret_val = E1000_SUCCESS; - - if (!hw->phy.ops.acquire) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & - E1000_KMRNCTRLSTA_OFFSET) | data; - E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta); - E1000_WRITE_FLUSH(hw); - - usec_delay(2); - - if (!locked) - hw->phy.ops.release(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_write_kmrn_reg_generic - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to the PHY register at the offset - * using the kumeran interface. Release the acquired semaphore before exiting. - **/ -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, false); -} - -/** - * e1000_write_kmrn_reg_locked - Write kumeran register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Write the data to PHY register at the offset using the kumeran interface. - * Assumes semaphore already acquired. - **/ -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_kmrn_reg(hw, offset, data, true); -} - -/** - * e1000_set_master_slave_mode - Setup PHY for Master/slave mode - * @hw: pointer to the HW structure - * - * Sets up Master/slave mode - **/ -STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - /* Resolve Master/Slave mode */ - ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : e1000_ms_auto; - - switch (hw->phy.ms_type) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - /* fall-through */ - default: - break; - } - - return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); -} - -/** - * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link - * @hw: pointer to the HW structure - * - * Sets up Carrier-sense on Transmit and downshift values. - **/ -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_82577"); - - if (hw->phy.type == e1000_phy_82580) { - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - return ret_val; - } - } - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; - - /* Enable downshift */ - phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; - - ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data); - if (ret_val) - return ret_val; - - /* Set MDI/MDIX mode */ - ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK; - /* Options: - * 0 - Auto (default) - * 1 - MDI mode - * 2 - MDI-X mode - */ - switch (hw->phy.mdix) { - case 1: - break; - case 2: - phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX; - break; - case 0: - default: - phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX; - break; - } - ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data); - if (ret_val) - return ret_val; - - return e1000_set_master_slave_mode(hw); -} - -/** - * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock - * and downshift values are set also. - **/ -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88"); - - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* For BM PHY this bit is downshift enable */ - if (phy->type != e1000_phy_bm) - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift on BM (disabled by default) */ - if (phy->type == e1000_phy_bm) { - /* For 82574/82583, first disable then enable downshift */ - if (phy->id == BME1000_E_PHY_ID_R2) { - phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - } - - phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; - } - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((phy->type == e1000_phy_m88) && - (phy->revision < E1000_REVISION_4) && - (phy->id != BME1000_E_PHY_ID_R2)) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((phy->revision == E1000_REVISION_2) && - (phy->id == M88E1111_I_PHY_ID)) { - /* 82573L PHY - set the downshift counter to 5x. */ - phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - } - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { - /* Set PHY page 0, register 29 to 0x0003 */ - ret_val = phy->ops.write_reg(hw, 29, 0x0003); - if (ret_val) - return ret_val; - - /* Set PHY page 0, register 30 to 0x0000 */ - ret_val = phy->ops.write_reg(hw, 30, 0x0000); - if (ret_val) - return ret_val; - } - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - - if (phy->type == e1000_phy_82578) { - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - /* 82578 PHY - set the downshift count to 1x. */ - phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; - phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. - * Also enables and sets the downshift parameters. - **/ -s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_setup_m88_gen2"); - - - /* Enable CRS on Tx. This must be set for half-duplex operation. */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (phy->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - /* M88E1112 does not support this mode) */ - if (phy->id != M88E1112_E_PHY_ID) { - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - } - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (phy->disable_polarity_correction) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - - /* Enable downshift and setting it to X6 */ - if (phy->id == M88E1543_E_PHY_ID) { - phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; - ret_val = - phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - } - - phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; - phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; - phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; - - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Commit the changes. */ - ret_val = phy->ops.commit(hw); - if (ret_val) { - DEBUGOUT("Error committing the PHY changes\n"); - return ret_val; - } - - ret_val = e1000_set_master_slave_mode(hw); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; -} - -/** - * e1000_copper_link_setup_igp - Setup igp PHY's for copper link - * @hw: pointer to the HW structure - * - * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for - * igp PHY's. - **/ -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_copper_link_setup_igp"); - - - ret_val = hw->phy.ops.reset(hw); - if (ret_val) { - DEBUGOUT("Error resetting the PHY.\n"); - return ret_val; - } - - /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid - * timeout issues when LFS is enabled. - */ - msec_delay(100); - - /* The NVM settings will configure LPLU in D3 for - * non-IGP1 PHYs. - */ - if (phy->type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = hw->phy.ops.set_d3_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* disable lplu d0 during driver init */ - if (hw->phy.ops.set_d0_lplu_state) { - ret_val = hw->phy.ops.set_d0_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D0\n"); - return ret_val; - } - } - /* Configure mdi-mdix settings */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (phy->mdix) { - case 1: - data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->mac.autoneg) { - /* when autonegotiation advertisement is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. - */ - if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - - /* Set auto Master/Slave resolution process */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); - if (ret_val) - return ret_val; - - data &= ~CR_1000T_MS_ENABLE; - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_set_master_slave_mode(hw); - } - - return ret_val; -} - -/** - * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation - * @hw: pointer to the HW structure - * - * Reads the MII auto-neg advertisement register and/or the 1000T control - * register and if the PHY is already setup for auto-negotiation, then - * return successful. Otherwise, setup advertisement and flow control to - * the appropriate values for the wanted auto-negotiation. - **/ -s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg = 0; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - phy->autoneg_advertised &= phy->autoneg_mask; - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) { - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, - &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - } - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | - NWAY_AR_100TX_HD_CAPS | - NWAY_AR_10T_FD_CAPS | - NWAY_AR_10T_HD_CAPS); - mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); - - DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (phy->autoneg_advertised & ADVERTISE_1000_HALF) - DEBUGOUT("Advertise 1000mb Half duplex request denied!\n"); - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- - * negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control (Rx & Tx) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_rx_pause: - /* Rx Flow control is enabled, and Tx Flow control is - * disabled, by a software over-ride. - * - * Since there really isn't a way to advertise that we are - * capable of Rx Pause ONLY, we will advertise that we - * support both symmetric and asymmetric Rx PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - * hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case e1000_fc_tx_pause: - /* Tx Flow control is enabled, and Rx Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case e1000_fc_full: - /* Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - if (phy->autoneg_mask & ADVERTISE_1000_FULL) - ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, - mii_1000t_ctrl_reg); - - return ret_val; -} - -/** - * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link - * @hw: pointer to the HW structure - * - * Performs initial bounds checking on autoneg advertisement parameter, then - * configure to advertise the full capability. Setup the PHY to autoneg - * and restart the negotiation process between the link partner. If - * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. - **/ -s32 e1000_copper_link_autoneg(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* Perform some bounds checking on the autoneg advertisement - * parameter. - */ - phy->autoneg_advertised &= phy->autoneg_mask; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (!phy->autoneg_advertised) - phy->autoneg_advertised = phy->autoneg_mask; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (phy->autoneg_wait_to_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->mac.get_link_status = true; - - return ret_val; -} - -/** - * e1000_setup_copper_link_generic - Configure copper link settings - * @hw: pointer to the HW structure - * - * Calls the appropriate function to configure the link for auto-neg or forced - * speed and duplex. Then we check for link, once link is established calls - * to configure collision distance and flow control are called. If link is - * not established, we return -E1000_ERR_PHY (-2). - **/ -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_setup_copper_link_generic"); - - if (hw->mac.autoneg) { - /* Setup autoneg and flow control advertisement and perform - * autonegotiation. - */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H or 100F - * depending on user settings. - */ - DEBUGOUT("Forcing Speed and Duplex\n"); - ret_val = hw->phy.ops.force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10, - &link); - if (ret_val) - return ret_val; - - if (link) { - DEBUGOUT("Valid link established!!!\n"); - hw->mac.ops.config_collision_dist(hw); - ret_val = e1000_config_fc_after_link_up_generic(hw); - } else { - DEBUGOUT("Unable to establish link!!!\n"); - } - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Waits for link and returns - * successful if link up is successful, else -E1000_ERR_PHY (-2). - **/ -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_igp"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("IGP PSCR: %X\n", phy_data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - } - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. Clears the - * auto-crossover to force MDI manually. Resets the PHY to commit the - * changes. If time expires while waiting for link up, we reset the DSP. - * After reset, TX_CLK and CRS on Tx must be set. Return successful upon - * successful completion, else return corresponding error code. - **/ -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_m88"); - - /* I210 and I211 devices support Auto-Crossover in forced operation. */ - if (phy->type != e1000_phy_i210) { - /* Clear Auto-Crossover to force MDI manually. M88E1000 - * requires MDI forced whenever speed and duplex are forced. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, - phy_data); - if (ret_val) - return ret_val; - } - - DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - /* Reset the phy to commit changes. */ - ret_val = hw->phy.ops.commit(hw); - if (ret_val) - return ret_val; - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) { - bool reset_dsp = true; - - switch (hw->phy.id) { - case I347AT4_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1543_E_PHY_ID: - case M88E1512_E_PHY_ID: - case I210_I_PHY_ID: - reset_dsp = false; - break; - default: - if (hw->phy.type != e1000_phy_m88) - reset_dsp = false; - break; - } - - if (!reset_dsp) { - DEBUGOUT("Link taking longer than expected.\n"); - } else { - /* We didn't get link. - * Reset the DSP and cross our fingers. - */ - ret_val = phy->ops.write_reg(hw, - M88E1000_PHY_PAGE_SELECT, - 0x001d); - if (ret_val) - return ret_val; - ret_val = e1000_phy_reset_dsp_generic(hw); - if (ret_val) - return ret_val; - } - } - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - if (hw->phy.type != e1000_phy_m88) - return E1000_SUCCESS; - - if (hw->phy.id == I347AT4_E_PHY_ID || - hw->phy.id == M88E1340M_E_PHY_ID || - hw->phy.id == M88E1112_E_PHY_ID) - return E1000_SUCCESS; - if (hw->phy.id == I210_I_PHY_ID) - return E1000_SUCCESS; - if ((hw->phy.id == M88E1543_E_PHY_ID) || - (hw->phy.id == M88E1512_E_PHY_ID)) - return E1000_SUCCESS; - ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Resetting the phy means we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock from - * the reset value of 2.5MHz. - */ - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* In addition, we must re-enable CRS on Tx for both half and full - * duplex. - */ - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex - * @hw: pointer to the HW structure - * - * Forces the speed and duplex settings of the PHY. - * This is a function pointer entry point only called by - * PHY setup routines. - **/ -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_ife"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data); - if (ret_val) - return ret_val; - - /* Disable MDI-X support for 10/100 */ - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - return ret_val; - - data &= ~IFE_PMC_AUTO_MDIX; - data &= ~IFE_PMC_FORCE_MDIX; - - ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data); - if (ret_val) - return ret_val; - - DEBUGOUT1("IFE PMC: %X\n", data); - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; -} - -/** - * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex - * @hw: pointer to the HW structure - * @phy_ctrl: pointer to current value of PHY_CONTROL - * - * Forces speed and duplex on the PHY by doing the following: disable flow - * control, force speed/duplex on the MAC, disable auto speed detection, - * disable auto-negotiation, configure duplex, configure speed, configure - * the collision distance, write configuration to CTRL register. The - * caller must write to the PHY_CONTROL register for these settings to - * take affect. - **/ -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 ctrl; - - DEBUGFUNC("e1000_phy_force_speed_duplex_setup"); - - /* Turn off flow control when forcing speed/duplex */ - hw->fc.current_mode = e1000_fc_none; - - /* Force speed/duplex on the mac */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~E1000_CTRL_SPD_SEL; - - /* Disable Auto Speed Detection */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Disable autoneg on the phy */ - *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; - - /* Forcing Full or Half Duplex? */ - if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { - ctrl &= ~E1000_CTRL_FD; - *phy_ctrl &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } else { - ctrl |= E1000_CTRL_FD; - *phy_ctrl |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } - - /* Forcing 10mb or 100mb? */ - if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { - ctrl |= E1000_CTRL_SPD_100; - *phy_ctrl |= MII_CR_SPEED_100; - *phy_ctrl &= ~MII_CR_SPEED_1000; - DEBUGOUT("Forcing 100mb\n"); - } else { - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb\n"); - } - - hw->mac.ops.config_collision_dist(hw); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); -} - -/** - * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3 - * @hw: pointer to the HW structure - * @active: boolean used to enable/disable lplu - * - * Success returns 0, Failure returns 1 - * - * The low power link up (lplu) state is set to the power management level D3 - * and SmartSpeed is disabled when active is true, else clear lplu for D3 - * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU - * is used during Dx states where the power conservation is most important. - * During driver activity, SmartSpeed should be enabled so performance is - * maintained. - **/ -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_set_d3_lplu_state_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); - if (ret_val) - return ret_val; - - if (!active) { - data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - return ret_val; - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used - * during Dx states where the power conservation is most - * important. During driver activity we should enable - * SmartSpeed, so performance is maintained. - */ - if (phy->smart_speed == e1000_smart_speed_on) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } else if (phy->smart_speed == e1000_smart_speed_off) { - ret_val = phy->ops.read_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, - IGP01E1000_PHY_PORT_CONFIG, - data); - if (ret_val) - return ret_val; - } - } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || - (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || - (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { - data |= IGP02E1000_PM_D3_LPLU; - ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, - data); - if (ret_val) - return ret_val; - - /* When LPLU is enabled, we should disable SmartSpeed */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &data); - if (ret_val) - return ret_val; - - data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - data); - } - - return ret_val; -} - -/** - * e1000_check_downshift_generic - Checks whether a downshift in speed occurred - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns 1 - * - * A downshift is detected by querying the PHY link health. - **/ -s32 e1000_check_downshift_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_downshift_generic"); - - switch (phy->type) { - case e1000_phy_i210: - case e1000_phy_m88: - case e1000_phy_gg82563: - case e1000_phy_bm: - case e1000_phy_82578: - offset = M88E1000_PHY_SPEC_STATUS; - mask = M88E1000_PSSR_DOWNSHIFT; - break; - case e1000_phy_igp: - case e1000_phy_igp_2: - case e1000_phy_igp_3: - offset = IGP01E1000_PHY_LINK_HEALTH; - mask = IGP01E1000_PLHR_SS_DOWNGRADE; - break; - default: - /* speed downshift not supported */ - phy->speed_downgraded = false; - return E1000_SUCCESS; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->speed_downgraded = !!(phy_data & mask); - - return ret_val; -} - -/** - * e1000_check_polarity_m88 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); - - if (!ret_val) - phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_check_polarity_igp - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY port status register, and the - * current speed (since there is no polarity at 100Mbps). - **/ -s32 e1000_check_polarity_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_igp"); - - /* Polarity is determined based on the speed of - * our connection. - */ - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - offset = IGP01E1000_PHY_PCS_INIT_REG; - mask = IGP01E1000_PHY_POLARITY_MASK; - } else { - /* This really only applies to 10Mbps since - * there is no polarity for 100Mbps (always 0). - */ - offset = IGP01E1000_PHY_PORT_STATUS; - mask = IGP01E1000_PSSR_POLARITY_REVERSED; - } - - ret_val = phy->ops.read_reg(hw, offset, &data); - - if (!ret_val) - phy->cable_polarity = ((data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_check_polarity_ife - Check cable polarity for IFE PHY - * @hw: pointer to the HW structure - * - * Polarity is determined on the polarity reversal feature being enabled. - **/ -s32 e1000_check_polarity_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, offset, mask; - - DEBUGFUNC("e1000_check_polarity_ife"); - - /* Polarity is determined based on the reversal feature being enabled. - */ - if (phy->polarity_correction) { - offset = IFE_PHY_EXTENDED_STATUS_CONTROL; - mask = IFE_PESC_POLARITY_REVERSED; - } else { - offset = IFE_PHY_SPECIAL_CONTROL; - mask = IFE_PSC_FORCE_POLARITY; - } - - ret_val = phy->ops.read_reg(hw, offset, &phy_data); - - if (!ret_val) - phy->cable_polarity = ((phy_data & mask) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_wait_autoneg - Wait for auto-neg completion - * @hw: pointer to the HW structure - * - * Waits for auto-negotiation to complete or for the auto-negotiation time - * limit to expire, which ever happens first. - **/ -STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_wait_autoneg"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ - for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_AUTONEG_COMPLETE) - break; - msec_delay(100); - } - - /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation - * has completed. - */ - return ret_val; -} - -/** - * e1000_phy_has_link_generic - Polls PHY for link - * @hw: pointer to the HW structure - * @iterations: number of times to poll for link - * @usec_interval: delay between polling attempts - * @success: pointer to whether polling was successful or not - * - * Polls the PHY status register for link, 'iterations' number of times. - **/ -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success) -{ - s32 ret_val = E1000_SUCCESS; - u16 i, phy_status; - - DEBUGFUNC("e1000_phy_has_link_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - for (i = 0; i < iterations; i++) { - /* Some PHYs require the PHY_STATUS register to be read - * twice due to the link bit being sticky. No harm doing - * it across the board. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) { - /* If the first read fails, another entity may have - * ownership of the resources, wait and try again to - * see if they have relinquished the resources yet. - */ - if (usec_interval >= 1000) - msec_delay(usec_interval/1000); - else - usec_delay(usec_interval); - } - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); - if (ret_val) - break; - if (phy_status & MII_SR_LINK_STATUS) - break; - if (usec_interval >= 1000) - msec_delay(usec_interval/1000); - else - usec_delay(usec_interval); - } - - *success = (i < iterations); - - return ret_val; -} - -/** - * e1000_get_cable_length_m88 - Determine cable length for m88 PHY - * @hw: pointer to the HW structure - * - * Reads the PHY specific status register to retrieve the cable length - * information. The cable length is determined by averaging the minimum and - * maximum values to get the "average" cable length. The m88 PHY has four - * possible cable length values, which are: - * Register Value Cable Length - * 0 < 50 meters - * 1 50 - 80 meters - * 2 80 - 110 meters - * 3 110 - 140 meters - * 4 > 140 meters - **/ -s32 e1000_get_cable_length_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, index; - - DEBUGFUNC("e1000_get_cable_length_m88"); - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT); - - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) - return -E1000_ERR_PHY; - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return E1000_SUCCESS; -} - -s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, phy_data2, is_cm; - u16 index, default_page; - - DEBUGFUNC("e1000_get_cable_length_m88_gen2"); - - switch (hw->phy.id) { - case I210_I_PHY_ID: - /* Get cable length from PHY Cable Diagnostics Control Reg */ - ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + - (I347AT4_PCDL + phy->addr), - &phy_data); - if (ret_val) - return ret_val; - - /* Check if the unit of cable length is meters or cm */ - ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + - I347AT4_PCDC, &phy_data2); - if (ret_val) - return ret_val; - - is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); - - /* Populate the phy structure with cable length in meters */ - phy->min_cable_length = phy_data / (is_cm ? 100 : 1); - phy->max_cable_length = phy_data / (is_cm ? 100 : 1); - phy->cable_length = phy_data / (is_cm ? 100 : 1); - break; - case M88E1543_E_PHY_ID: - case M88E1512_E_PHY_ID: - case M88E1340M_E_PHY_ID: - case I347AT4_E_PHY_ID: - /* Remember the original page select and set it to 7 */ - ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, - &default_page); - if (ret_val) - return ret_val; - - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); - if (ret_val) - return ret_val; - - /* Get cable length from PHY Cable Diagnostics Control Reg */ - ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), - &phy_data); - if (ret_val) - return ret_val; - - /* Check if the unit of cable length is meters or cm */ - ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); - if (ret_val) - return ret_val; - - is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); - - /* Populate the phy structure with cable length in meters */ - phy->min_cable_length = phy_data / (is_cm ? 100 : 1); - phy->max_cable_length = phy_data / (is_cm ? 100 : 1); - phy->cable_length = phy_data / (is_cm ? 100 : 1); - - /* Reset the page select to its original value */ - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, - default_page); - if (ret_val) - return ret_val; - break; - - case M88E1112_E_PHY_ID: - /* Remember the original page select and set it to 5 */ - ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, - &default_page); - if (ret_val) - return ret_val; - - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, - &phy_data); - if (ret_val) - return ret_val; - - index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) - return -E1000_ERR_PHY; - - phy->min_cable_length = e1000_m88_cable_length_table[index]; - phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; - - phy->cable_length = (phy->min_cable_length + - phy->max_cable_length) / 2; - - /* Reset the page select to its original value */ - ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, - default_page); - if (ret_val) - return ret_val; - - break; - default: - return -E1000_ERR_PHY; - } - - return ret_val; -} - -/** - * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY - * @hw: pointer to the HW structure - * - * The automatic gain control (agc) normalizes the amplitude of the - * received signal, adjusting for the attenuation produced by the - * cable. By reading the AGC registers, which represent the - * combination of coarse and fine gain value, the value can be put - * into a lookup table to obtain the approximate cable length - * for each channel. - **/ -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, i, agc_value = 0; - u16 cur_agc_index, max_agc_index = 0; - u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; - static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { - IGP02E1000_PHY_AGC_A, - IGP02E1000_PHY_AGC_B, - IGP02E1000_PHY_AGC_C, - IGP02E1000_PHY_AGC_D - }; - - DEBUGFUNC("e1000_get_cable_length_igp_2"); - - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { - ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - /* Getting bits 15:9, which represent the combination of - * coarse and fine gain values. The result is a number - * that can be put into the lookup table to obtain the - * approximate cable length. - */ - cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & - IGP02E1000_AGC_LENGTH_MASK); - - /* Array index bound check. */ - if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || - (cur_agc_index == 0)) - return -E1000_ERR_PHY; - - /* Remove min & max AGC values from calculation. */ - if (e1000_igp_2_cable_length_table[min_agc_index] > - e1000_igp_2_cable_length_table[cur_agc_index]) - min_agc_index = cur_agc_index; - if (e1000_igp_2_cable_length_table[max_agc_index] < - e1000_igp_2_cable_length_table[cur_agc_index]) - max_agc_index = cur_agc_index; - - agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; - } - - agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + - e1000_igp_2_cable_length_table[max_agc_index]); - agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); - - /* Calculate cable length with the error range of +/- 10 meters. */ - phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ? - (agc_value - IGP02E1000_AGC_RANGE) : 0); - phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; - - phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_info_m88 - Retrieve PHY information - * @hw: pointer to the HW structure - * - * Valid for only copper links. Read the PHY status register (sticky read) - * to verify that link is up. Read the PHY special control register to - * determine the polarity and 10base-T extended distance. Read the PHY - * special status register to determine MDI/MDIx and current speed. If - * speed is 1000, then determine cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_m88(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_m88"); - - if (phy->media_type != e1000_media_type_copper) { - DEBUGOUT("Phy info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy->polarity_correction = !!(phy_data & - M88E1000_PSCR_POLARITY_REVERSAL); - - ret_val = e1000_check_polarity_m88(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - /* Set values to "undefined" */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_igp - Retrieve igp PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_igp(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_igp"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_igp(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX); - - if ((data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - ret_val = phy->ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return ret_val; -} - -/** - * e1000_get_phy_info_ife - Retrieves various IFE PHY states - * @hw: pointer to the HW structure - * - * Populates "phy" structure with various feature states. - **/ -s32 e1000_get_phy_info_ife(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_ife"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data); - if (ret_val) - return ret_val; - phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE); - - if (phy->polarity_correction) { - ret_val = e1000_check_polarity_ife(hw); - if (ret_val) - return ret_val; - } else { - /* Polarity is forced */ - phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - } - - ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS); - - /* The following parameters are undefined for 10/100 operation. */ - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - - return E1000_SUCCESS; -} - -/** - * e1000_phy_sw_reset_generic - PHY software reset - * @hw: pointer to the HW structure - * - * Does a software reset of the PHY by reading the PHY control register and - * setting/write the control register reset bit to the PHY. - **/ -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 phy_ctrl; - - DEBUGFUNC("e1000_phy_sw_reset_generic"); - - if (!hw->phy.ops.read_reg) - return E1000_SUCCESS; - - ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); - if (ret_val) - return ret_val; - - phy_ctrl |= MII_CR_RESET; - ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); - if (ret_val) - return ret_val; - - usec_delay(1); - - return ret_val; -} - -/** - * e1000_phy_hw_reset_generic - PHY hardware reset - * @hw: pointer to the HW structure - * - * Verify the reset block is not blocking us from resetting. Acquire - * semaphore (if necessary) and read/set/write the device control reset - * bit in the PHY. Wait the appropriate delay time for the device to - * reset and release the semaphore (if necessary). - **/ -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u32 ctrl; - - DEBUGFUNC("e1000_phy_hw_reset_generic"); - - if (phy->ops.check_reset_block) { - ret_val = phy->ops.check_reset_block(hw); - if (ret_val) - return E1000_SUCCESS; - } - - ret_val = phy->ops.acquire(hw); - if (ret_val) - return ret_val; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(hw); - - usec_delay(phy->reset_delay_us); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - - usec_delay(150); - - phy->ops.release(hw); - - return phy->ops.get_cfg_done(hw); -} - -/** - * e1000_get_cfg_done_generic - Generic configuration done - * @hw: pointer to the HW structure - * - * Generic function to wait 10 milli-seconds for configuration to complete - * and return success. - **/ -s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_get_cfg_done_generic"); - UNREFERENCED_1PARAMETER(hw); - - msec_delay_irq(10); - - return E1000_SUCCESS; -} - -/** - * e1000_phy_init_script_igp3 - Inits the IGP3 PHY - * @hw: pointer to the HW structure - * - * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. - **/ -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw) -{ - DEBUGOUT("Running IGP 3 PHY init script\n"); - - /* PHY init IGP 3 */ - /* Enable rise/fall, 10-mode work in class-A */ - hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); - /* Remove all caps from Replica path filter */ - hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); - /* Bias trimming for ADC, AFE and Driver (Default) */ - hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); - /* Increase Hybrid poly bias */ - hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); - /* Add 4% to Tx amplitude in Gig mode */ - hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); - /* Disable trimming (TTT) */ - hw->phy.ops.write_reg(hw, 0x2011, 0x0000); - /* Poly DC correction to 94.6% + 2% for all channels */ - hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); - /* ABS DC correction to 95.9% */ - hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); - /* BG temp curve trim */ - hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); - /* Increasing ADC OPAMP stage 1 currents to max */ - hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); - /* Force 1000 ( required for enabling PHY regs configuration) */ - hw->phy.ops.write_reg(hw, 0x0000, 0x0140); - /* Set upd_freq to 6 */ - hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); - /* Disable NPDFE */ - hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); - /* Disable adaptive fixed FFE (Default) */ - hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); - /* Enable FFE hysteresis */ - hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); - /* Fixed FFE for short cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); - /* Fixed FFE for medium cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); - /* Fixed FFE for long cable lengths */ - hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); - /* Enable Adaptive Clip Threshold */ - hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); - /* AHT reset limit to 1 */ - hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); - /* Set AHT master delay to 127 msec */ - hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); - /* Set scan bits for AHT */ - hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); - /* Set AHT Preset bits */ - hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); - /* Change integ_factor of channel A to 3 */ - hw->phy.ops.write_reg(hw, 0x1895, 0x0003); - /* Change prop_factor of channels BCD to 8 */ - hw->phy.ops.write_reg(hw, 0x1796, 0x0008); - /* Change cg_icount + enable integbp for channels BCD */ - hw->phy.ops.write_reg(hw, 0x1798, 0xD008); - /* Change cg_icount + enable integbp + change prop_factor_master - * to 8 for channel A - */ - hw->phy.ops.write_reg(hw, 0x1898, 0xD918); - /* Disable AHT in Slave mode on channel A */ - hw->phy.ops.write_reg(hw, 0x187A, 0x0800); - /* Enable LPLU and disable AN to 1000 in non-D0a states, - * Enable SPD+B2B - */ - hw->phy.ops.write_reg(hw, 0x0019, 0x008D); - /* Enable restart AN on an1000_dis change */ - hw->phy.ops.write_reg(hw, 0x001B, 0x2080); - /* Enable wh_fifo read clock in 10/100 modes */ - hw->phy.ops.write_reg(hw, 0x0014, 0x0045); - /* Restart AN, Speed selection is 1000 */ - hw->phy.ops.write_reg(hw, 0x0000, 0x1340); - - return E1000_SUCCESS; -} - -/** - * e1000_get_phy_type_from_id - Get PHY type from id - * @phy_id: phy_id read from the phy - * - * Returns the phy type from the id. - **/ -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id) -{ - enum e1000_phy_type phy_type = e1000_phy_unknown; - - switch (phy_id) { - case M88E1000_I_PHY_ID: - case M88E1000_E_PHY_ID: - case M88E1111_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1543_E_PHY_ID: - case M88E1512_E_PHY_ID: - case I347AT4_E_PHY_ID: - case M88E1112_E_PHY_ID: - case M88E1340M_E_PHY_ID: - phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ - phy_type = e1000_phy_igp_2; - break; - case GG82563_E_PHY_ID: - phy_type = e1000_phy_gg82563; - break; - case IGP03E1000_E_PHY_ID: - phy_type = e1000_phy_igp_3; - break; - case IFE_E_PHY_ID: - case IFE_PLUS_E_PHY_ID: - case IFE_C_E_PHY_ID: - phy_type = e1000_phy_ife; - break; - case BME1000_E_PHY_ID: - case BME1000_E_PHY_ID_R2: - phy_type = e1000_phy_bm; - break; - case I82578_E_PHY_ID: - phy_type = e1000_phy_82578; - break; - case I82577_E_PHY_ID: - phy_type = e1000_phy_82577; - break; - case I82579_E_PHY_ID: - phy_type = e1000_phy_82579; - break; - case I217_E_PHY_ID: - phy_type = e1000_phy_i217; - break; - case I82580_I_PHY_ID: - phy_type = e1000_phy_82580; - break; - case I210_I_PHY_ID: - phy_type = e1000_phy_i210; - break; - default: - phy_type = e1000_phy_unknown; - break; - } - return phy_type; -} - -/** - * e1000_determine_phy_address - Determines PHY address. - * @hw: pointer to the HW structure - * - * This uses a trial and error method to loop through possible PHY - * addresses. It tests each by reading the PHY ID registers and - * checking for a match. - **/ -s32 e1000_determine_phy_address(struct e1000_hw *hw) -{ - u32 phy_addr = 0; - u32 i; - enum e1000_phy_type phy_type = e1000_phy_unknown; - - hw->phy.id = phy_type; - - for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { - hw->phy.addr = phy_addr; - i = 0; - - do { - e1000_get_phy_id(hw); - phy_type = e1000_get_phy_type_from_id(hw->phy.id); - - /* If phy_type is valid, break - we found our - * PHY address - */ - if (phy_type != e1000_phy_unknown) - return E1000_SUCCESS; - - msec_delay(1); - i++; - } while (i < 10); - } - - return -E1000_ERR_PHY_TYPE; -} - -/** - * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address - * @page: page to access - * - * Returns the phy address for the page requested. - **/ -STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) -{ - u32 phy_addr = 2; - - if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000_write_phy_reg_bm - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - DEBUGFUNC("e1000_write_phy_reg_bm"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto release; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto release; - } - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_bm - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u32 page = offset >> IGP_PAGE_SHIFT; - - DEBUGFUNC("e1000_read_phy_reg_bm"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto release; - } - - hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - u32 page_shift, page_select; - - /* Page select is register 31 for phy address 1 and 22 for - * phy address 2 and 3. Page select is shifted only for - * phy address 1. - */ - if (hw->phy.addr == 1) { - page_shift = IGP_PAGE_SHIFT; - page_select = IGP01E1000_PHY_PAGE_SELECT; - } else { - page_shift = 0; - page_select = BM_PHY_PAGE_SELECT; - } - - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, page_select, - (page << page_shift)); - if (ret_val) - goto release; - } - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_bm2 - Read BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and storing the retrieved information in data. Release any acquired - * semaphores before exiting. - **/ -s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - DEBUGFUNC("e1000_read_phy_reg_bm2"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, false); - goto release; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto release; - } - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_write_phy_reg_bm2 - Write BM PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = (u16)(offset >> IGP_PAGE_SHIFT); - - DEBUGFUNC("e1000_write_phy_reg_bm2"); - - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, false); - goto release; - } - - hw->phy.addr = 1; - - if (offset > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, - page); - - if (ret_val) - goto release; - } - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, - data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers - * @hw: pointer to the HW structure - * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG - * - * Assumes semaphore already acquired and phy_reg points to a valid memory - * address to store contents of the BM_WUC_ENABLE_REG register. - **/ -s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val; - u16 temp; - - DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm"); - - if (!phy_reg) - return -E1000_ERR_PARAM; - - /* All page select, port ctrl and wakeup registers use phy address 1 */ - hw->phy.addr = 1; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - DEBUGOUT("Could not set Port Control page\n"); - return ret_val; - } - - ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); - if (ret_val) { - DEBUGOUT2("Could not read PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - return ret_val; - } - - /* Enable both PHY wakeup mode and Wakeup register page writes. - * Prevent a power state change by disabling ME and Host PHY wakeup. - */ - temp = *phy_reg; - temp |= BM_WUC_ENABLE_BIT; - temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT); - - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp); - if (ret_val) { - DEBUGOUT2("Could not write PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - return ret_val; - } - - /* Select Host Wakeup Registers page - caller now able to write - * registers on the Wakeup registers page - */ - return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT)); -} - -/** - * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs - * @hw: pointer to the HW structure - * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG - * - * Restore BM_WUC_ENABLE_REG to its original value. - * - * Assumes semaphore already acquired and *phy_reg is the contents of the - * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by - * caller. - **/ -s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg) -{ - s32 ret_val; - - DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm"); - - if (!phy_reg) - return -E1000_ERR_PARAM; - - /* Select Port Control Registers page */ - ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT)); - if (ret_val) { - DEBUGOUT("Could not set Port Control page\n"); - return ret_val; - } - - /* Restore 769.17 to its original value */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg); - if (ret_val) - DEBUGOUT2("Could not restore PHY register %d.%d\n", - BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG); - - return ret_val; -} - -/** - * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to read or write - * @read: determines if operation is read or write - * @page_set: BM_WUC_PAGE already set and access enabled - * - * Read the PHY register at offset and store the retrieved information in - * data, or write data to PHY register at offset. Note the procedure to - * access the PHY wakeup registers is different than reading the other PHY - * registers. It works as such: - * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1 - * 2) Set page to 800 for host (801 if we were manageability) - * 3) Write the address using the address opcode (0x11) - * 4) Read or write the data using the data opcode (0x12) - * 5) Restore 769.17.2 to its original value - * - * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and - * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm(). - * - * Assumes semaphore is already acquired. When page_set==true, assumes - * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack - * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()). - **/ -STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, - u16 *data, bool read, bool page_set) -{ - s32 ret_val; - u16 reg = BM_PHY_REG_NUM(offset); - u16 page = BM_PHY_REG_PAGE(offset); - u16 phy_reg = 0; - - DEBUGFUNC("e1000_access_phy_wakeup_reg_bm"); - - /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */ - if ((hw->mac.type == e1000_pchlan) && - (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) - DEBUGOUT1("Attempting to access page %d while gig enabled.\n", - page); - - if (!page_set) { - /* Enable access to PHY wakeup registers */ - ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); - if (ret_val) { - DEBUGOUT("Could not enable PHY wakeup reg access\n"); - return ret_val; - } - } - - DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg); - - /* Write the Wakeup register page offset value using opcode 0x11 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); - if (ret_val) { - DEBUGOUT1("Could not write address opcode to page %d\n", page); - return ret_val; - } - - if (read) { - /* Read the Wakeup register page value using opcode 0x12 */ - ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - data); - } else { - /* Write the Wakeup register page value using opcode 0x12 */ - ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, - *data); - } - - if (ret_val) { - DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg); - return ret_val; - } - - if (!page_set) - ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); - - return ret_val; -} - -/** - * e1000_power_up_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_up_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - u16 power_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg &= ~MII_CR_POWER_DOWN; - if (hw->phy.type == e1000_phy_i210) { - hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); - power_reg &= ~GS40G_CS_POWER_DOWN; - hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); - } - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); -} - -/** - * e1000_power_down_phy_copper - Restore copper link in case of PHY power down - * @hw: pointer to the HW structure - * - * In the case of a PHY power down to save power, or to turn off link during a - * driver unload, or wake on lan is not enabled, restore the link to previous - * settings. - **/ -void e1000_power_down_phy_copper(struct e1000_hw *hw) -{ - u16 mii_reg = 0; - u16 power_reg = 0; - - /* The PHY will retain its settings across a power down/up cycle */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); - mii_reg |= MII_CR_POWER_DOWN; - /* i210 Phy requires an additional bit for power up/down */ - if (hw->phy.type == e1000_phy_i210) { - hw->phy.ops.read_reg(hw, GS40G_COPPER_SPEC, &power_reg); - power_reg |= GS40G_CS_POWER_DOWN; - hw->phy.ops.write_reg(hw, GS40G_COPPER_SPEC, power_reg); - } - hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); - msec_delay(1); -} - -/** - * __e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then reads the PHY register at offset - * and stores the retrieved information in data. Release any acquired - * semaphore before exiting. - **/ -STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - DEBUGFUNC("__e1000_read_phy_reg_hv"); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, - true, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - data, true); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_read_phy_reg_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Acquires semaphore then reads the PHY register at offset and stores - * the retrieved information in data. Release the acquired semaphore - * before exiting. - **/ -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_read_phy_reg_hv_locked - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to be read - * @data: pointer to the read data - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired. - **/ -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_read_phy_reg_page_hv - Read HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Reads the PHY register at offset and stores the retrieved information - * in data. Assumes semaphore already acquired and page already set. - **/ -s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data) -{ - return __e1000_read_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * __e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * @locked: semaphore has already been acquired or not - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, - bool locked, bool page_set) -{ - s32 ret_val; - u16 page = BM_PHY_REG_PAGE(offset); - u16 reg = BM_PHY_REG_NUM(offset); - u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); - - DEBUGFUNC("__e1000_write_phy_reg_hv"); - - if (!locked) { - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - } - - /* Page 800 works differently than the rest so it has its own func */ - if (page == BM_WUC_PAGE) { - ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, - false, page_set); - goto out; - } - - if (page > 0 && page < HV_INTC_FC_PAGE_START) { - ret_val = e1000_access_phy_debug_regs_hv(hw, offset, - &data, false); - goto out; - } - - if (!page_set) { - if (page == HV_INTC_FC_PAGE_START) - page = 0; - - /* Workaround MDIO accesses being disabled after entering IEEE - * Power Down (when bit 11 of the PHY Control register is set) - */ - if ((hw->phy.type == e1000_phy_82578) && - (hw->phy.revision >= 1) && - (hw->phy.addr == 2) && - !(MAX_PHY_REG_ADDRESS & reg) && - (data & (1 << 11))) { - u16 data2 = 0x7EFF; - ret_val = e1000_access_phy_debug_regs_hv(hw, - (1 << 6) | 0x3, - &data2, false); - if (ret_val) - goto out; - } - - if (reg > MAX_PHY_MULTI_PAGE_REG) { - /* Page is shifted left, PHY expects (page x 32) */ - ret_val = e1000_set_page_igp(hw, - (page << IGP_PAGE_SHIFT)); - - hw->phy.addr = phy_addr; - - if (ret_val) - goto out; - } - } - - DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page, - page << IGP_PAGE_SHIFT, reg); - - ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, - data); - -out: - if (!locked) - hw->phy.ops.release(hw); - - return ret_val; -} - -/** - * e1000_write_phy_reg_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore then writes the data to PHY register at the offset. - * Release the acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, false, false); -} - -/** - * e1000_write_phy_reg_hv_locked - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired. - **/ -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, false); -} - -/** - * e1000_write_phy_reg_page_hv - Write HV PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes the data to PHY register at the offset. Assumes semaphore - * already acquired and page already set. - **/ -s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data) -{ - return __e1000_write_phy_reg_hv(hw, offset, data, true, true); -} - -/** - * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page - * @page: page to be accessed - **/ -STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page) -{ - u32 phy_addr = 2; - - if (page >= HV_INTC_FC_PAGE_START) - phy_addr = 1; - - return phy_addr; -} - -/** - * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers - * @hw: pointer to the HW structure - * @offset: register offset to be read or written - * @data: pointer to the data to be read or written - * @read: determines if operation is read or write - * - * Reads the PHY register at offset and stores the retreived information - * in data. Assumes semaphore already acquired. Note that the procedure - * to access these regs uses the address port and data port to read/write. - * These accesses done with PHY address 2 and without using pages. - **/ -STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, - u16 *data, bool read) -{ - s32 ret_val; - u32 addr_reg; - u32 data_reg; - - DEBUGFUNC("e1000_access_phy_debug_regs_hv"); - - /* This takes care of the difference with desktop vs mobile phy */ - addr_reg = ((hw->phy.type == e1000_phy_82578) ? - I82578_ADDR_REG : I82577_ADDR_REG); - data_reg = addr_reg + 1; - - /* All operations in this function are phy address 2 */ - hw->phy.addr = 2; - - /* masking with 0x3F to remove the page from offset */ - ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); - if (ret_val) { - DEBUGOUT("Could not write the Address Offset port register\n"); - return ret_val; - } - - /* Read or write the data value next */ - if (read) - ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data); - else - ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data); - - if (ret_val) - DEBUGOUT("Could not access the Data port register\n"); - - return ret_val; -} - -/** - * e1000_link_stall_workaround_hv - Si workaround - * @hw: pointer to the HW structure - * - * This function works around a Si bug where the link partner can get - * a link up indication before the PHY does. If small packets are sent - * by the link partner they can be placed in the packet buffer without - * being properly accounted for by the PHY and will stall preventing - * further packets from being received. The workaround is to clear the - * packet buffer after the PHY detects link up. - **/ -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) -{ - s32 ret_val = E1000_SUCCESS; - u16 data; - - DEBUGFUNC("e1000_link_stall_workaround_hv"); - - if (hw->phy.type != e1000_phy_82578) - return E1000_SUCCESS; - - /* Do not apply workaround if in PHY loopback bit 14 set */ - hw->phy.ops.read_reg(hw, PHY_CONTROL, &data); - if (data & PHY_CONTROL_LB) - return E1000_SUCCESS; - - /* check if link is up and at 1Gbps */ - ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data); - if (ret_val) - return ret_val; - - data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_MASK); - - if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED | - BM_CS_STATUS_SPEED_1000)) - return E1000_SUCCESS; - - msec_delay(200); - - /* flush the packets in the fifo buffer */ - ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, - (HV_MUX_DATA_CTRL_GEN_TO_MAC | - HV_MUX_DATA_CTRL_FORCE_SPEED)); - if (ret_val) - return ret_val; - - return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL, - HV_MUX_DATA_CTRL_GEN_TO_MAC); -} - -/** - * e1000_check_polarity_82577 - Checks the polarity. - * @hw: pointer to the HW structure - * - * Success returns 0, Failure returns -E1000_ERR_PHY (-2) - * - * Polarity is determined based on the PHY specific status register. - **/ -s32 e1000_check_polarity_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - - DEBUGFUNC("e1000_check_polarity_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - - if (!ret_val) - phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY) - ? e1000_rev_polarity_reversed - : e1000_rev_polarity_normal); - - return ret_val; -} - -/** - * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY - * @hw: pointer to the HW structure - * - * Calls the PHY setup function to force speed and duplex. - **/ -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data; - bool link; - - DEBUGFUNC("e1000_phy_force_speed_duplex_82577"); - - ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); - if (ret_val) - return ret_val; - - e1000_phy_force_speed_duplex_setup(hw, &phy_data); - - ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); - if (ret_val) - return ret_val; - - usec_delay(1); - - if (phy->autoneg_wait_to_complete) { - DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n"); - - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - if (ret_val) - return ret_val; - - if (!link) - DEBUGOUT("Link taking longer than expected.\n"); - - /* Try once more */ - ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT, - 100000, &link); - } - - return ret_val; -} - -/** - * e1000_get_phy_info_82577 - Retrieve I82577 PHY information - * @hw: pointer to the HW structure - * - * Read PHY status to determine if link is up. If link is up, then - * set/determine 10base-T extended distance and polarity correction. Read - * PHY port status to determine MDI/MDIx and speed. Based on the speed, - * determine on the cable length, local and remote receiver. - **/ -s32 e1000_get_phy_info_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 data; - bool link; - - DEBUGFUNC("e1000_get_phy_info_82577"); - - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) { - DEBUGOUT("Phy info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - phy->polarity_correction = true; - - ret_val = e1000_check_polarity_82577(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data); - if (ret_val) - return ret_val; - - phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX); - - if ((data & I82577_PHY_STATUS2_SPEED_MASK) == - I82577_PHY_STATUS2_SPEED_1000MBPS) { - ret_val = hw->phy.ops.get_cable_length(hw); - if (ret_val) - return ret_val; - - ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); - if (ret_val) - return ret_val; - - phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - - phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) - ? e1000_1000t_rx_status_ok - : e1000_1000t_rx_status_not_ok; - } else { - phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; - phy->local_rx = e1000_1000t_rx_status_undefined; - phy->remote_rx = e1000_1000t_rx_status_undefined; - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY - * @hw: pointer to the HW structure - * - * Reads the diagnostic status register and verifies result is valid before - * placing it in the phy_cable_length field. - **/ -s32 e1000_get_cable_length_82577(struct e1000_hw *hw) -{ - struct e1000_phy_info *phy = &hw->phy; - s32 ret_val; - u16 phy_data, length; - - DEBUGFUNC("e1000_get_cable_length_82577"); - - ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data); - if (ret_val) - return ret_val; - - length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >> - I82577_DSTATUS_CABLE_LENGTH_SHIFT); - - if (length == E1000_CABLE_LENGTH_UNDEFINED) - return -E1000_ERR_PHY; - - phy->cable_length = length; - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_gs40g - Write GS40G PHY register - * @hw: pointer to the HW structure - * @offset: register offset to write to - * @data: data to write at register offset - * - * Acquires semaphore, if necessary, then writes the data to PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) -{ - s32 ret_val; - u16 page = offset >> GS40G_PAGE_SHIFT; - - DEBUGFUNC("e1000_write_phy_reg_gs40g"); - - offset = offset & GS40G_OFFSET_MASK; - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); - if (ret_val) - goto release; - ret_val = e1000_write_phy_reg_mdic(hw, offset, data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_gs40g - Read GS40G PHY register - * @hw: pointer to the HW structure - * @offset: lower half is register offset to read to - * upper half is page to use. - * @data: data to read at register offset - * - * Acquires semaphore, if necessary, then reads the data in the PHY register - * at the offset. Release any acquired semaphores before exiting. - **/ -s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) -{ - s32 ret_val; - u16 page = offset >> GS40G_PAGE_SHIFT; - - DEBUGFUNC("e1000_read_phy_reg_gs40g"); - - offset = offset & GS40G_OFFSET_MASK; - ret_val = hw->phy.ops.acquire(hw); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); - if (ret_val) - goto release; - ret_val = e1000_read_phy_reg_mdic(hw, offset, data); - -release: - hw->phy.ops.release(hw); - return ret_val; -} - -/** - * e1000_read_phy_reg_mphy - Read mPHY control register - * @hw: pointer to the HW structure - * @address: address to be read - * @data: pointer to the read data - * - * Reads the mPHY control register in the PHY at offset and stores the - * information read to data. - **/ -s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data) -{ - u32 mphy_ctrl = 0; - bool locked = false; - bool ready; - - DEBUGFUNC("e1000_read_phy_reg_mphy"); - - /* Check if mPHY is ready to read/write operations */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* Check if mPHY access is disabled and enable it if so */ - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { - locked = true; - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - mphy_ctrl |= E1000_MPHY_ENA_ACCESS; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - } - - /* Set the address that we want to read */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* We mask address, because we want to use only current lane */ - mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK & - ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) | - (address & E1000_MPHY_ADDRESS_MASK); - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - - /* Read data from the address */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - *data = E1000_READ_REG(hw, E1000_MPHY_DATA); - - /* Disable access to mPHY if it was originally disabled */ - if (locked) - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, - E1000_MPHY_DIS_ACCESS); - - return E1000_SUCCESS; -} - -/** - * e1000_write_phy_reg_mphy - Write mPHY control register - * @hw: pointer to the HW structure - * @address: address to write to - * @data: data to write to register at offset - * @line_override: used when we want to use different line than default one - * - * Writes data to mPHY control register. - **/ -s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, - bool line_override) -{ - u32 mphy_ctrl = 0; - bool locked = false; - bool ready; - - DEBUGFUNC("e1000_write_phy_reg_mphy"); - - /* Check if mPHY is ready to read/write operations */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* Check if mPHY access is disabled and enable it if so */ - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) { - locked = true; - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - mphy_ctrl |= E1000_MPHY_ENA_ACCESS; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - } - - /* Set the address that we want to read */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - - /* We mask address, because we want to use only current lane */ - if (line_override) - mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE; - else - mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE; - mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) | - (address & E1000_MPHY_ADDRESS_MASK); - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl); - - /* Read data from the address */ - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_DATA, data); - - /* Disable access to mPHY if it was originally disabled */ - if (locked) - ready = e1000_is_mphy_ready(hw); - if (!ready) - return -E1000_ERR_PHY; - E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, - E1000_MPHY_DIS_ACCESS); - - return E1000_SUCCESS; -} - -/** - * e1000_is_mphy_ready - Check if mPHY control register is not busy - * @hw: pointer to the HW structure - * - * Returns mPHY control register status. - **/ -bool e1000_is_mphy_ready(struct e1000_hw *hw) -{ - u16 retry_count = 0; - u32 mphy_ctrl = 0; - bool ready = false; - - while (retry_count < 2) { - mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL); - if (mphy_ctrl & E1000_MPHY_BUSY) { - usec_delay(20); - retry_count++; - continue; - } - ready = true; - break; - } - - if (!ready) - DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n"); - - return ready; -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.h deleted file mode 100755 index 73a9b1fd..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_phy.h +++ /dev/null @@ -1,327 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_PHY_H_ -#define _E1000_PHY_H_ - -void e1000_init_phy_ops_generic(struct e1000_hw *hw); -s32 e1000_null_read_reg(struct e1000_hw *hw, u32 offset, u16 *data); -void e1000_null_phy_generic(struct e1000_hw *hw); -s32 e1000_null_lplu_state(struct e1000_hw *hw, bool active); -s32 e1000_null_write_reg(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_null_set_page(struct e1000_hw *hw, u16 data); -s32 e1000_read_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 *data); -s32 e1000_write_i2c_byte_null(struct e1000_hw *hw, u8 byte_offset, - u8 dev_addr, u8 data); -s32 e1000_check_downshift_generic(struct e1000_hw *hw); -s32 e1000_check_polarity_m88(struct e1000_hw *hw); -s32 e1000_check_polarity_igp(struct e1000_hw *hw); -s32 e1000_check_polarity_ife(struct e1000_hw *hw); -s32 e1000_check_reset_block_generic(struct e1000_hw *hw); -s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); -s32 e1000_copper_link_autoneg(struct e1000_hw *hw); -s32 e1000_copper_link_setup_igp(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88(struct e1000_hw *hw); -s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88(struct e1000_hw *hw); -s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw); -s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw); -s32 e1000_get_cfg_done_generic(struct e1000_hw *hw); -s32 e1000_get_phy_id(struct e1000_hw *hw); -s32 e1000_get_phy_info_igp(struct e1000_hw *hw); -s32 e1000_get_phy_info_m88(struct e1000_hw *hw); -s32 e1000_get_phy_info_ife(struct e1000_hw *hw); -s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw); -void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); -s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw); -s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw); -s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page); -s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active); -s32 e1000_setup_copper_link_generic(struct e1000_hw *hw); -s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, - u32 usec_interval, bool *success); -s32 e1000_phy_init_script_igp3(struct e1000_hw *hw); -enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id); -s32 e1000_determine_phy_address(struct e1000_hw *hw); -s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); -s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg); -s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data); -void e1000_power_up_phy_copper(struct e1000_hw *hw); -void e1000_power_down_phy_copper(struct e1000_hw *hw); -s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data); -s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data); -s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw); -s32 e1000_copper_link_setup_82577(struct e1000_hw *hw); -s32 e1000_check_polarity_82577(struct e1000_hw *hw); -s32 e1000_get_phy_info_82577(struct e1000_hw *hw); -s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw); -s32 e1000_get_cable_length_82577(struct e1000_hw *hw); -s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data); -s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data); -s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data); -s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data, - bool line_override); -bool e1000_is_mphy_ready(struct e1000_hw *hw); - -#define E1000_MAX_PHY_ADDR 8 - -/* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO */ -#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */ -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */ -#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */ -#define IGP_PAGE_SHIFT 5 -#define PHY_REG_MASK 0x1F - -/* GS40G - I210 PHY defines */ -#define GS40G_PAGE_SELECT 0x16 -#define GS40G_PAGE_SHIFT 16 -#define GS40G_OFFSET_MASK 0xFFFF -#define GS40G_PAGE_2 0x20000 -#define GS40G_MAC_REG2 0x15 -#define GS40G_MAC_LB 0x4140 -#define GS40G_MAC_SPEED_1G 0X0006 -#define GS40G_COPPER_SPEC 0x0010 -#define GS40G_CS_POWER_DOWN 0x0002 - -/* BM/HV Specific Registers */ -#define BM_PORT_CTRL_PAGE 769 -#define BM_WUC_PAGE 800 -#define BM_WUC_ADDRESS_OPCODE 0x11 -#define BM_WUC_DATA_OPCODE 0x12 -#define BM_WUC_ENABLE_PAGE BM_PORT_CTRL_PAGE -#define BM_WUC_ENABLE_REG 17 -#define BM_WUC_ENABLE_BIT (1 << 2) -#define BM_WUC_HOST_WU_BIT (1 << 4) -#define BM_WUC_ME_WU_BIT (1 << 5) - -#define PHY_UPPER_SHIFT 21 -#define BM_PHY_REG(page, reg) \ - (((reg) & MAX_PHY_REG_ADDRESS) |\ - (((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\ - (((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT))) -#define BM_PHY_REG_PAGE(offset) \ - ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) -#define BM_PHY_REG_NUM(offset) \ - ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ - (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ - ~MAX_PHY_REG_ADDRESS))) - -#define HV_INTC_FC_PAGE_START 768 -#define I82578_ADDR_REG 29 -#define I82577_ADDR_REG 16 -#define I82577_CFG_REG 22 -#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15) -#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift */ -#define I82577_CTRL_REG 23 - -/* 82577 specific PHY registers */ -#define I82577_PHY_CTRL_2 18 -#define I82577_PHY_LBK_CTRL 19 -#define I82577_PHY_STATUS_2 26 -#define I82577_PHY_DIAG_STATUS 31 - -/* I82577 PHY Status 2 */ -#define I82577_PHY_STATUS2_REV_POLARITY 0x0400 -#define I82577_PHY_STATUS2_MDIX 0x0800 -#define I82577_PHY_STATUS2_SPEED_MASK 0x0300 -#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 - -/* I82577 PHY Control 2 */ -#define I82577_PHY_CTRL2_MANUAL_MDIX 0x0200 -#define I82577_PHY_CTRL2_AUTO_MDI_MDIX 0x0400 -#define I82577_PHY_CTRL2_MDIX_CFG_MASK 0x0600 - -/* I82577 PHY Diagnostics Status */ -#define I82577_DSTATUS_CABLE_LENGTH 0x03FC -#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 - -/* 82580 PHY Power Management */ -#define E1000_82580_PHY_POWER_MGMT 0xE14 -#define E1000_82580_PM_SPD 0x0001 /* Smart Power Down */ -#define E1000_82580_PM_D0_LPLU 0x0002 /* For D0a states */ -#define E1000_82580_PM_D3_LPLU 0x0004 /* For all other states */ -#define E1000_82580_PM_GO_LINKD 0x0020 /* Go Link Disconnect */ - -#define E1000_MPHY_DIS_ACCESS 0x80000000 /* disable_access bit */ -#define E1000_MPHY_ENA_ACCESS 0x40000000 /* enable_access bit */ -#define E1000_MPHY_BUSY 0x00010000 /* busy bit */ -#define E1000_MPHY_ADDRESS_FNC_OVERRIDE 0x20000000 /* fnc_override bit */ -#define E1000_MPHY_ADDRESS_MASK 0x0000FFFF /* address mask */ - -/* BM PHY Copper Specific Control 1 */ -#define BM_CS_CTRL1 16 - -/* BM PHY Copper Specific Status */ -#define BM_CS_STATUS 17 -#define BM_CS_STATUS_LINK_UP 0x0400 -#define BM_CS_STATUS_RESOLVED 0x0800 -#define BM_CS_STATUS_SPEED_MASK 0xC000 -#define BM_CS_STATUS_SPEED_1000 0x8000 - -/* 82577 Mobile Phy Status Register */ -#define HV_M_STATUS 26 -#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000 -#define HV_M_STATUS_SPEED_MASK 0x0300 -#define HV_M_STATUS_SPEED_1000 0x0200 -#define HV_M_STATUS_SPEED_100 0x0100 -#define HV_M_STATUS_LINK_UP 0x0040 - -#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4 -#define IGP01E1000_PHY_POLARITY_MASK 0x0078 - -#define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */ - -#define IGP01E1000_PSCFR_SMART_SPEED 0x0080 - -/* Enable flexible speed on link-up */ -#define IGP01E1000_GMII_FLEX_SPD 0x0010 -#define IGP01E1000_GMII_SPD 0x0020 /* Enable SPD */ - -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */ - -#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 - -#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 -#define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 -#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 - -#define IGP02E1000_PHY_CHANNEL_NUM 4 -#define IGP02E1000_PHY_AGC_A 0x11B1 -#define IGP02E1000_PHY_AGC_B 0x12B1 -#define IGP02E1000_PHY_AGC_C 0x14B1 -#define IGP02E1000_PHY_AGC_D 0x18B1 - -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course=15:13, Fine=12:9 */ -#define IGP02E1000_AGC_LENGTH_MASK 0x7F -#define IGP02E1000_AGC_RANGE 15 - -#define E1000_CABLE_LENGTH_UNDEFINED 0xFF - -#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000 -#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16 -#define E1000_KMRNCTRLSTA_REN 0x00200000 -#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */ -#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */ -#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */ -#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */ -#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */ -#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */ -#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7 -#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002 /* enable K1 */ -#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */ -#define E1000_KMRNCTRLSTA_OP_MODES 0x1F /* Kumeran Modes of Operation */ -#define E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC 0x0002 /* change LSC to CSC */ - -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Ctrl */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Ctrl */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */ - -/* IFE PHY Extended Status Control */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 - -/* IFE PHY Special Control */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 -#define IFE_PSC_FORCE_POLARITY 0x0020 - -/* IFE PHY Special Control and LED Control */ -#define IFE_PSCL_PROBE_MODE 0x0020 -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -/* IFE PHY MDIX Control */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */ -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto, 0=disable */ - -/* SFP modules ID memory locations */ -#define E1000_SFF_IDENTIFIER_OFFSET 0x00 -#define E1000_SFF_IDENTIFIER_SFF 0x02 -#define E1000_SFF_IDENTIFIER_SFP 0x03 - -#define E1000_SFF_ETH_FLAGS_OFFSET 0x06 -/* Flags for SFP modules compatible with ETH up to 1Gb */ -struct sfp_e1000_flags { - u8 e1000_base_sx:1; - u8 e1000_base_lx:1; - u8 e1000_base_cx:1; - u8 e1000_base_t:1; - u8 e100_base_lx:1; - u8 e100_base_fx:1; - u8 e10_base_bx10:1; - u8 e10_base_px:1; -}; - -/* Vendor OUIs: format of OUI is 0x[byte0][byte1][byte2][00] */ -#define E1000_SFF_VENDOR_OUI_TYCO 0x00407600 -#define E1000_SFF_VENDOR_OUI_FTL 0x00906500 -#define E1000_SFF_VENDOR_OUI_AVAGO 0x00176A00 -#define E1000_SFF_VENDOR_OUI_INTEL 0x001B2100 - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_regs.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_regs.h deleted file mode 100755 index bde2a089..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_regs.h +++ /dev/null @@ -1,685 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_REGS_H_ -#define _E1000_REGS_H_ - -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_MDICNFG 0x00E04 /* MDI Config - RW */ -#define E1000_REGISTER_SET_SIZE 0x20000 /* CSR Size */ -#define E1000_EEPROM_INIT_CTRL_WORD_2 0x0F /* EEPROM Init Ctrl Word 2 */ -#define E1000_EEPROM_PCIE_CTRL_WORD_2 0x28 /* EEPROM PCIe Ctrl Word 2 */ -#define E1000_BARCTRL 0x5BBC /* BAR ctrl reg */ -#define E1000_BARCTRL_FLSIZE 0x0700 /* BAR ctrl Flsize */ -#define E1000_BARCTRL_CSRSIZE 0x2000 /* BAR ctrl CSR size */ -#define E1000_MPHY_ADDR_CTRL 0x0024 /* GbE MPHY Address Control */ -#define E1000_MPHY_DATA 0x0E10 /* GBE MPHY Data */ -#define E1000_MPHY_STAT 0x0E0C /* GBE MPHY Statistics */ -#define E1000_PPHY_CTRL 0x5b48 /* PCIe PHY Control */ -#define E1000_I350_BARCTRL 0x5BFC /* BAR ctrl reg */ -#define E1000_I350_DTXMXPKTSZ 0x355C /* Maximum sent packet size reg*/ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#if !defined(EXTERNAL_RELEASE) || (defined(NAHUM6LP_HW) && defined(ULP_SUPPORT)) -#define E1000_FEXT 0x0002C /* Future Extended - RW */ -#endif /* !EXTERNAL_RELEASE || (NAHUM6LP_HW && ULP_SUPPORT) */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM - RW */ -#define E1000_FEXTNVM3 0x0003C /* Future Extended NVM 3 - RW */ -#define E1000_FEXTNVM4 0x00024 /* Future Extended NVM 4 - RW */ -#define E1000_FEXTNVM6 0x00010 /* Future Extended NVM 6 - RW */ -#define E1000_FEXTNVM7 0x000E4 /* Future Extended NVM 7 - RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_CONNSW 0x00034 /* Copper/Fiber switch control - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_IVAR 0x000E4 /* Interrupt Vector Allocation Register - RW */ -#define E1000_SVCR 0x000F0 -#define E1000_SVT 0x000F4 -#define E1000_LPIC 0x000FC /* Low Power IDLE control */ -#define E1000_RCTL 0x00100 /* Rx Control - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* Tx Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* Rx Configuration Word - RO */ -#define E1000_PBA_ECC 0x01100 /* PBA ECC Register */ -#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ -#define E1000_EITR(_n) (0x01680 + (0x4 * (_n))) -#define E1000_EICS 0x01520 /* Ext. Interrupt Cause Set - W0 */ -#define E1000_EIMS 0x01524 /* Ext. Interrupt Mask Set/Read - RW */ -#define E1000_EIMC 0x01528 /* Ext. Interrupt Mask Clear - WO */ -#define E1000_EIAC 0x0152C /* Ext. Interrupt Auto Clear - RW */ -#define E1000_EIAM 0x01530 /* Ext. Interrupt Ack Auto Clear Mask - RW */ -#define E1000_GPIE 0x01514 /* General Purpose Interrupt Enable - RW */ -#define E1000_IVAR0 0x01700 /* Interrupt Vector Allocation (array) - RW */ -#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes - RW */ -#define E1000_TCTL 0x00400 /* Tx Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended Tx Control - RW */ -#define E1000_TIPG 0x00410 /* Tx Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* Tx Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_LEDMUX 0x08130 /* LED MUX Control */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ -#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */ -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_PBECCSTS 0x0100C /* Packet Buffer ECC Status - RW */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_I2CCMD 0x01028 /* SFPI2C Command Register - RW */ -#define E1000_I2CPARAMS 0x0102C /* SFPI2C Parameters Register - RW */ -#define E1000_I2CBB_EN 0x00000100 /* I2C - Bit Bang Enable */ -#define E1000_I2C_CLK_OUT 0x00000200 /* I2C- Clock */ -#define E1000_I2C_DATA_OUT 0x00000400 /* I2C- Data Out */ -#define E1000_I2C_DATA_OE_N 0x00000800 /* I2C- Data Output Enable */ -#define E1000_I2C_DATA_IN 0x00001000 /* I2C- Data In */ -#define E1000_I2C_CLK_OE_N 0x00002000 /* I2C- Clock Output Enable */ -#define E1000_I2C_CLK_IN 0x00004000 /* I2C- Clock In */ -#define E1000_I2C_CLK_STRETCH_DIS 0x00008000 /* I2C- Dis Clk Stretching */ -#define E1000_WDSTP 0x01040 /* Watchdog Setup - RW */ -#define E1000_SWDSTS 0x01044 /* SW Device Status - RW */ -#define E1000_FRTIMER 0x01048 /* Free Running Timer - RW */ -#define E1000_TCPTIMER 0x0104C /* TCP Timer - RW */ -#define E1000_VPDDIAG 0x01060 /* VPD Diagnostic - RO */ -#define E1000_ICR_V2 0x01500 /* Intr Cause - new location - RC */ -#define E1000_ICS_V2 0x01504 /* Intr Cause Set - new location - WO */ -#define E1000_IMS_V2 0x01508 /* Intr Mask Set/Read - new location - RW */ -#define E1000_IMC_V2 0x0150C /* Intr Mask Clear - new location - WO */ -#define E1000_IAM_V2 0x01510 /* Intr Ack Auto Mask - new location - RW */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */ -#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */ -#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */ -#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */ -#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */ -#define E1000_PBRTH 0x02458 /* PB Rx Arbitration Threshold - RW */ -#define E1000_FCRTV 0x02460 /* Flow Control Refresh Timer Value - RW */ -/* Split and Replication Rx Control - RW */ -#define E1000_RDPUMB 0x025CC /* DMA Rx Descriptor uC Mailbox - RW */ -#define E1000_RDPUAD 0x025D0 /* DMA Rx Descriptor uC Addr Command - RW */ -#define E1000_RDPUWD 0x025D4 /* DMA Rx Descriptor uC Data Write - RW */ -#define E1000_RDPURD 0x025D8 /* DMA Rx Descriptor uC Data Read - RW */ -#define E1000_RDPUCTL 0x025DC /* DMA Rx Descriptor uC Control - RW */ -#define E1000_PBDIAG 0x02458 /* Packet Buffer Diagnostic - RW */ -#define E1000_RXPBS 0x02404 /* Rx Packet Buffer Size - RW */ -#define E1000_IRPBS 0x02404 /* Same as RXPBS, renamed for newer Si - RW */ -#define E1000_PBRWAC 0x024E8 /* Rx packet buffer wrap around counter - RO */ -#define E1000_RDTR 0x02820 /* Rx Delay Timer - RW */ -#define E1000_RADV 0x0282C /* Rx Interrupt Absolute Delay Timer - RW */ -#define E1000_EMIADD 0x10 /* Extended Memory Indirect Address */ -#define E1000_EMIDATA 0x11 /* Extended Memory Indirect Data */ -#define E1000_SRWR 0x12018 /* Shadow Ram Write Register - RW */ -#define E1000_I210_FLMNGCTL 0x12038 -#define E1000_I210_FLMNGDATA 0x1203C -#define E1000_I210_FLMNGCNT 0x12040 - -#define E1000_I210_FLSWCTL 0x12048 -#define E1000_I210_FLSWDATA 0x1204C -#define E1000_I210_FLSWCNT 0x12050 - -#define E1000_I210_FLA 0x1201C - -#define E1000_INVM_DATA_REG(_n) (0x12120 + 4*(_n)) -#define E1000_INVM_SIZE 64 /* Number of INVM Data Registers */ - -/* QAV Tx mode control register */ -#define E1000_I210_TQAVCTRL 0x3570 - -/* QAV Tx mode control register bitfields masks */ -/* QAV enable */ -#define E1000_TQAVCTRL_MODE (1 << 0) -/* Fetching arbitration type */ -#define E1000_TQAVCTRL_FETCH_ARB (1 << 4) -/* Fetching timer enable */ -#define E1000_TQAVCTRL_FETCH_TIMER_ENABLE (1 << 5) -/* Launch arbitration type */ -#define E1000_TQAVCTRL_LAUNCH_ARB (1 << 8) -/* Launch timer enable */ -#define E1000_TQAVCTRL_LAUNCH_TIMER_ENABLE (1 << 9) -/* SP waits for SR enable */ -#define E1000_TQAVCTRL_SP_WAIT_SR (1 << 10) -/* Fetching timer correction */ -#define E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET 16 -#define E1000_TQAVCTRL_FETCH_TIMER_DELTA \ - (0xFFFF << E1000_TQAVCTRL_FETCH_TIMER_DELTA_OFFSET) - -/* High credit registers where _n can be 0 or 1. */ -#define E1000_I210_TQAVHC(_n) (0x300C + 0x40 * (_n)) - -/* Queues fetch arbitration priority control register */ -#define E1000_I210_TQAVARBCTRL 0x3574 -/* Queues priority masks where _n and _p can be 0-3. */ -#define E1000_TQAVARBCTRL_QUEUE_PRI(_n, _p) ((_p) << (2 * _n)) -/* QAV Tx mode control registers where _n can be 0 or 1. */ -#define E1000_I210_TQAVCC(_n) (0x3004 + 0x40 * (_n)) - -/* QAV Tx mode control register bitfields masks */ -#define E1000_TQAVCC_IDLE_SLOPE 0xFFFF /* Idle slope */ -#define E1000_TQAVCC_KEEP_CREDITS (1 << 30) /* Keep credits opt enable */ -#define E1000_TQAVCC_QUEUE_MODE (1 << 31) /* SP vs. SR Tx mode */ - -/* Good transmitted packets counter registers */ -#define E1000_PQGPTC(_n) (0x010014 + (0x100 * (_n))) - -/* Queues packet buffer size masks where _n can be 0-3 and _s 0-63 [kB] */ -#define E1000_I210_TXPBS_SIZE(_n, _s) ((_s) << (6 * _n)) - -#define E1000_MMDAC 13 /* MMD Access Control */ -#define E1000_MMDAAD 14 /* MMD Access Address/Data */ - -/* Convenience macros - * - * Note: "_n" is the queue number of the register to be written to. - * - * Example usage: - * E1000_RDBAL_REG(current_rx_queue) - */ -#define E1000_RDBAL(_n) ((_n) < 4 ? (0x02800 + ((_n) * 0x100)) : \ - (0x0C000 + ((_n) * 0x40))) -#define E1000_RDBAH(_n) ((_n) < 4 ? (0x02804 + ((_n) * 0x100)) : \ - (0x0C004 + ((_n) * 0x40))) -#define E1000_RDLEN(_n) ((_n) < 4 ? (0x02808 + ((_n) * 0x100)) : \ - (0x0C008 + ((_n) * 0x40))) -#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ - (0x0C00C + ((_n) * 0x40))) -#define E1000_RDH(_n) ((_n) < 4 ? (0x02810 + ((_n) * 0x100)) : \ - (0x0C010 + ((_n) * 0x40))) -#define E1000_RXCTL(_n) ((_n) < 4 ? (0x02814 + ((_n) * 0x100)) : \ - (0x0C014 + ((_n) * 0x40))) -#define E1000_DCA_RXCTRL(_n) E1000_RXCTL(_n) -#define E1000_RDT(_n) ((_n) < 4 ? (0x02818 + ((_n) * 0x100)) : \ - (0x0C018 + ((_n) * 0x40))) -#define E1000_RXDCTL(_n) ((_n) < 4 ? (0x02828 + ((_n) * 0x100)) : \ - (0x0C028 + ((_n) * 0x40))) -#define E1000_RQDPC(_n) ((_n) < 4 ? (0x02830 + ((_n) * 0x100)) : \ - (0x0C030 + ((_n) * 0x40))) -#define E1000_TDBAL(_n) ((_n) < 4 ? (0x03800 + ((_n) * 0x100)) : \ - (0x0E000 + ((_n) * 0x40))) -#define E1000_TDBAH(_n) ((_n) < 4 ? (0x03804 + ((_n) * 0x100)) : \ - (0x0E004 + ((_n) * 0x40))) -#define E1000_TDLEN(_n) ((_n) < 4 ? (0x03808 + ((_n) * 0x100)) : \ - (0x0E008 + ((_n) * 0x40))) -#define E1000_TDH(_n) ((_n) < 4 ? (0x03810 + ((_n) * 0x100)) : \ - (0x0E010 + ((_n) * 0x40))) -#define E1000_TXCTL(_n) ((_n) < 4 ? (0x03814 + ((_n) * 0x100)) : \ - (0x0E014 + ((_n) * 0x40))) -#define E1000_DCA_TXCTRL(_n) E1000_TXCTL(_n) -#define E1000_TDT(_n) ((_n) < 4 ? (0x03818 + ((_n) * 0x100)) : \ - (0x0E018 + ((_n) * 0x40))) -#define E1000_TXDCTL(_n) ((_n) < 4 ? (0x03828 + ((_n) * 0x100)) : \ - (0x0E028 + ((_n) * 0x40))) -#define E1000_TDWBAL(_n) ((_n) < 4 ? (0x03838 + ((_n) * 0x100)) : \ - (0x0E038 + ((_n) * 0x40))) -#define E1000_TDWBAH(_n) ((_n) < 4 ? (0x0383C + ((_n) * 0x100)) : \ - (0x0E03C + ((_n) * 0x40))) -#define E1000_TARC(_n) (0x03840 + ((_n) * 0x100)) -#define E1000_RSRPD 0x02C00 /* Rx Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* Tx DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_PSRTYPE(_i) (0x05480 + ((_i) * 4)) -#define E1000_RAL(_i) (((_i) <= 15) ? (0x05400 + ((_i) * 8)) : \ - (0x054E0 + ((_i - 16) * 8))) -#define E1000_RAH(_i) (((_i) <= 15) ? (0x05404 + ((_i) * 8)) : \ - (0x054E4 + ((_i - 16) * 8))) -#define E1000_SHRAL(_i) (0x05438 + ((_i) * 8)) -#define E1000_SHRAH(_i) (0x0543C + ((_i) * 8)) -#define E1000_IP4AT_REG(_i) (0x05840 + ((_i) * 8)) -#define E1000_IP6AT_REG(_i) (0x05880 + ((_i) * 4)) -#define E1000_WUPM_REG(_i) (0x05A00 + ((_i) * 4)) -#define E1000_FFMT_REG(_i) (0x09000 + ((_i) * 8)) -#define E1000_FFVT_REG(_i) (0x09800 + ((_i) * 8)) -#define E1000_FFLT_REG(_i) (0x05F00 + ((_i) * 8)) -#define E1000_PBSLAC 0x03100 /* Pkt Buffer Slave Access Control */ -#define E1000_PBSLAD(_n) (0x03110 + (0x4 * (_n))) /* Pkt Buffer DWORD */ -#define E1000_TXPBS 0x03404 /* Tx Packet Buffer Size - RW */ -/* Same as TXPBS, renamed for newer Si - RW */ -#define E1000_ITPBS 0x03404 -#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */ -#define E1000_TDPUMB 0x0357C /* DMA Tx Desc uC Mail Box - RW */ -#define E1000_TDPUAD 0x03580 /* DMA Tx Desc uC Addr Command - RW */ -#define E1000_TDPUWD 0x03584 /* DMA Tx Desc uC Data Write - RW */ -#define E1000_TDPURD 0x03588 /* DMA Tx Desc uC Data Read - RW */ -#define E1000_TDPUCTL 0x0358C /* DMA Tx Desc uC Control - RW */ -#define E1000_DTXCTL 0x03590 /* DMA Tx Control - RW */ -#define E1000_DTXTCPFLGL 0x0359C /* DMA Tx Control flag low - RW */ -#define E1000_DTXTCPFLGH 0x035A0 /* DMA Tx Control flag high - RW */ -/* DMA Tx Max Total Allow Size Reqs - RW */ -#define E1000_DTXMXSZRQ 0x03540 -#define E1000_TIDV 0x03820 /* Tx Interrupt Delay Value - RW */ -#define E1000_TADV 0x0382C /* Tx Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* Tx-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON Rx Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON Tx Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF Rx Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF Tx Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control Rx Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets Rx (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets Rx (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets Rx (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets Rx (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets Rx (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets Rx (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets Rx Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets Rx Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets Rx Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets Tx Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets Rx Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets Rx Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets Tx Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets Tx Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* Rx No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* Rx Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* Rx Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* Rx Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* Rx Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets Rx Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets Tx Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets Rx Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets Rx High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets Tx Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets Tx High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets Rx - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets Tx - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets Tx (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets Tx (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets Tx (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets Tx (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets Tx (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets Tx (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets Tx Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets Tx Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context Tx - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context Tx Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Pkt Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Abs Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Pkt Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Abs Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Min Thresh Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Desc Min Thresh Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ -#define E1000_CRC_OFFSET 0x05F50 /* CRC Offset register */ - -#define E1000_VFGPRC 0x00F10 -#define E1000_VFGORC 0x00F18 -#define E1000_VFMPRC 0x00F3C -#define E1000_VFGPTC 0x00F14 -#define E1000_VFGOTC 0x00F34 -#define E1000_VFGOTLBC 0x00F50 -#define E1000_VFGPTLBC 0x00F44 -#define E1000_VFGORLBC 0x00F48 -#define E1000_VFGPRLBC 0x00F40 -/* Virtualization statistical counters */ -#define E1000_PFVFGPRC(_n) (0x010010 + (0x100 * (_n))) -#define E1000_PFVFGPTC(_n) (0x010014 + (0x100 * (_n))) -#define E1000_PFVFGORC(_n) (0x010018 + (0x100 * (_n))) -#define E1000_PFVFGOTC(_n) (0x010034 + (0x100 * (_n))) -#define E1000_PFVFMPRC(_n) (0x010038 + (0x100 * (_n))) -#define E1000_PFVFGPRLBC(_n) (0x010040 + (0x100 * (_n))) -#define E1000_PFVFGPTLBC(_n) (0x010044 + (0x100 * (_n))) -#define E1000_PFVFGORLBC(_n) (0x010048 + (0x100 * (_n))) -#define E1000_PFVFGOTLBC(_n) (0x010050 + (0x100 * (_n))) - -/* LinkSec */ -#define E1000_LSECTXUT 0x04300 /* Tx Untagged Pkt Cnt */ -#define E1000_LSECTXPKTE 0x04304 /* Encrypted Tx Pkts Cnt */ -#define E1000_LSECTXPKTP 0x04308 /* Protected Tx Pkt Cnt */ -#define E1000_LSECTXOCTE 0x0430C /* Encrypted Tx Octets Cnt */ -#define E1000_LSECTXOCTP 0x04310 /* Protected Tx Octets Cnt */ -#define E1000_LSECRXUT 0x04314 /* Untagged non-Strict Rx Pkt Cnt */ -#define E1000_LSECRXOCTD 0x0431C /* Rx Octets Decrypted Count */ -#define E1000_LSECRXOCTV 0x04320 /* Rx Octets Validated */ -#define E1000_LSECRXBAD 0x04324 /* Rx Bad Tag */ -#define E1000_LSECRXNOSCI 0x04328 /* Rx Packet No SCI Count */ -#define E1000_LSECRXUNSCI 0x0432C /* Rx Packet Unknown SCI Count */ -#define E1000_LSECRXUNCH 0x04330 /* Rx Unchecked Packets Count */ -#define E1000_LSECRXDELAY 0x04340 /* Rx Delayed Packet Count */ -#define E1000_LSECRXLATE 0x04350 /* Rx Late Packets Count */ -#define E1000_LSECRXOK(_n) (0x04360 + (0x04 * (_n))) /* Rx Pkt OK Cnt */ -#define E1000_LSECRXINV(_n) (0x04380 + (0x04 * (_n))) /* Rx Invalid Cnt */ -#define E1000_LSECRXNV(_n) (0x043A0 + (0x04 * (_n))) /* Rx Not Valid Cnt */ -#define E1000_LSECRXUNSA 0x043C0 /* Rx Unused SA Count */ -#define E1000_LSECRXNUSA 0x043D0 /* Rx Not Using SA Count */ -#define E1000_LSECTXCAP 0x0B000 /* Tx Capabilities Register - RO */ -#define E1000_LSECRXCAP 0x0B300 /* Rx Capabilities Register - RO */ -#define E1000_LSECTXCTRL 0x0B004 /* Tx Control - RW */ -#define E1000_LSECRXCTRL 0x0B304 /* Rx Control - RW */ -#define E1000_LSECTXSCL 0x0B008 /* Tx SCI Low - RW */ -#define E1000_LSECTXSCH 0x0B00C /* Tx SCI High - RW */ -#define E1000_LSECTXSA 0x0B010 /* Tx SA0 - RW */ -#define E1000_LSECTXPN0 0x0B018 /* Tx SA PN 0 - RW */ -#define E1000_LSECTXPN1 0x0B01C /* Tx SA PN 1 - RW */ -#define E1000_LSECRXSCL 0x0B3D0 /* Rx SCI Low - RW */ -#define E1000_LSECRXSCH 0x0B3E0 /* Rx SCI High - RW */ -/* LinkSec Tx 128-bit Key 0 - WO */ -#define E1000_LSECTXKEY0(_n) (0x0B020 + (0x04 * (_n))) -/* LinkSec Tx 128-bit Key 1 - WO */ -#define E1000_LSECTXKEY1(_n) (0x0B030 + (0x04 * (_n))) -#define E1000_LSECRXSA(_n) (0x0B310 + (0x04 * (_n))) /* Rx SAs - RW */ -#define E1000_LSECRXPN(_n) (0x0B330 + (0x04 * (_n))) /* Rx SAs - RW */ -/* LinkSec Rx Keys - where _n is the SA no. and _m the 4 dwords of the 128 bit - * key - RW. - */ -#define E1000_LSECRXKEY(_n, _m) (0x0B350 + (0x10 * (_n)) + (0x04 * (_m))) - -#define E1000_SSVPC 0x041A0 /* Switch Security Violation Pkt Cnt */ -#define E1000_IPSCTRL 0xB430 /* IpSec Control Register */ -#define E1000_IPSRXCMD 0x0B408 /* IPSec Rx Command Register - RW */ -#define E1000_IPSRXIDX 0x0B400 /* IPSec Rx Index - RW */ -/* IPSec Rx IPv4/v6 Address - RW */ -#define E1000_IPSRXIPADDR(_n) (0x0B420 + (0x04 * (_n))) -/* IPSec Rx 128-bit Key - RW */ -#define E1000_IPSRXKEY(_n) (0x0B410 + (0x04 * (_n))) -#define E1000_IPSRXSALT 0x0B404 /* IPSec Rx Salt - RW */ -#define E1000_IPSRXSPI 0x0B40C /* IPSec Rx SPI - RW */ -/* IPSec Tx 128-bit Key - RW */ -#define E1000_IPSTXKEY(_n) (0x0B460 + (0x04 * (_n))) -#define E1000_IPSTXSALT 0x0B454 /* IPSec Tx Salt - RW */ -#define E1000_IPSTXIDX 0x0B450 /* IPSec Tx SA IDX - RW */ -#define E1000_PCS_CFG0 0x04200 /* PCS Configuration 0 - RW */ -#define E1000_PCS_LCTL 0x04208 /* PCS Link Control - RW */ -#define E1000_PCS_LSTAT 0x0420C /* PCS Link Status - RO */ -#define E1000_CBTMPC 0x0402C /* Circuit Breaker Tx Packet Count */ -#define E1000_HTDPMC 0x0403C /* Host Transmit Discarded Packets */ -#define E1000_CBRDPC 0x04044 /* Circuit Breaker Rx Dropped Count */ -#define E1000_CBRMPC 0x040FC /* Circuit Breaker Rx Packet Count */ -#define E1000_RPTHC 0x04104 /* Rx Packets To Host */ -#define E1000_HGPTC 0x04118 /* Host Good Packets Tx Count */ -#define E1000_HTCBDPC 0x04124 /* Host Tx Circuit Breaker Dropped Count */ -#define E1000_HGORCL 0x04128 /* Host Good Octets Received Count Low */ -#define E1000_HGORCH 0x0412C /* Host Good Octets Received Count High */ -#define E1000_HGOTCL 0x04130 /* Host Good Octets Transmit Count Low */ -#define E1000_HGOTCH 0x04134 /* Host Good Octets Transmit Count High */ -#define E1000_LENERRS 0x04138 /* Length Errors Count */ -#define E1000_SCVPC 0x04228 /* SerDes/SGMII Code Violation Pkt Count */ -#define E1000_HRMPC 0x0A018 /* Header Redirection Missed Packet Count */ -#define E1000_PCS_ANADV 0x04218 /* AN advertisement - RW */ -#define E1000_PCS_LPAB 0x0421C /* Link Partner Ability - RW */ -#define E1000_PCS_NPTX 0x04220 /* AN Next Page Transmit - RW */ -#define E1000_PCS_LPABNP 0x04224 /* Link Partner Ability Next Pg - RW */ -#define E1000_RXCSUM 0x05000 /* Rx Checksum Control - RW */ -#define E1000_RLPML 0x05004 /* Rx Long Packet Max Length */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_RA2 0x054E0 /* 2nd half of Rx address array - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_VT_CTL 0x0581C /* VMDq Control - RW */ -#define E1000_CIAA 0x05B88 /* Config Indirect Access Address - RW */ -#define E1000_CIAD 0x05B8C /* Config Indirect Access Data - RW */ -#define E1000_VFQA0 0x0B000 /* VLAN Filter Queue Array 0 - RW Array */ -#define E1000_VFQA1 0x0B200 /* VLAN Filter Queue Array 1 - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_PBACL 0x05B68 /* MSIx PBA Clear - Read/Write 1's to clear */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_HIBBA 0x8F40 /* Host Interface Buffer Base Address */ -/* Flexible Host Filter Table */ -#define E1000_FHFT(_n) (0x09000 + ((_n) * 0x100)) -/* Ext Flexible Host Filter Table */ -#define E1000_FHFT_EXT(_n) (0x09A00 + ((_n) * 0x100)) - - -#define E1000_KMRNCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MANC2H 0x05860 /* Management Control To Host - RW */ -/* Management Decision Filters */ -#define E1000_MDEF(_n) (0x05890 + (4 * (_n))) -#define E1000_SW_FW_SYNC 0x05B5C /* SW-FW Synchronization - RW */ -#define E1000_CCMCTL 0x05B48 /* CCM Control Register */ -#define E1000_GIOCTL 0x05B44 /* GIO Analog Control Register */ -#define E1000_SCCTL 0x05B4C /* PCIc PLL Configuration Register */ -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GCR2 0x05B64 /* PCI-Ex Control #2 */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -/* Driver-only SW semaphore (not used by BOOT agents) */ -#define E1000_SWSM2 0x05B58 -#define E1000_DCA_ID 0x05B70 /* DCA Requester ID Information - RO */ -#define E1000_DCA_CTRL 0x05B74 /* DCA Control - RW */ -#define E1000_UFUSE 0x05B78 /* UFUSE - RO */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Interface Control */ -#define E1000_FWSTS 0x08F0C /* FW Status */ - -/* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_IMIR(_i) (0x05A80 + ((_i) * 4)) /* Immediate Interrupt */ -#define E1000_IMIREXT(_i) (0x05AA0 + ((_i) * 4)) /* Immediate INTR Ext*/ -#define E1000_IMIRVP 0x05AC0 /* Immediate INT Rx VLAN Priority -RW */ -#define E1000_MSIXBM(_i) (0x01600 + ((_i) * 4)) /* MSI-X Alloc Reg -RW */ -#define E1000_RETA(_i) (0x05C00 + ((_i) * 4)) /* Redirection Table - RW */ -#define E1000_RSSRK(_i) (0x05C80 + ((_i) * 4)) /* RSS Random Key - RW */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ -/* VT Registers */ -#define E1000_SWPBS 0x03004 /* Switch Packet Buffer Size - RW */ -#define E1000_MBVFICR 0x00C80 /* Mailbox VF Cause - RWC */ -#define E1000_MBVFIMR 0x00C84 /* Mailbox VF int Mask - RW */ -#define E1000_VFLRE 0x00C88 /* VF Register Events - RWC */ -#define E1000_VFRE 0x00C8C /* VF Receive Enables */ -#define E1000_VFTE 0x00C90 /* VF Transmit Enables */ -#define E1000_QDE 0x02408 /* Queue Drop Enable - RW */ -#define E1000_DTXSWC 0x03500 /* DMA Tx Switch Control - RW */ -#define E1000_WVBR 0x03554 /* VM Wrong Behavior - RWS */ -#define E1000_RPLOLR 0x05AF0 /* Replication Offload - RW */ -#define E1000_UTA 0x0A000 /* Unicast Table Array - RW */ -#define E1000_IOVTCL 0x05BBC /* IOV Control Register */ -#define E1000_VMRCTL 0X05D80 /* Virtual Mirror Rule Control */ -#define E1000_VMRVLAN 0x05D90 /* Virtual Mirror Rule VLAN */ -#define E1000_VMRVM 0x05DA0 /* Virtual Mirror Rule VM */ -#define E1000_MDFB 0x03558 /* Malicious Driver free block */ -#define E1000_LVMMC 0x03548 /* Last VM Misbehavior cause */ -#define E1000_TXSWC 0x05ACC /* Tx Switch Control */ -#define E1000_SCCRL 0x05DB0 /* Storm Control Control */ -#define E1000_BSCTRH 0x05DB8 /* Broadcast Storm Control Threshold */ -#define E1000_MSCTRH 0x05DBC /* Multicast Storm Control Threshold */ -/* These act per VF so an array friendly macro is used */ -#define E1000_V2PMAILBOX(_n) (0x00C40 + (4 * (_n))) -#define E1000_P2VMAILBOX(_n) (0x00C00 + (4 * (_n))) -#define E1000_VMBMEM(_n) (0x00800 + (64 * (_n))) -#define E1000_VFVMBMEM(_n) (0x00800 + (_n)) -#define E1000_VMOLR(_n) (0x05AD0 + (4 * (_n))) -/* VLAN Virtual Machine Filter - RW */ -#define E1000_VLVF(_n) (0x05D00 + (4 * (_n))) -#define E1000_VMVIR(_n) (0x03700 + (4 * (_n))) -#define E1000_DVMOLR(_n) (0x0C038 + (0x40 * (_n))) /* DMA VM offload */ -#define E1000_VTCTRL(_n) (0x10000 + (0x100 * (_n))) /* VT Control */ -#define E1000_TSYNCRXCTL 0x0B620 /* Rx Time Sync Control register - RW */ -#define E1000_TSYNCTXCTL 0x0B614 /* Tx Time Sync Control register - RW */ -#define E1000_TSYNCRXCFG 0x05F50 /* Time Sync Rx Configuration - RW */ -#define E1000_RXSTMPL 0x0B624 /* Rx timestamp Low - RO */ -#define E1000_RXSTMPH 0x0B628 /* Rx timestamp High - RO */ -#define E1000_RXSATRL 0x0B62C /* Rx timestamp attribute low - RO */ -#define E1000_RXSATRH 0x0B630 /* Rx timestamp attribute high - RO */ -#define E1000_TXSTMPL 0x0B618 /* Tx timestamp value Low - RO */ -#define E1000_TXSTMPH 0x0B61C /* Tx timestamp value High - RO */ -#define E1000_SYSTIML 0x0B600 /* System time register Low - RO */ -#define E1000_SYSTIMH 0x0B604 /* System time register High - RO */ -#define E1000_TIMINCA 0x0B608 /* Increment attributes register - RW */ -#define E1000_TIMADJL 0x0B60C /* Time sync time adjustment offset Low - RW */ -#define E1000_TIMADJH 0x0B610 /* Time sync time adjustment offset High - RW */ -#define E1000_TSAUXC 0x0B640 /* Timesync Auxiliary Control register */ -#define E1000_SYSTIMR 0x0B6F8 /* System time register Residue */ -#define E1000_TSICR 0x0B66C /* Interrupt Cause Register */ -#define E1000_TSIM 0x0B674 /* Interrupt Mask Register */ -#define E1000_RXMTRL 0x0B634 /* Time sync Rx EtherType and Msg Type - RW */ -#define E1000_RXUDP 0x0B638 /* Time Sync Rx UDP Port - RW */ - -/* Filtering Registers */ -#define E1000_SAQF(_n) (0x05980 + (4 * (_n))) /* Source Address Queue Fltr */ -#define E1000_DAQF(_n) (0x059A0 + (4 * (_n))) /* Dest Address Queue Fltr */ -#define E1000_SPQF(_n) (0x059C0 + (4 * (_n))) /* Source Port Queue Fltr */ -#define E1000_FTQF(_n) (0x059E0 + (4 * (_n))) /* 5-tuple Queue Fltr */ -#define E1000_TTQF(_n) (0x059E0 + (4 * (_n))) /* 2-tuple Queue Fltr */ -#define E1000_SYNQF(_n) (0x055FC + (4 * (_n))) /* SYN Packet Queue Fltr */ -#define E1000_ETQF(_n) (0x05CB0 + (4 * (_n))) /* EType Queue Fltr */ - -#define E1000_RTTDCS 0x3600 /* Reedtown Tx Desc plane control and status */ -#define E1000_RTTPCS 0x3474 /* Reedtown Tx Packet Plane control and status */ -#define E1000_RTRPCS 0x2474 /* Rx packet plane control and status */ -#define E1000_RTRUP2TC 0x05AC4 /* Rx User Priority to Traffic Class */ -#define E1000_RTTUP2TC 0x0418 /* Transmit User Priority to Traffic Class */ -/* Tx Desc plane TC Rate-scheduler config */ -#define E1000_RTTDTCRC(_n) (0x3610 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTTPTCRC(_n) (0x3480 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Config */ -#define E1000_RTRPTCRC(_n) (0x2480 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler Status */ -#define E1000_RTTDTCRS(_n) (0x3630 + ((_n) * 4)) -/* Tx Desc Plane TC Rate-Scheduler MMW */ -#define E1000_RTTDTCRM(_n) (0x3650 + ((_n) * 4)) -/* Tx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTTPTCRS(_n) (0x34A0 + ((_n) * 4)) -/* Tx Packet plane TC Rate-scheduler MMW */ -#define E1000_RTTPTCRM(_n) (0x34C0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler Status */ -#define E1000_RTRPTCRS(_n) (0x24A0 + ((_n) * 4)) -/* Rx Packet plane TC Rate-Scheduler MMW */ -#define E1000_RTRPTCRM(_n) (0x24C0 + ((_n) * 4)) -/* Tx Desc plane VM Rate-Scheduler MMW*/ -#define E1000_RTTDVMRM(_n) (0x3670 + ((_n) * 4)) -/* Tx BCN Rate-Scheduler MMW */ -#define E1000_RTTBCNRM(_n) (0x3690 + ((_n) * 4)) -#define E1000_RTTDQSEL 0x3604 /* Tx Desc Plane Queue Select */ -#define E1000_RTTDVMRC 0x3608 /* Tx Desc Plane VM Rate-Scheduler Config */ -#define E1000_RTTDVMRS 0x360C /* Tx Desc Plane VM Rate-Scheduler Status */ -#define E1000_RTTBCNRC 0x36B0 /* Tx BCN Rate-Scheduler Config */ -#define E1000_RTTBCNRS 0x36B4 /* Tx BCN Rate-Scheduler Status */ -#define E1000_RTTBCNCR 0xB200 /* Tx BCN Control Register */ -#define E1000_RTTBCNTG 0x35A4 /* Tx BCN Tagging */ -#define E1000_RTTBCNCP 0xB208 /* Tx BCN Congestion point */ -#define E1000_RTRBCNCR 0xB20C /* Rx BCN Control Register */ -#define E1000_RTTBCNRD 0x36B8 /* Tx BCN Rate Drift */ -#define E1000_PFCTOP 0x1080 /* Priority Flow Control Type and Opcode */ -#define E1000_RTTBCNIDX 0xB204 /* Tx BCN Congestion Point */ -#define E1000_RTTBCNACH 0x0B214 /* Tx BCN Control High */ -#define E1000_RTTBCNACL 0x0B210 /* Tx BCN Control Low */ - -/* DMA Coalescing registers */ -#define E1000_DMACR 0x02508 /* Control Register */ -#define E1000_DMCTXTH 0x03550 /* Transmit Threshold */ -#define E1000_DMCTLX 0x02514 /* Time to Lx Request */ -#define E1000_DMCRTRH 0x05DD0 /* Receive Packet Rate Threshold */ -#define E1000_DMCCNT 0x05DD4 /* Current Rx Count */ -#define E1000_FCRTC 0x02170 /* Flow Control Rx high watermark */ -#define E1000_PCIEMISC 0x05BB8 /* PCIE misc config register */ - -/* PCIe Parity Status Register */ -#define E1000_PCIEERRSTS 0x05BA8 - -#define E1000_PROXYS 0x5F64 /* Proxying Status */ -#define E1000_PROXYFC 0x5F60 /* Proxying Filter Control */ -/* Thermal sensor configuration and status registers */ -#define E1000_THMJT 0x08100 /* Junction Temperature */ -#define E1000_THLOWTC 0x08104 /* Low Threshold Control */ -#define E1000_THMIDTC 0x08108 /* Mid Threshold Control */ -#define E1000_THHIGHTC 0x0810C /* High Threshold Control */ -#define E1000_THSTAT 0x08110 /* Thermal Sensor Status */ - -/* Energy Efficient Ethernet "EEE" registers */ -#define E1000_IPCNFG 0x0E38 /* Internal PHY Configuration */ -#define E1000_LTRC 0x01A0 /* Latency Tolerance Reporting Control */ -#define E1000_EEER 0x0E30 /* Energy Efficient Ethernet "EEE"*/ -#define E1000_EEE_SU 0x0E34 /* EEE Setup */ -#define E1000_TLPIC 0x4148 /* EEE Tx LPI Count - TLPIC */ -#define E1000_RLPIC 0x414C /* EEE Rx LPI Count - RLPIC */ - -/* OS2BMC Registers */ -#define E1000_B2OSPC 0x08FE0 /* BMC2OS packets sent by BMC */ -#define E1000_B2OGPRC 0x04158 /* BMC2OS packets received by host */ -#define E1000_O2BGPTC 0x08FE4 /* OS2BMC packets received by BMC */ -#define E1000_O2BSPC 0x0415C /* OS2BMC packets transmitted by host */ - - - -#endif diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.c deleted file mode 100755 index 778561e7..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.c +++ /dev/null @@ -1,586 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - - -#include "e1000_api.h" - - -STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw); -STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw); -STATIC void e1000_release_vf(struct e1000_hw *hw); -STATIC s32 e1000_acquire_vf(struct e1000_hw *hw); -STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw); -STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw); -STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw); -STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw); -STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, - u16 *duplex); -STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw); -STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw); -STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32); -STATIC void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32); -STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *); - -/** - * e1000_init_phy_params_vf - Inits PHY params - * @hw: pointer to the HW structure - * - * Doesn't do much - there's no PHY available to the VF. - **/ -STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_phy_params_vf"); - hw->phy.type = e1000_phy_vf; - hw->phy.ops.acquire = e1000_acquire_vf; - hw->phy.ops.release = e1000_release_vf; - - return E1000_SUCCESS; -} - -/** - * e1000_init_nvm_params_vf - Inits NVM params - * @hw: pointer to the HW structure - * - * Doesn't do much - there's no NVM available to the VF. - **/ -STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_nvm_params_vf"); - hw->nvm.type = e1000_nvm_none; - hw->nvm.ops.acquire = e1000_acquire_vf; - hw->nvm.ops.release = e1000_release_vf; - - return E1000_SUCCESS; -} - -/** - * e1000_init_mac_params_vf - Inits MAC params - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_init_mac_params_vf"); - - /* Set media type */ - /* - * Virtual functions don't care what they're media type is as they - * have no direct access to the PHY, or the media. That is handled - * by the physical function driver. - */ - hw->phy.media_type = e1000_media_type_unknown; - - /* No ASF features for the VF driver */ - mac->asf_firmware_present = false; - /* ARC subsystem not supported */ - mac->arc_subsystem_valid = false; - /* Disable adaptive IFS mode so the generic funcs don't do anything */ - mac->adaptive_ifs = false; - /* VF's have no MTA Registers - PF feature only */ - mac->mta_reg_count = 128; - /* VF's have no access to RAR entries */ - mac->rar_entry_count = 1; - - /* Function pointers */ - /* link setup */ - mac->ops.setup_link = e1000_setup_link_vf; - /* bus type/speed/width */ - mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf; - /* reset */ - mac->ops.reset_hw = e1000_reset_hw_vf; - /* hw initialization */ - mac->ops.init_hw = e1000_init_hw_vf; - /* check for link */ - mac->ops.check_for_link = e1000_check_for_link_vf; - /* link info */ - mac->ops.get_link_up_info = e1000_get_link_up_info_vf; - /* multicast address update */ - mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf; - /* set mac address */ - mac->ops.rar_set = e1000_rar_set_vf; - /* read mac address */ - mac->ops.read_mac_addr = e1000_read_mac_addr_vf; - - - return E1000_SUCCESS; -} - -/** - * e1000_init_function_pointers_vf - Inits function pointers - * @hw: pointer to the HW structure - **/ -void e1000_init_function_pointers_vf(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_function_pointers_vf"); - - hw->mac.ops.init_params = e1000_init_mac_params_vf; - hw->nvm.ops.init_params = e1000_init_nvm_params_vf; - hw->phy.ops.init_params = e1000_init_phy_params_vf; - hw->mbx.ops.init_params = e1000_init_mbx_params_vf; -} - -/** - * e1000_acquire_vf - Acquire rights to access PHY or NVM. - * @hw: pointer to the HW structure - * - * There is no PHY or NVM so we want all attempts to acquire these to fail. - * In addition, the MAC registers to access PHY/NVM don't exist so we don't - * even want any SW to attempt to use them. - **/ -STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw) -{ - UNREFERENCED_1PARAMETER(hw); - return -E1000_ERR_PHY; -} - -/** - * e1000_release_vf - Release PHY or NVM - * @hw: pointer to the HW structure - * - * There is no PHY or NVM so we want all attempts to acquire these to fail. - * In addition, the MAC registers to access PHY/NVM don't exist so we don't - * even want any SW to attempt to use them. - **/ -STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw) -{ - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_setup_link_vf - Sets up link. - * @hw: pointer to the HW structure - * - * Virtual functions cannot change link. - **/ -STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_setup_link_vf"); - UNREFERENCED_1PARAMETER(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_get_bus_info_pcie_vf - Gets the bus info. - * @hw: pointer to the HW structure - * - * Virtual functions are not really on their own bus. - **/ -STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - DEBUGFUNC("e1000_get_bus_info_pcie_vf"); - - /* Do not set type PCI-E because we don't want disable master to run */ - bus->type = e1000_bus_type_reserved; - bus->speed = e1000_bus_speed_2500; - - return 0; -} - -/** - * e1000_get_link_up_info_vf - Gets link info. - * @hw: pointer to the HW structure - * @speed: pointer to 16 bit value to store link speed. - * @duplex: pointer to 16 bit value to store duplex. - * - * Since we cannot read the PHY and get accurate link info, we must rely upon - * the status register's data which is often stale and inaccurate. - **/ -STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - s32 status; - - DEBUGFUNC("e1000_get_link_up_info_vf"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_reset_hw_vf - Resets the HW - * @hw: pointer to the HW structure - * - * VF's provide a function level reset. This is done using bit 26 of ctrl_reg. - * This is all the reset we can perform on a VF. - **/ -STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - u32 timeout = E1000_VF_INIT_TIMEOUT; - s32 ret_val = -E1000_ERR_MAC_INIT; - u32 ctrl, msgbuf[3]; - u8 *addr = (u8 *)(&msgbuf[1]); - - DEBUGFUNC("e1000_reset_hw_vf"); - - DEBUGOUT("Issuing a function level reset to MAC\n"); - ctrl = E1000_READ_REG(hw, E1000_CTRL); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST); - - /* we cannot reset while the RSTI / RSTD bits are asserted */ - while (!mbx->ops.check_for_rst(hw, 0) && timeout) { - timeout--; - usec_delay(5); - } - - if (timeout) { - /* mailbox timeout can now become active */ - mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT; - - msgbuf[0] = E1000_VF_RESET; - mbx->ops.write_posted(hw, msgbuf, 1, 0); - - msec_delay(10); - - /* set our "perm_addr" based on info provided by PF */ - ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); - if (!ret_val) { - if (msgbuf[0] == (E1000_VF_RESET | - E1000_VT_MSGTYPE_ACK)) - memcpy(hw->mac.perm_addr, addr, 6); - else - ret_val = -E1000_ERR_MAC_INIT; - } - } - - return ret_val; -} - -/** - * e1000_init_hw_vf - Inits the HW - * @hw: pointer to the HW structure - * - * Not much to do here except clear the PF Reset indication if there is one. - **/ -STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_init_hw_vf"); - - /* attempt to set and restore our mac address */ - e1000_rar_set_vf(hw, hw->mac.addr, 0); - - return E1000_SUCCESS; -} - -/** - * e1000_rar_set_vf - set device MAC address - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index receive address array register - **/ -STATIC void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, - u32 E1000_UNUSEDARG index) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - u32 msgbuf[3]; - u8 *msg_addr = (u8 *)(&msgbuf[1]); - s32 ret_val; - - UNREFERENCED_1PARAMETER(index); - memset(msgbuf, 0, 12); - msgbuf[0] = E1000_VF_SET_MAC_ADDR; - memcpy(msg_addr, addr, 6); - ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0); - - if (!ret_val) - ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0); - - msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS; - - /* if nacked the address was rejected, use "perm_addr" */ - if (!ret_val && - (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK))) - e1000_read_mac_addr_vf(hw); -} - -/** - * e1000_hash_mc_addr_vf - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. - **/ -STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* - * The bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw, - u32 *msg, u16 size) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - u32 retmsg[E1000_VFMAILBOX_SIZE]; - s32 retval = mbx->ops.write_posted(hw, msg, size, 0); - - if (!retval) - mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0); -} - -/** - * e1000_update_mc_addr_list_vf - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates the Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 msgbuf[E1000_VFMAILBOX_SIZE]; - u16 *hash_list = (u16 *)&msgbuf[1]; - u32 hash_value; - u32 i; - - DEBUGFUNC("e1000_update_mc_addr_list_vf"); - - /* Each entry in the list uses 1 16 bit word. We have 30 - * 16 bit words available in our HW msg buffer (minus 1 for the - * msg type). That's 30 hash values if we pack 'em right. If - * there are more than 30 MC addresses to add then punt the - * extras for now and then add code to handle more than 30 later. - * It would be unusual for a server to request that many multi-cast - * addresses except for in large enterprise network environments. - */ - - DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count); - - if (mc_addr_count > 30) { - msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW; - mc_addr_count = 30; - } - - msgbuf[0] = E1000_VF_SET_MULTICAST; - msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT; - - for (i = 0; i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list); - DEBUGOUT1("Hash value = 0x%03X\n", hash_value); - hash_list[i] = hash_value & 0x0FFF; - mc_addr_list += ETH_ADDR_LEN; - } - - e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE); -} - -/** - * e1000_vfta_set_vf - Set/Unset vlan filter table address - * @hw: pointer to the HW structure - * @vid: determines the vfta register and bit to set/unset - * @set: if true then set bit, else clear bit - **/ -void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set) -{ - u32 msgbuf[2]; - - msgbuf[0] = E1000_VF_SET_VLAN; - msgbuf[1] = vid; - /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ - if (set) - msgbuf[0] |= E1000_VF_SET_VLAN_ADD; - - e1000_write_msg_read_ack(hw, msgbuf, 2); -} - -/** e1000_rlpml_set_vf - Set the maximum receive packet length - * @hw: pointer to the HW structure - * @max_size: value to assign to max frame size - **/ -void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size) -{ - u32 msgbuf[2]; - - msgbuf[0] = E1000_VF_SET_LPE; - msgbuf[1] = max_size; - - e1000_write_msg_read_ack(hw, msgbuf, 2); -} - -/** - * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc - * @hw: pointer to the HW structure - * @uni: boolean indicating unicast promisc status - * @multi: boolean indicating multicast promisc status - **/ -s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - u32 msgbuf = E1000_VF_SET_PROMISC; - s32 ret_val; - - switch (type) { - case e1000_promisc_multicast: - msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; - break; - case e1000_promisc_enabled: - msgbuf |= E1000_VF_SET_PROMISC_MULTICAST; - case e1000_promisc_unicast: - msgbuf |= E1000_VF_SET_PROMISC_UNICAST; - case e1000_promisc_disabled: - break; - default: - return -E1000_ERR_MAC_INIT; - } - - ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0); - - if (!ret_val) - ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0); - - if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK)) - ret_val = -E1000_ERR_MAC_INIT; - - return ret_val; -} - -/** - * e1000_read_mac_addr_vf - Read device MAC address - * @hw: pointer to the HW structure - **/ -STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw) -{ - int i; - - for (i = 0; i < ETH_ADDR_LEN; i++) - hw->mac.addr[i] = hw->mac.perm_addr[i]; - - return E1000_SUCCESS; -} - -/** - * e1000_check_for_link_vf - Check for link for a virtual interface - * @hw: pointer to the HW structure - * - * Checks to see if the underlying PF is still talking to the VF and - * if it is then it reports the link state to the hardware, otherwise - * it reports link down and returns an error. - **/ -STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u32 in_msg = 0; - - DEBUGFUNC("e1000_check_for_link_vf"); - - /* - * We only want to run this if there has been a rst asserted. - * in this case that could mean a link change, device reset, - * or a virtual function reset - */ - - /* If we were hit with a reset or timeout drop the link */ - if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout) - mac->get_link_status = true; - - if (!mac->get_link_status) - goto out; - - /* if link status is down no point in checking to see if pf is up */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) - goto out; - - /* if the read failed it could just be a mailbox collision, best wait - * until we are called again and don't report an error */ - if (mbx->ops.read(hw, &in_msg, 1, 0)) - goto out; - - /* if incoming message isn't clear to send we are waiting on response */ - if (!(in_msg & E1000_VT_MSGTYPE_CTS)) { - /* message is not CTS and is NACK we have lost CTS status */ - if (in_msg & E1000_VT_MSGTYPE_NACK) - ret_val = -E1000_ERR_MAC_INIT; - goto out; - } - - /* at this point we know the PF is talking to us, check and see if - * we are still accepting timeout or if we had a timeout failure. - * if we failed then we will need to reinit */ - if (!mbx->timeout) { - ret_val = -E1000_ERR_MAC_INIT; - goto out; - } - - /* if we passed all the tests above then the link is up and we no - * longer need to check for link */ - mac->get_link_status = false; - -out: - return ret_val; -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.h b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.h deleted file mode 100755 index 6d5bd996..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_vf.h +++ /dev/null @@ -1,295 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#ifndef _E1000_VF_H_ -#define _E1000_VF_H_ - -#include "e1000_osdep.h" -#include "e1000_regs.h" -#include "e1000_defines.h" - -struct e1000_hw; - -#define E1000_DEV_ID_82576_VF 0x10CA -#define E1000_DEV_ID_I350_VF 0x1520 - -#define E1000_VF_INIT_TIMEOUT 200 /* Num of retries to clear RSTI */ - -/* Additional Descriptor Control definitions */ -#define E1000_TXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Tx Queue */ -#define E1000_RXDCTL_QUEUE_ENABLE 0x02000000 /* Ena specific Rx Queue */ - -/* SRRCTL bit definitions */ -#define E1000_SRRCTL(_n) ((_n) < 4 ? (0x0280C + ((_n) * 0x100)) : \ - (0x0C00C + ((_n) * 0x40))) -#define E1000_SRRCTL_BSIZEPKT_SHIFT 10 /* Shift _right_ */ -#define E1000_SRRCTL_BSIZEHDRSIZE_MASK 0x00000F00 -#define E1000_SRRCTL_BSIZEHDRSIZE_SHIFT 2 /* Shift _left_ */ -#define E1000_SRRCTL_DESCTYPE_LEGACY 0x00000000 -#define E1000_SRRCTL_DESCTYPE_ADV_ONEBUF 0x02000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT 0x04000000 -#define E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS 0x0A000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION 0x06000000 -#define E1000_SRRCTL_DESCTYPE_HDR_REPLICATION_LARGE_PKT 0x08000000 -#define E1000_SRRCTL_DESCTYPE_MASK 0x0E000000 -#define E1000_SRRCTL_DROP_EN 0x80000000 - -#define E1000_SRRCTL_BSIZEPKT_MASK 0x0000007F -#define E1000_SRRCTL_BSIZEHDR_MASK 0x00003F00 - -/* Interrupt Defines */ -#define E1000_EICR 0x01580 /* Ext. Interrupt Cause Read - R/clr */ -#define E1000_EITR(_n) (0x01680 + ((_n) << 2)) -#define E1000_EICS 0x01520 /* Ext. Intr Cause Set -W0 */ -#define E1000_EIMS 0x01524 /* Ext. Intr Mask Set/Read -RW */ -#define E1000_EIMC 0x01528 /* Ext. Intr Mask Clear -WO */ -#define E1000_EIAC 0x0152C /* Ext. Intr Auto Clear -RW */ -#define E1000_EIAM 0x01530 /* Ext. Intr Ack Auto Clear Mask -RW */ -#define E1000_IVAR0 0x01700 /* Intr Vector Alloc (array) -RW */ -#define E1000_IVAR_MISC 0x01740 /* IVAR for "other" causes -RW */ -#define E1000_IVAR_VALID 0x80 - -/* Receive Descriptor - Advanced */ -union e1000_adv_rx_desc { - struct { - u64 pkt_addr; /* Packet buffer address */ - u64 hdr_addr; /* Header buffer address */ - } read; - struct { - struct { - union { - u32 data; - struct { - /* RSS type, Packet type */ - u16 pkt_info; - /* Split Header, header buffer len */ - u16 hdr_info; - } hs_rss; - } lo_dword; - union { - u32 rss; /* RSS Hash */ - struct { - u16 ip_id; /* IP id */ - u16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - u32 status_error; /* ext status/error */ - u16 length; /* Packet length */ - u16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ -}; - -#define E1000_RXDADV_HDRBUFLEN_MASK 0x7FE0 -#define E1000_RXDADV_HDRBUFLEN_SHIFT 5 - -/* Transmit Descriptor - Advanced */ -union e1000_adv_tx_desc { - struct { - u64 buffer_addr; /* Address of descriptor's data buf */ - u32 cmd_type_len; - u32 olinfo_status; - } read; - struct { - u64 rsvd; /* Reserved */ - u32 nxtseq_seed; - u32 status; - } wb; -}; - -/* Adv Transmit Descriptor Config Masks */ -#define E1000_ADVTXD_DTYP_CTXT 0x00200000 /* Advanced Context Descriptor */ -#define E1000_ADVTXD_DTYP_DATA 0x00300000 /* Advanced Data Descriptor */ -#define E1000_ADVTXD_DCMD_EOP 0x01000000 /* End of Packet */ -#define E1000_ADVTXD_DCMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_ADVTXD_DCMD_RS 0x08000000 /* Report Status */ -#define E1000_ADVTXD_DCMD_DEXT 0x20000000 /* Descriptor extension (1=Adv) */ -#define E1000_ADVTXD_DCMD_VLE 0x40000000 /* VLAN pkt enable */ -#define E1000_ADVTXD_DCMD_TSE 0x80000000 /* TCP Seg enable */ -#define E1000_ADVTXD_PAYLEN_SHIFT 14 /* Adv desc PAYLEN shift */ - -/* Context descriptors */ -struct e1000_adv_tx_context_desc { - u32 vlan_macip_lens; - u32 seqnum_seed; - u32 type_tucmd_mlhl; - u32 mss_l4len_idx; -}; - -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Adv ctxt desc mac len shift */ -#define E1000_ADVTXD_TUCMD_IPV4 0x00000400 /* IP Packet Type: 1=IPv4 */ -#define E1000_ADVTXD_TUCMD_L4T_TCP 0x00000800 /* L4 Packet TYPE of TCP */ -#define E1000_ADVTXD_L4LEN_SHIFT 8 /* Adv ctxt L4LEN shift */ -#define E1000_ADVTXD_MSS_SHIFT 16 /* Adv ctxt MSS shift */ - -enum e1000_mac_type { - e1000_undefined = 0, - e1000_vfadapt, - e1000_vfadapt_i350, - e1000_num_macs /* List is 1-based, so subtract 1 for true count. */ -}; - -struct e1000_vf_stats { - u64 base_gprc; - u64 base_gptc; - u64 base_gorc; - u64 base_gotc; - u64 base_mprc; - u64 base_gotlbc; - u64 base_gptlbc; - u64 base_gorlbc; - u64 base_gprlbc; - - u32 last_gprc; - u32 last_gptc; - u32 last_gorc; - u32 last_gotc; - u32 last_mprc; - u32 last_gotlbc; - u32 last_gptlbc; - u32 last_gorlbc; - u32 last_gprlbc; - - u64 gprc; - u64 gptc; - u64 gorc; - u64 gotc; - u64 mprc; - u64 gotlbc; - u64 gptlbc; - u64 gorlbc; - u64 gprlbc; -}; - -#include "e1000_mbx.h" - -struct e1000_mac_operations { - /* Function pointers for the MAC. */ - s32 (*init_params)(struct e1000_hw *); - s32 (*check_for_link)(struct e1000_hw *); - void (*clear_vfta)(struct e1000_hw *); - s32 (*get_bus_info)(struct e1000_hw *); - s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *); - void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32); - s32 (*reset_hw)(struct e1000_hw *); - s32 (*init_hw)(struct e1000_hw *); - s32 (*setup_link)(struct e1000_hw *); - void (*write_vfta)(struct e1000_hw *, u32, u32); - void (*rar_set)(struct e1000_hw *, u8*, u32); - s32 (*read_mac_addr)(struct e1000_hw *); -}; - -struct e1000_mac_info { - struct e1000_mac_operations ops; - u8 addr[6]; - u8 perm_addr[6]; - - enum e1000_mac_type type; - - u16 mta_reg_count; - u16 rar_entry_count; - - bool get_link_status; -}; - -struct e1000_mbx_operations { - s32 (*init_params)(struct e1000_hw *hw); - s32 (*read)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write)(struct e1000_hw *, u32 *, u16, u16); - s32 (*read_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*write_posted)(struct e1000_hw *, u32 *, u16, u16); - s32 (*check_for_msg)(struct e1000_hw *, u16); - s32 (*check_for_ack)(struct e1000_hw *, u16); - s32 (*check_for_rst)(struct e1000_hw *, u16); -}; - -struct e1000_mbx_stats { - u32 msgs_tx; - u32 msgs_rx; - - u32 acks; - u32 reqs; - u32 rsts; -}; - -struct e1000_mbx_info { - struct e1000_mbx_operations ops; - struct e1000_mbx_stats stats; - u32 timeout; - u32 usec_delay; - u16 size; -}; - -struct e1000_dev_spec_vf { - u32 vf_number; - u32 v2p_mailbox; -}; - -struct e1000_hw { - void *back; - - u8 *hw_addr; - u8 *flash_address; - unsigned long io_base; - - struct e1000_mac_info mac; - struct e1000_mbx_info mbx; - - union { - struct e1000_dev_spec_vf vf; - } dev_spec; - - u16 device_id; - u16 subsystem_vendor_id; - u16 subsystem_device_id; - u16 vendor_id; - - u8 revision_id; -}; - -enum e1000_promisc_type { - e1000_promisc_disabled = 0, /* all promisc modes disabled */ - e1000_promisc_unicast = 1, /* unicast promiscuous enabled */ - e1000_promisc_multicast = 2, /* multicast promiscuous enabled */ - e1000_promisc_enabled = 3, /* both uni and multicast promisc */ - e1000_num_promisc_types -}; - -/* These functions must be implemented by drivers */ -s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value); -void e1000_vfta_set_vf(struct e1000_hw *, u16, bool); -void e1000_rlpml_set_vf(struct e1000_hw *, u16); -s32 e1000_promisc_set_vf(struct e1000_hw *, enum e1000_promisc_type); -#endif /* _E1000_VF_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000_ethdev.h b/src/dpdk_lib18/librte_pmd_e1000/e1000_ethdev.h deleted file mode 100755 index 71eb5fb7..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000_ethdev.h +++ /dev/null @@ -1,248 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_ETHDEV_H_ -#define _E1000_ETHDEV_H_ - -/* need update link, bit flag */ -#define E1000_FLAG_NEED_LINK_UPDATE (uint32_t)(1 << 0) -#define E1000_FLAG_MAILBOX (uint32_t)(1 << 1) - -/* - * Defines that were not part of e1000_hw.h as they are not used by the FreeBSD - * driver. - */ -#define E1000_ADVTXD_POPTS_TXSM 0x00000200 /* L4 Checksum offload request */ -#define E1000_ADVTXD_POPTS_IXSM 0x00000100 /* IP Checksum offload request */ -#define E1000_ADVTXD_TUCMD_L4T_RSV 0x00001800 /* L4 Packet TYPE of Reserved */ -#define E1000_RXD_STAT_TMST 0x10000 /* Timestamped Packet indication */ -#define E1000_RXD_ERR_CKSUM_BIT 29 -#define E1000_RXD_ERR_CKSUM_MSK 3 -#define E1000_ADVTXD_MACLEN_SHIFT 9 /* Bit shift for l2_len */ -#define E1000_CTRL_EXT_EXTEND_VLAN (1<<26) /* EXTENDED VLAN */ -#define IGB_VFTA_SIZE 128 - -#define IGB_MAX_RX_QUEUE_NUM 8 -#define IGB_MAX_RX_QUEUE_NUM_82576 16 - -#define E1000_SYN_FILTER_ENABLE 0x00000001 /* syn filter enable field */ -#define E1000_SYN_FILTER_QUEUE 0x0000000E /* syn filter queue field */ -#define E1000_SYN_FILTER_QUEUE_SHIFT 1 /* syn filter queue field */ -#define E1000_RFCTL_SYNQFP 0x00080000 /* SYNQFP in RFCTL register */ - -#define E1000_ETQF_ETHERTYPE 0x0000FFFF -#define E1000_ETQF_QUEUE 0x00070000 -#define E1000_ETQF_QUEUE_SHIFT 16 -#define E1000_MAX_ETQF_FILTERS 8 - -#define E1000_IMIR_DSTPORT 0x0000FFFF -#define E1000_IMIR_PRIORITY 0xE0000000 -#define E1000_IMIR_EXT_SIZE_BP 0x00001000 -#define E1000_IMIR_EXT_CTRL_UGR 0x00002000 -#define E1000_IMIR_EXT_CTRL_ACK 0x00004000 -#define E1000_IMIR_EXT_CTRL_PSH 0x00008000 -#define E1000_IMIR_EXT_CTRL_RST 0x00010000 -#define E1000_IMIR_EXT_CTRL_SYN 0x00020000 -#define E1000_IMIR_EXT_CTRL_FIN 0x00040000 -#define E1000_IMIR_EXT_CTRL_BP 0x00080000 -#define E1000_MAX_TTQF_FILTERS 8 -#define E1000_2TUPLE_MAX_PRI 7 - -#define E1000_MAX_FLEXIBLE_FILTERS 8 -#define E1000_MAX_FHFT 4 -#define E1000_MAX_FHFT_EXT 4 -#define E1000_MAX_FLEX_FILTER_PRI 7 -#define E1000_MAX_FLEX_FILTER_LEN 128 -#define E1000_FHFT_QUEUEING_LEN 0x0000007F -#define E1000_FHFT_QUEUEING_QUEUE 0x00000700 -#define E1000_FHFT_QUEUEING_PRIO 0x00070000 -#define E1000_FHFT_QUEUEING_OFFSET 0xFC -#define E1000_FHFT_QUEUEING_QUEUE_SHIFT 8 -#define E1000_FHFT_QUEUEING_PRIO_SHIFT 16 -#define E1000_WUFC_FLEX_HQ 0x00004000 - -#define E1000_SPQF_SRCPORT 0x0000FFFF - -#define E1000_MAX_FTQF_FILTERS 8 -#define E1000_FTQF_PROTOCOL_MASK 0x000000FF -#define E1000_FTQF_5TUPLE_MASK_SHIFT 28 -#define E1000_FTQF_PROTOCOL_COMP_MASK 0x10000000 -#define E1000_FTQF_SOURCE_ADDR_MASK 0x20000000 -#define E1000_FTQF_DEST_ADDR_MASK 0x40000000 -#define E1000_FTQF_SOURCE_PORT_MASK 0x80000000 -#define E1000_FTQF_VF_MASK_EN 0x00008000 -#define E1000_FTQF_QUEUE_MASK 0x03ff0000 -#define E1000_FTQF_QUEUE_SHIFT 16 -#define E1000_FTQF_QUEUE_ENABLE 0x00000100 - -/* structure for interrupt relative data */ -struct e1000_interrupt { - uint32_t flags; - uint32_t mask; -}; - -/* local vfta copy */ -struct e1000_vfta { - uint32_t vfta[IGB_VFTA_SIZE]; -}; - -/* - * VF data which used by PF host only - */ -#define E1000_MAX_VF_MC_ENTRIES 30 -struct e1000_vf_info { - uint8_t vf_mac_addresses[ETHER_ADDR_LEN]; - uint16_t vf_mc_hashes[E1000_MAX_VF_MC_ENTRIES]; - uint16_t num_vf_mc_hashes; - uint16_t default_vf_vlan_id; - uint16_t vlans_enabled; - uint16_t pf_qos; - uint16_t vlan_count; - uint16_t tx_rate; -}; - -/* - * Structure to store private data for each driver instance (for each port). - */ -struct e1000_adapter { - struct e1000_hw hw; - struct e1000_hw_stats stats; - struct e1000_interrupt intr; - struct e1000_vfta shadow_vfta; - struct e1000_vf_info *vfdata; -}; - -#define E1000_DEV_PRIVATE_TO_HW(adapter) \ - (&((struct e1000_adapter *)adapter)->hw) - -#define E1000_DEV_PRIVATE_TO_STATS(adapter) \ - (&((struct e1000_adapter *)adapter)->stats) - -#define E1000_DEV_PRIVATE_TO_INTR(adapter) \ - (&((struct e1000_adapter *)adapter)->intr) - -#define E1000_DEV_PRIVATE_TO_VFTA(adapter) \ - (&((struct e1000_adapter *)adapter)->shadow_vfta) - -#define E1000_DEV_PRIVATE_TO_P_VFDATA(adapter) \ - (&((struct e1000_adapter *)adapter)->vfdata) - -/* - * RX/TX IGB function prototypes - */ -void eth_igb_tx_queue_release(void *txq); -void eth_igb_rx_queue_release(void *rxq); -void igb_dev_clear_queues(struct rte_eth_dev *dev); - -int eth_igb_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, - uint16_t nb_rx_desc, unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mb_pool); - -uint32_t eth_igb_rx_queue_count(struct rte_eth_dev *dev, - uint16_t rx_queue_id); - -int eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset); - -int eth_igb_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, - uint16_t nb_tx_desc, unsigned int socket_id, - const struct rte_eth_txconf *tx_conf); - -int eth_igb_rx_init(struct rte_eth_dev *dev); - -void eth_igb_tx_init(struct rte_eth_dev *dev); - -uint16_t eth_igb_xmit_pkts(void *txq, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts); - -uint16_t eth_igb_recv_pkts(void *rxq, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts); - -uint16_t eth_igb_recv_scattered_pkts(void *rxq, - struct rte_mbuf **rx_pkts, uint16_t nb_pkts); - -int eth_igb_rss_hash_update(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf); - -int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf); - -int eth_igbvf_rx_init(struct rte_eth_dev *dev); - -void eth_igbvf_tx_init(struct rte_eth_dev *dev); - -/* - * misc function prototypes - */ -void igb_pf_host_init(struct rte_eth_dev *eth_dev); - -void igb_pf_mbx_process(struct rte_eth_dev *eth_dev); - -int igb_pf_host_configure(struct rte_eth_dev *eth_dev); - -/* - * RX/TX EM function prototypes - */ -void eth_em_tx_queue_release(void *txq); -void eth_em_rx_queue_release(void *rxq); - -void em_dev_clear_queues(struct rte_eth_dev *dev); - -int eth_em_rx_queue_setup(struct rte_eth_dev *dev, uint16_t rx_queue_id, - uint16_t nb_rx_desc, unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mb_pool); - -uint32_t eth_em_rx_queue_count(struct rte_eth_dev *dev, - uint16_t rx_queue_id); - -int eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset); - -int eth_em_tx_queue_setup(struct rte_eth_dev *dev, uint16_t tx_queue_id, - uint16_t nb_tx_desc, unsigned int socket_id, - const struct rte_eth_txconf *tx_conf); - -int eth_em_rx_init(struct rte_eth_dev *dev); - -void eth_em_tx_init(struct rte_eth_dev *dev); - -uint16_t eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts); - -uint16_t eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts); - -uint16_t eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts); - -#endif /* _E1000_ETHDEV_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000_logs.h b/src/dpdk_lib18/librte_pmd_e1000/e1000_logs.h deleted file mode 100755 index 67f2c84c..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000_logs.h +++ /dev/null @@ -1,77 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _E1000_LOGS_H_ -#define _E1000_LOGS_H_ - -#define PMD_INIT_LOG(level, fmt, args...) RTE_LOG(level, PMD," " fmt "\n", ##args) - - -#ifdef RTE_LIBRTE_E1000_DEBUG_INIT -#define PMD_INIT_FUNC_TRACE() PMD_INIT_LOG(DEBUG, " >>") -#else -#define PMD_INIT_FUNC_TRACE() do { } while (0) -#endif - -#ifdef RTE_LIBRTE_E1000_DEBUG_RX -#define PMD_RX_LOG(level, fmt, args...) \ - RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) -#else -#define PMD_RX_LOG(level, fmt, args...) do { } while(0) -#endif - -#ifdef RTE_LIBRTE_E1000_DEBUG_TX -#define PMD_TX_LOG(level, fmt, args...) \ - RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) -#else -#define PMD_TX_LOG(level, fmt, args...) do { } while(0) -#endif - -#ifdef RTE_LIBRTE_E1000_DEBUG_TX_FREE -#define PMD_TX_FREE_LOG(level, fmt, args...) \ - RTE_LOG(level, PMD, "%s(): " fmt "\n", __func__, ## args) -#else -#define PMD_TX_FREE_LOG(level, fmt, args...) do { } while(0) -#endif - -#ifdef RTE_LIBRTE_E1000_DEBUG_DRIVER -#define PMD_DRV_LOG_RAW(level, fmt, args...) \ - RTE_LOG(level, PMD, "%s(): " fmt, __func__, ## args) -#else -#define PMD_DRV_LOG_RAW(level, fmt, args...) do { } while (0) -#endif - -#define PMD_DRV_LOG(level, fmt, args...) \ - PMD_DRV_LOG_RAW(level, fmt "\n", ## args) - -#endif /* _E1000_LOGS_H_ */ diff --git a/src/dpdk_lib18/librte_pmd_e1000/em_ethdev.c b/src/dpdk_lib18/librte_pmd_e1000/em_ethdev.c deleted file mode 100755 index 3f2897ee..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/em_ethdev.c +++ /dev/null @@ -1,1532 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/queue.h> -#include <stdio.h> -#include <errno.h> -#include <stdint.h> -#include <stdarg.h> - -#include <rte_common.h> -#include <rte_interrupts.h> -#include <rte_byteorder.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_pci.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_memory.h> -#include <rte_memzone.h> -#include <rte_tailq.h> -#include <rte_eal.h> -#include <rte_atomic.h> -#include <rte_malloc.h> -#include <rte_dev.h> - -#include "e1000_logs.h" -#include "e1000/e1000_api.h" -#include "e1000_ethdev.h" - -#define EM_EIAC 0x000DC - -#define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y)) - - -static int eth_em_configure(struct rte_eth_dev *dev); -static int eth_em_start(struct rte_eth_dev *dev); -static void eth_em_stop(struct rte_eth_dev *dev); -static void eth_em_close(struct rte_eth_dev *dev); -static void eth_em_promiscuous_enable(struct rte_eth_dev *dev); -static void eth_em_promiscuous_disable(struct rte_eth_dev *dev); -static void eth_em_allmulticast_enable(struct rte_eth_dev *dev); -static void eth_em_allmulticast_disable(struct rte_eth_dev *dev); -static int eth_em_link_update(struct rte_eth_dev *dev, - int wait_to_complete); -static void eth_em_stats_get(struct rte_eth_dev *dev, - struct rte_eth_stats *rte_stats); -static void eth_em_stats_reset(struct rte_eth_dev *dev); -static void eth_em_infos_get(struct rte_eth_dev *dev, - struct rte_eth_dev_info *dev_info); -static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev, - struct rte_eth_fc_conf *fc_conf); -static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev, - struct rte_eth_fc_conf *fc_conf); -static int eth_em_interrupt_setup(struct rte_eth_dev *dev); -static int eth_em_interrupt_get_status(struct rte_eth_dev *dev); -static int eth_em_interrupt_action(struct rte_eth_dev *dev); -static void eth_em_interrupt_handler(struct rte_intr_handle *handle, - void *param); - -static int em_hw_init(struct e1000_hw *hw); -static int em_hardware_init(struct e1000_hw *hw); -static void em_hw_control_acquire(struct e1000_hw *hw); -static void em_hw_control_release(struct e1000_hw *hw); -static void em_init_manageability(struct e1000_hw *hw); -static void em_release_manageability(struct e1000_hw *hw); - -static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); - -static int eth_em_vlan_filter_set(struct rte_eth_dev *dev, - uint16_t vlan_id, int on); -static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask); -static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev); -static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev); -static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev); -static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev); - -/* -static void eth_em_vlan_filter_set(struct rte_eth_dev *dev, - uint16_t vlan_id, int on); -*/ -static int eth_em_led_on(struct rte_eth_dev *dev); -static int eth_em_led_off(struct rte_eth_dev *dev); - -static void em_intr_disable(struct e1000_hw *hw); -static int em_get_rx_buffer_size(struct e1000_hw *hw); -static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, - uint32_t index, uint32_t pool); -static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index); - -#define EM_FC_PAUSE_TIME 0x0680 -#define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */ -#define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ - -static enum e1000_fc_mode em_fc_setting = e1000_fc_full; - -/* - * The set of PCI devices this driver supports - */ -static struct rte_pci_id pci_id_em_map[] = { - -#define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)}, -#include "rte_pci_dev_ids.h" - -{.device_id = 0}, -}; - -static struct eth_dev_ops eth_em_ops = { - .dev_configure = eth_em_configure, - .dev_start = eth_em_start, - .dev_stop = eth_em_stop, - .dev_close = eth_em_close, - .promiscuous_enable = eth_em_promiscuous_enable, - .promiscuous_disable = eth_em_promiscuous_disable, - .allmulticast_enable = eth_em_allmulticast_enable, - .allmulticast_disable = eth_em_allmulticast_disable, - .link_update = eth_em_link_update, - .stats_get = eth_em_stats_get, - .stats_reset = eth_em_stats_reset, - .dev_infos_get = eth_em_infos_get, - .mtu_set = eth_em_mtu_set, - .vlan_filter_set = eth_em_vlan_filter_set, - .vlan_offload_set = eth_em_vlan_offload_set, - .rx_queue_setup = eth_em_rx_queue_setup, - .rx_queue_release = eth_em_rx_queue_release, - .rx_queue_count = eth_em_rx_queue_count, - .rx_descriptor_done = eth_em_rx_descriptor_done, - .tx_queue_setup = eth_em_tx_queue_setup, - .tx_queue_release = eth_em_tx_queue_release, - .dev_led_on = eth_em_led_on, - .dev_led_off = eth_em_led_off, - .flow_ctrl_get = eth_em_flow_ctrl_get, - .flow_ctrl_set = eth_em_flow_ctrl_set, - .mac_addr_add = eth_em_rar_set, - .mac_addr_remove = eth_em_rar_clear, -}; - -/** - * Atomically reads the link status information from global - * structure rte_eth_dev. - * - * @param dev - * - Pointer to the structure rte_eth_dev to read from. - * - Pointer to the buffer to be saved with the link status. - * - * @return - * - On success, zero. - * - On failure, negative value. - */ -static inline int -rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev, - struct rte_eth_link *link) -{ - struct rte_eth_link *dst = link; - struct rte_eth_link *src = &(dev->data->dev_link); - - if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, - *(uint64_t *)src) == 0) - return -1; - - return 0; -} - -/** - * Atomically writes the link status information into global - * structure rte_eth_dev. - * - * @param dev - * - Pointer to the structure rte_eth_dev to read from. - * - Pointer to the buffer to be saved with the link status. - * - * @return - * - On success, zero. - * - On failure, negative value. - */ -static inline int -rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev, - struct rte_eth_link *link) -{ - struct rte_eth_link *dst = &(dev->data->dev_link); - struct rte_eth_link *src = link; - - if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, - *(uint64_t *)src) == 0) - return -1; - - return 0; -} - -static int -eth_em_dev_init(__attribute__((unused)) struct eth_driver *eth_drv, - struct rte_eth_dev *eth_dev) -{ - struct rte_pci_device *pci_dev; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); - - pci_dev = eth_dev->pci_dev; - eth_dev->dev_ops = ð_em_ops; - eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts; - eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts; - - /* for secondary processes, we don't initialise any further as primary - * has already done this work. Only check we don't need a different - * RX function */ - if (rte_eal_process_type() != RTE_PROC_PRIMARY){ - if (eth_dev->data->scattered_rx) - eth_dev->rx_pkt_burst = - (eth_rx_burst_t)ð_em_recv_scattered_pkts; - return 0; - } - - hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; - hw->device_id = pci_dev->id.device_id; - - /* For ICH8 support we'll need to map the flash memory BAR */ - - if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS || - em_hw_init(hw) != 0) { - PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: " - "failed to init HW", - eth_dev->data->port_id, pci_dev->id.vendor_id, - pci_dev->id.device_id); - return -(ENODEV); - } - - /* Allocate memory for storing MAC addresses */ - eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN * - hw->mac.rar_entry_count, 0); - if (eth_dev->data->mac_addrs == NULL) { - PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " - "store MAC addresses", - ETHER_ADDR_LEN * hw->mac.rar_entry_count); - return -(ENOMEM); - } - - /* Copy the permanent MAC address */ - ether_addr_copy((struct ether_addr *) hw->mac.addr, - eth_dev->data->mac_addrs); - - /* initialize the vfta */ - memset(shadow_vfta, 0, sizeof(*shadow_vfta)); - - PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x", - eth_dev->data->port_id, pci_dev->id.vendor_id, - pci_dev->id.device_id); - - rte_intr_callback_register(&(pci_dev->intr_handle), - eth_em_interrupt_handler, (void *)eth_dev); - - return (0); -} - -static struct eth_driver rte_em_pmd = { - { - .name = "rte_em_pmd", - .id_table = pci_id_em_map, - .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, - }, - .eth_dev_init = eth_em_dev_init, - .dev_private_size = sizeof(struct e1000_adapter), -}; - -static int -rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused) -{ - rte_eth_driver_register(&rte_em_pmd); - return 0; -} - -static int -em_hw_init(struct e1000_hw *hw) -{ - int diag; - - diag = hw->mac.ops.init_params(hw); - if (diag != 0) { - PMD_INIT_LOG(ERR, "MAC Initialization Error"); - return diag; - } - diag = hw->nvm.ops.init_params(hw); - if (diag != 0) { - PMD_INIT_LOG(ERR, "NVM Initialization Error"); - return diag; - } - diag = hw->phy.ops.init_params(hw); - if (diag != 0) { - PMD_INIT_LOG(ERR, "PHY Initialization Error"); - return diag; - } - (void) e1000_get_bus_info(hw); - - hw->mac.autoneg = 1; - hw->phy.autoneg_wait_to_complete = 0; - hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; - - e1000_init_script_state_82541(hw, TRUE); - e1000_set_tbi_compatibility_82543(hw, TRUE); - - /* Copper options */ - if (hw->phy.media_type == e1000_media_type_copper) { - hw->phy.mdix = 0; /* AUTO_ALL_MODES */ - hw->phy.disable_polarity_correction = 0; - hw->phy.ms_type = e1000_ms_hw_default; - } - - /* - * Start from a known state, this is important in reading the nvm - * and mac from that. - */ - e1000_reset_hw(hw); - - /* Make sure we have a good EEPROM before we read from it */ - if (e1000_validate_nvm_checksum(hw) < 0) { - /* - * Some PCI-E parts fail the first check due to - * the link being in sleep state, call it again, - * if it fails a second time its a real issue. - */ - diag = e1000_validate_nvm_checksum(hw); - if (diag < 0) { - PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); - goto error; - } - } - - /* Read the permanent MAC address out of the EEPROM */ - diag = e1000_read_mac_addr(hw); - if (diag != 0) { - PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); - goto error; - } - - /* Now initialize the hardware */ - diag = em_hardware_init(hw); - if (diag != 0) { - PMD_INIT_LOG(ERR, "Hardware initialization failed"); - goto error; - } - - hw->mac.get_link_status = 1; - - /* Indicate SOL/IDER usage */ - diag = e1000_check_reset_block(hw); - if (diag < 0) { - PMD_INIT_LOG(ERR, "PHY reset is blocked due to " - "SOL/IDER session"); - } - return (0); - -error: - em_hw_control_release(hw); - return (diag); -} - -static int -eth_em_configure(struct rte_eth_dev *dev) -{ - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - PMD_INIT_FUNC_TRACE(); - intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; - PMD_INIT_FUNC_TRACE(); - - return (0); -} - -static void -em_set_pba(struct e1000_hw *hw) -{ - uint32_t pba; - - /* - * Packet Buffer Allocation (PBA) - * Writing PBA sets the receive portion of the buffer - * the remainder is used for the transmit buffer. - * Devices before the 82547 had a Packet Buffer of 64K. - * After the 82547 the buffer was reduced to 40K. - */ - switch (hw->mac.type) { - case e1000_82547: - case e1000_82547_rev_2: - /* 82547: Total Packet Buffer is 40K */ - pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */ - break; - case e1000_82571: - case e1000_82572: - case e1000_80003es2lan: - pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ - break; - case e1000_82573: /* 82573: Total Packet Buffer is 32K */ - pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */ - break; - case e1000_82574: - case e1000_82583: - pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */ - break; - case e1000_ich8lan: - pba = E1000_PBA_8K; - break; - case e1000_ich9lan: - case e1000_ich10lan: - pba = E1000_PBA_10K; - break; - case e1000_pchlan: - case e1000_pch2lan: - pba = E1000_PBA_26K; - break; - default: - pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */ - } - - E1000_WRITE_REG(hw, E1000_PBA, pba); -} - -static int -eth_em_start(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - int ret, mask; - - PMD_INIT_FUNC_TRACE(); - - eth_em_stop(dev); - - e1000_power_up_phy(hw); - - /* Set default PBA value */ - em_set_pba(hw); - - /* Put the address into the Receive Address Array */ - e1000_rar_set(hw, hw->mac.addr, 0); - - /* - * With the 82571 adapter, RAR[0] may be overwritten - * when the other port is reset, we make a duplicate - * in RAR[14] for that eventuality, this assures - * the interface continues to function. - */ - if (hw->mac.type == e1000_82571) { - e1000_set_laa_state_82571(hw, TRUE); - e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1); - } - - /* Initialize the hardware */ - if (em_hardware_init(hw)) { - PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); - return (-EIO); - } - - E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN); - - /* Configure for OS presence */ - em_init_manageability(hw); - - eth_em_tx_init(dev); - - ret = eth_em_rx_init(dev); - if (ret) { - PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); - em_dev_clear_queues(dev); - return ret; - } - - e1000_clear_hw_cntrs_base_generic(hw); - - mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ - ETH_VLAN_EXTEND_MASK; - eth_em_vlan_offload_set(dev, mask); - - /* Set Interrupt Throttling Rate to maximum allowed value. */ - E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX); - - /* Setup link speed and duplex */ - switch (dev->data->dev_conf.link_speed) { - case ETH_LINK_SPEED_AUTONEG: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_10: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_10_SPEED; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_10_HALF; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_10_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_100: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_100_SPEED; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_100_HALF; - else if (dev->data->dev_conf.link_duplex == - ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_100_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_1000: - if ((dev->data->dev_conf.link_duplex == - ETH_LINK_AUTONEG_DUPLEX) || - (dev->data->dev_conf.link_duplex == - ETH_LINK_FULL_DUPLEX)) - hw->phy.autoneg_advertised = ADVERTISE_1000_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_10000: - default: - goto error_invalid_config; - } - e1000_setup_link(hw); - - /* check if lsc interrupt feature is enabled */ - if (dev->data->dev_conf.intr_conf.lsc != 0) { - ret = eth_em_interrupt_setup(dev); - if (ret) { - PMD_INIT_LOG(ERR, "Unable to setup interrupts"); - em_dev_clear_queues(dev); - return ret; - } - } - - PMD_INIT_LOG(DEBUG, "<<"); - - return (0); - -error_invalid_config: - PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u", - dev->data->dev_conf.link_speed, - dev->data->dev_conf.link_duplex, dev->data->port_id); - em_dev_clear_queues(dev); - return (-EINVAL); -} - -/********************************************************************* - * - * This routine disables all traffic on the adapter by issuing a - * global reset on the MAC. - * - **********************************************************************/ -static void -eth_em_stop(struct rte_eth_dev *dev) -{ - struct rte_eth_link link; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - em_intr_disable(hw); - e1000_reset_hw(hw); - if (hw->mac.type >= e1000_82544) - E1000_WRITE_REG(hw, E1000_WUC, 0); - - /* Power down the phy. Needed to make the link go down */ - e1000_power_down_phy(hw); - - em_dev_clear_queues(dev); - - /* clear the recorded link status */ - memset(&link, 0, sizeof(link)); - rte_em_dev_atomic_write_link_status(dev, &link); -} - -static void -eth_em_close(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - eth_em_stop(dev); - e1000_phy_hw_reset(hw); - em_release_manageability(hw); - em_hw_control_release(hw); -} - -static int -em_get_rx_buffer_size(struct e1000_hw *hw) -{ - uint32_t rx_buf_size; - - rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10); - return rx_buf_size; -} - -/********************************************************************* - * - * Initialize the hardware - * - **********************************************************************/ -static int -em_hardware_init(struct e1000_hw *hw) -{ - uint32_t rx_buf_size; - int diag; - - /* Issue a global reset */ - e1000_reset_hw(hw); - - /* Let the firmware know the OS is in control */ - em_hw_control_acquire(hw); - - /* - * These parameters control the automatic generation (Tx) and - * response (Rx) to Ethernet PAUSE frames. - * - High water mark should allow for at least two standard size (1518) - * frames to be received after sending an XOFF. - * - Low water mark works best when it is very near the high water mark. - * This allows the receiver to restart by sending XON when it has - * drained a bit. Here we use an arbitrary value of 1500 which will - * restart after one full frame is pulled from the buffer. There - * could be several smaller frames in the buffer and if so they will - * not trigger the XON until their total number reduces the buffer - * by 1500. - * - The pause time is fairly large at 1000 x 512ns = 512 usec. - */ - rx_buf_size = em_get_rx_buffer_size(hw); - - hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024); - hw->fc.low_water = hw->fc.high_water - 1500; - - if (hw->mac.type == e1000_80003es2lan) - hw->fc.pause_time = UINT16_MAX; - else - hw->fc.pause_time = EM_FC_PAUSE_TIME; - - hw->fc.send_xon = 1; - - /* Set Flow control, use the tunable location if sane */ - if (em_fc_setting <= e1000_fc_full) - hw->fc.requested_mode = em_fc_setting; - else - hw->fc.requested_mode = e1000_fc_none; - - /* Workaround: no TX flow ctrl for PCH */ - if (hw->mac.type == e1000_pchlan) - hw->fc.requested_mode = e1000_fc_rx_pause; - - /* Override - settings for PCH2LAN, ya its magic :) */ - if (hw->mac.type == e1000_pch2lan) { - hw->fc.high_water = 0x5C20; - hw->fc.low_water = 0x5048; - hw->fc.pause_time = 0x0650; - hw->fc.refresh_time = 0x0400; - } - - diag = e1000_init_hw(hw); - if (diag < 0) - return (diag); - e1000_check_for_link(hw); - return (0); -} - -/* This function is based on em_update_stats_counters() in e1000/if_em.c */ -static void -eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_hw_stats *stats = - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - int pause_frames; - - if(hw->phy.media_type == e1000_media_type_copper || - (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS); - stats->sec += E1000_READ_REG(hw, E1000_SEC); - } - - stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); - stats->mpc += E1000_READ_REG(hw, E1000_MPC); - stats->scc += E1000_READ_REG(hw, E1000_SCC); - stats->ecol += E1000_READ_REG(hw, E1000_ECOL); - - stats->mcc += E1000_READ_REG(hw, E1000_MCC); - stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); - stats->colc += E1000_READ_REG(hw, E1000_COLC); - stats->dc += E1000_READ_REG(hw, E1000_DC); - stats->rlec += E1000_READ_REG(hw, E1000_RLEC); - stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); - stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); - - /* - * For watchdog management we need to know if we have been - * paused during the last interval, so capture that here. - */ - pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); - stats->xoffrxc += pause_frames; - stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); - stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); - stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); - stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); - stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); - stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); - stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); - stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); - stats->gprc += E1000_READ_REG(hw, E1000_GPRC); - stats->bprc += E1000_READ_REG(hw, E1000_BPRC); - stats->mprc += E1000_READ_REG(hw, E1000_MPRC); - stats->gptc += E1000_READ_REG(hw, E1000_GPTC); - - /* - * For the 64-bit byte counters the low dword must be read first. - * Both registers clear on the read of the high dword. - */ - - stats->gorc += E1000_READ_REG(hw, E1000_GORCL); - stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); - stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); - stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); - - stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); - stats->ruc += E1000_READ_REG(hw, E1000_RUC); - stats->rfc += E1000_READ_REG(hw, E1000_RFC); - stats->roc += E1000_READ_REG(hw, E1000_ROC); - stats->rjc += E1000_READ_REG(hw, E1000_RJC); - - stats->tor += E1000_READ_REG(hw, E1000_TORH); - stats->tot += E1000_READ_REG(hw, E1000_TOTH); - - stats->tpr += E1000_READ_REG(hw, E1000_TPR); - stats->tpt += E1000_READ_REG(hw, E1000_TPT); - stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); - stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); - stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); - stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); - stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); - stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); - stats->mptc += E1000_READ_REG(hw, E1000_MPTC); - stats->bptc += E1000_READ_REG(hw, E1000_BPTC); - - /* Interrupt Counts */ - - if (hw->mac.type >= e1000_82571) { - stats->iac += E1000_READ_REG(hw, E1000_IAC); - stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); - stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); - stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); - stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); - stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); - stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); - stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); - stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); - } - - if (hw->mac.type >= e1000_82543) { - stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); - stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); - stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); - stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); - stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); - stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); - } - - if (rte_stats == NULL) - return; - - /* Rx Errors */ - rte_stats->ibadcrc = stats->crcerrs; - rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc; - rte_stats->imissed = stats->mpc; - rte_stats->ierrors = rte_stats->ibadcrc + - rte_stats->ibadlen + - rte_stats->imissed + - stats->rxerrc + stats->algnerrc + stats->cexterr; - - /* Tx Errors */ - rte_stats->oerrors = stats->ecol + stats->latecol; - - rte_stats->ipackets = stats->gprc; - rte_stats->opackets = stats->gptc; - rte_stats->ibytes = stats->gorc; - rte_stats->obytes = stats->gotc; - - /* XON/XOFF pause frames stats registers */ - rte_stats->tx_pause_xon = stats->xontxc; - rte_stats->rx_pause_xon = stats->xonrxc; - rte_stats->tx_pause_xoff = stats->xofftxc; - rte_stats->rx_pause_xoff = stats->xoffrxc; -} - -static void -eth_em_stats_reset(struct rte_eth_dev *dev) -{ - struct e1000_hw_stats *hw_stats = - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - - /* HW registers are cleared on read */ - eth_em_stats_get(dev, NULL); - - /* Reset software totals */ - memset(hw_stats, 0, sizeof(*hw_stats)); -} - -static uint32_t -em_get_max_pktlen(const struct e1000_hw *hw) -{ - switch (hw->mac.type) { - case e1000_82571: - case e1000_82572: - case e1000_ich9lan: - case e1000_ich10lan: - case e1000_pch2lan: - case e1000_82574: - case e1000_80003es2lan: /* 9K Jumbo Frame size */ - return (0x2412); - case e1000_pchlan: - return (0x1000); - /* Adapters that do not support jumbo frames */ - case e1000_82583: - case e1000_ich8lan: - return (ETHER_MAX_LEN); - default: - return (MAX_JUMBO_FRAME_SIZE); - } -} - -static void -eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ - dev_info->max_rx_pktlen = em_get_max_pktlen(hw); - dev_info->max_mac_addrs = hw->mac.rar_entry_count; - - /* - * Starting with 631xESB hw supports 2 TX/RX queues per port. - * Unfortunatelly, all these nics have just one TX context. - * So we have few choises for TX: - * - Use just one TX queue. - * - Allow cksum offload only for one TX queue. - * - Don't allow TX cksum offload at all. - * For now, option #1 was chosen. - * To use second RX queue we have to use extended RX descriptor - * (Multiple Receive Queues are mutually exclusive with UDP - * fragmentation and are not supported when a legacy receive - * descriptor format is used). - * Which means separate RX routinies - as legacy nics (82540, 82545) - * don't support extended RXD. - * To avoid it we support just one RX queue for now (no RSS). - */ - - dev_info->max_rx_queues = 1; - dev_info->max_tx_queues = 1; -} - -/* return 0 means link status changed, -1 means not changed */ -static int -eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct rte_eth_link link, old; - int link_check, count; - - link_check = 0; - hw->mac.get_link_status = 1; - - /* possible wait-to-complete in up to 9 seconds */ - for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) { - /* Read the real link status */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - /* Do the work to read phy */ - e1000_check_for_link(hw); - link_check = !hw->mac.get_link_status; - break; - - case e1000_media_type_fiber: - e1000_check_for_link(hw); - link_check = (E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_LU); - break; - - case e1000_media_type_internal_serdes: - e1000_check_for_link(hw); - link_check = hw->mac.serdes_has_link; - break; - - default: - break; - } - if (link_check || wait_to_complete == 0) - break; - rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL); - } - memset(&link, 0, sizeof(link)); - rte_em_dev_atomic_read_link_status(dev, &link); - old = link; - - /* Now we check if a transition has happened */ - if (link_check && (link.link_status == 0)) { - hw->mac.ops.get_link_up_info(hw, &link.link_speed, - &link.link_duplex); - link.link_status = 1; - } else if (!link_check && (link.link_status == 1)) { - link.link_speed = 0; - link.link_duplex = 0; - link.link_status = 0; - } - rte_em_dev_atomic_write_link_status(dev, &link); - - /* not changed */ - if (old.link_status == link.link_status) - return -1; - - /* changed */ - return 0; -} - -/* - * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means - * that the driver is loaded. For AMT version type f/w - * this means that the network i/f is open. - */ -static void -em_hw_control_acquire(struct e1000_hw *hw) -{ - uint32_t ctrl_ext, swsm; - - /* Let firmware know the driver has taken over */ - if (hw->mac.type == e1000_82573) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD); - - } else { - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); - } -} - -/* - * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that the - * driver is no longer loaded. For AMT versions of the - * f/w this means that the network i/f is closed. - */ -static void -em_hw_control_release(struct e1000_hw *hw) -{ - uint32_t ctrl_ext, swsm; - - /* Let firmware taken over control of h/w */ - if (hw->mac.type == e1000_82573) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD); - } else { - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); - } -} - -/* - * Bit of a misnomer, what this really means is - * to enable OS management of the system... aka - * to disable special hardware management features. - */ -static void -em_init_manageability(struct e1000_hw *hw) -{ - if (e1000_enable_mng_pass_thru(hw)) { - uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); - uint32_t manc = E1000_READ_REG(hw, E1000_MANC); - - /* disable hardware interception of ARP */ - manc &= ~(E1000_MANC_ARP_EN); - - /* enable receiving management packets to the host */ - manc |= E1000_MANC_EN_MNG2HOST; - manc2h |= 1 << 5; /* Mng Port 623 */ - manc2h |= 1 << 6; /* Mng Port 664 */ - E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); - E1000_WRITE_REG(hw, E1000_MANC, manc); - } -} - -/* - * Give control back to hardware management - * controller if there is one. - */ -static void -em_release_manageability(struct e1000_hw *hw) -{ - uint32_t manc; - - if (e1000_enable_mng_pass_thru(hw)) { - manc = E1000_READ_REG(hw, E1000_MANC); - - /* re-enable hardware interception of ARP */ - manc |= E1000_MANC_ARP_EN; - manc &= ~E1000_MANC_EN_MNG2HOST; - - E1000_WRITE_REG(hw, E1000_MANC, manc); - } -} - -static void -eth_em_promiscuous_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_em_promiscuous_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP); - if (dev->data->all_multicast == 1) - rctl |= E1000_RCTL_MPE; - else - rctl &= (~E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_em_allmulticast_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_MPE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_em_allmulticast_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - if (dev->data->promiscuous == 1) - return; /* must remain in all_multicast mode */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= (~E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static int -eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - uint32_t vfta; - uint32_t vid_idx; - uint32_t vid_bit; - - vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK); - vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); - vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); - if (on) - vfta |= vid_bit; - else - vfta &= ~vid_bit; - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); - - /* update local VFTA copy */ - shadow_vfta->vfta[vid_idx] = vfta; - - return 0; -} - -static void -em_vlan_hw_filter_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* Filter Table Disable */ - reg = E1000_READ_REG(hw, E1000_RCTL); - reg &= ~E1000_RCTL_CFIEN; - reg &= ~E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, reg); -} - -static void -em_vlan_hw_filter_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - uint32_t reg; - int i; - - /* Filter Table Enable, CFI not used for packet acceptance */ - reg = E1000_READ_REG(hw, E1000_RCTL); - reg &= ~E1000_RCTL_CFIEN; - reg |= E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, reg); - - /* restore vfta from local copy */ - for (i = 0; i < IGB_VFTA_SIZE; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); -} - -static void -em_vlan_hw_strip_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* VLAN Mode Disable */ - reg = E1000_READ_REG(hw, E1000_CTRL); - reg &= ~E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, reg); - -} - -static void -em_vlan_hw_strip_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* VLAN Mode Enable */ - reg = E1000_READ_REG(hw, E1000_CTRL); - reg |= E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, reg); -} - -static void -eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask) -{ - if(mask & ETH_VLAN_STRIP_MASK){ - if (dev->data->dev_conf.rxmode.hw_vlan_strip) - em_vlan_hw_strip_enable(dev); - else - em_vlan_hw_strip_disable(dev); - } - - if(mask & ETH_VLAN_FILTER_MASK){ - if (dev->data->dev_conf.rxmode.hw_vlan_filter) - em_vlan_hw_filter_enable(dev); - else - em_vlan_hw_filter_disable(dev); - } -} - -static void -em_intr_disable(struct e1000_hw *hw) -{ - E1000_WRITE_REG(hw, E1000_IMC, ~0); -} - -/** - * It enables the interrupt mask and then enable the interrupt. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_em_interrupt_setup(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - E1000_WRITE_REG(hw, E1000_IMS, E1000_ICR_LSC); - rte_intr_enable(&(dev->pci_dev->intr_handle)); - return (0); -} - -/* - * It reads ICR and gets interrupt causes, check it and set a bit flag - * to update link status. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_em_interrupt_get_status(struct rte_eth_dev *dev) -{ - uint32_t icr; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - /* read-on-clear nic registers here */ - icr = E1000_READ_REG(hw, E1000_ICR); - if (icr & E1000_ICR_LSC) { - intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; - } - - return 0; -} - -/* - * It executes link_update after knowing an interrupt is prsent. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_em_interrupt_action(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - uint32_t tctl, rctl; - struct rte_eth_link link; - int ret; - - if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE)) - return -1; - - intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; - rte_intr_enable(&(dev->pci_dev->intr_handle)); - - /* set get_link_status to check register later */ - hw->mac.get_link_status = 1; - ret = eth_em_link_update(dev, 0); - - /* check if link has changed */ - if (ret < 0) - return 0; - - memset(&link, 0, sizeof(link)); - rte_em_dev_atomic_read_link_status(dev, &link); - if (link.link_status) { - PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s", - dev->data->port_id, (unsigned)link.link_speed, - link.link_duplex == ETH_LINK_FULL_DUPLEX ? - "full-duplex" : "half-duplex"); - } else { - PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id); - } - PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d", - dev->pci_dev->addr.domain, dev->pci_dev->addr.bus, - dev->pci_dev->addr.devid, dev->pci_dev->addr.function); - tctl = E1000_READ_REG(hw, E1000_TCTL); - rctl = E1000_READ_REG(hw, E1000_RCTL); - if (link.link_status) { - /* enable Tx/Rx */ - tctl |= E1000_TCTL_EN; - rctl |= E1000_RCTL_EN; - } else { - /* disable Tx/Rx */ - tctl &= ~E1000_TCTL_EN; - rctl &= ~E1000_RCTL_EN; - } - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - return 0; -} - -/** - * Interrupt handler which shall be registered at first. - * - * @param handle - * Pointer to interrupt handle. - * @param param - * The address of parameter (struct rte_eth_dev *) regsitered before. - * - * @return - * void - */ -static void -eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle, - void *param) -{ - struct rte_eth_dev *dev = (struct rte_eth_dev *)param; - - eth_em_interrupt_get_status(dev); - eth_em_interrupt_action(dev); - _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC); -} - -static int -eth_em_led_on(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); -} - -static int -eth_em_led_off(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); -} - -static int -eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) -{ - struct e1000_hw *hw; - uint32_t ctrl; - int tx_pause; - int rx_pause; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - fc_conf->pause_time = hw->fc.pause_time; - fc_conf->high_water = hw->fc.high_water; - fc_conf->low_water = hw->fc.low_water; - fc_conf->send_xon = hw->fc.send_xon; - fc_conf->autoneg = hw->mac.autoneg; - - /* - * Return rx_pause and tx_pause status according to actual setting of - * the TFCE and RFCE bits in the CTRL register. - */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - if (ctrl & E1000_CTRL_TFCE) - tx_pause = 1; - else - tx_pause = 0; - - if (ctrl & E1000_CTRL_RFCE) - rx_pause = 1; - else - rx_pause = 0; - - if (rx_pause && tx_pause) - fc_conf->mode = RTE_FC_FULL; - else if (rx_pause) - fc_conf->mode = RTE_FC_RX_PAUSE; - else if (tx_pause) - fc_conf->mode = RTE_FC_TX_PAUSE; - else - fc_conf->mode = RTE_FC_NONE; - - return 0; -} - -static int -eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) -{ - struct e1000_hw *hw; - int err; - enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { - e1000_fc_none, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full - }; - uint32_t rx_buf_size; - uint32_t max_high_water; - uint32_t rctl; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - if (fc_conf->autoneg != hw->mac.autoneg) - return -ENOTSUP; - rx_buf_size = em_get_rx_buffer_size(hw); - PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); - - /* At least reserve one Ethernet frame for watermark */ - max_high_water = rx_buf_size - ETHER_MAX_LEN; - if ((fc_conf->high_water > max_high_water) || - (fc_conf->high_water < fc_conf->low_water)) { - PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); - PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); - return (-EINVAL); - } - - hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; - hw->fc.pause_time = fc_conf->pause_time; - hw->fc.high_water = fc_conf->high_water; - hw->fc.low_water = fc_conf->low_water; - hw->fc.send_xon = fc_conf->send_xon; - - err = e1000_setup_link_generic(hw); - if (err == E1000_SUCCESS) { - - /* check if we want to forward MAC frames - driver doesn't have native - * capability to do that, so we'll write the registers ourselves */ - - rctl = E1000_READ_REG(hw, E1000_RCTL); - - /* set or clear MFLCN.PMCF bit depending on configuration */ - if (fc_conf->mac_ctrl_frame_fwd != 0) - rctl |= E1000_RCTL_PMCF; - else - rctl &= ~E1000_RCTL_PMCF; - - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - return 0; - } - - PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); - return (-EIO); -} - -static void -eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, - uint32_t index, __rte_unused uint32_t pool) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - e1000_rar_set(hw, mac_addr->addr_bytes, index); -} - -static void -eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index) -{ - uint8_t addr[ETHER_ADDR_LEN]; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - memset(addr, 0, sizeof(addr)); - - e1000_rar_set(hw, addr, index); -} - -static int -eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) -{ - struct rte_eth_dev_info dev_info; - struct e1000_hw *hw; - uint32_t frame_size; - uint32_t rctl; - - eth_em_infos_get(dev, &dev_info); - frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE; - - /* check that mtu is within the allowed range */ - if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) - return -EINVAL; - - /* refuse mtu that requires the support of scattered packets when this - * feature has not been enabled before. */ - if (!dev->data->scattered_rx && - frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) - return -EINVAL; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - rctl = E1000_READ_REG(hw, E1000_RCTL); - - /* switch to jumbo mode if needed */ - if (frame_size > ETHER_MAX_LEN) { - dev->data->dev_conf.rxmode.jumbo_frame = 1; - rctl |= E1000_RCTL_LPE; - } else { - dev->data->dev_conf.rxmode.jumbo_frame = 0; - rctl &= ~E1000_RCTL_LPE; - } - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* update max frame size */ - dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; - return 0; -} - -struct rte_driver em_pmd_drv = { - .type = PMD_PDEV, - .init = rte_em_pmd_init, -}; - -PMD_REGISTER_DRIVER(em_pmd_drv); diff --git a/src/dpdk_lib18/librte_pmd_e1000/em_rxtx.c b/src/dpdk_lib18/librte_pmd_e1000/em_rxtx.c deleted file mode 100755 index aa0b88c1..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/em_rxtx.c +++ /dev/null @@ -1,1867 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/queue.h> - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <errno.h> -#include <stdint.h> -#include <stdarg.h> -#include <inttypes.h> - -#include <rte_interrupts.h> -#include <rte_byteorder.h> -#include <rte_common.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_pci.h> -#include <rte_memory.h> -#include <rte_memcpy.h> -#include <rte_memzone.h> -#include <rte_launch.h> -#include <rte_tailq.h> -#include <rte_eal.h> -#include <rte_per_lcore.h> -#include <rte_lcore.h> -#include <rte_atomic.h> -#include <rte_branch_prediction.h> -#include <rte_ring.h> -#include <rte_mempool.h> -#include <rte_malloc.h> -#include <rte_mbuf.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_prefetch.h> -#include <rte_ip.h> -#include <rte_udp.h> -#include <rte_tcp.h> -#include <rte_sctp.h> -#include <rte_string_fns.h> - -#include "e1000_logs.h" -#include "e1000/e1000_api.h" -#include "e1000_ethdev.h" -#include "e1000/e1000_osdep.h" - -#define E1000_TXD_VLAN_SHIFT 16 - -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ - -static inline struct rte_mbuf * -rte_rxmbuf_alloc(struct rte_mempool *mp) -{ - struct rte_mbuf *m; - - m = __rte_mbuf_raw_alloc(mp); - __rte_mbuf_sanity_check_raw(m, 0); - return (m); -} - -#define RTE_MBUF_DATA_DMA_ADDR(mb) \ - (uint64_t) ((mb)->buf_physaddr + (mb)->data_off) - -#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \ - (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM) - -/** - * Structure associated with each descriptor of the RX ring of a RX queue. - */ -struct em_rx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ -}; - -/** - * Structure associated with each descriptor of the TX ring of a TX queue. - */ -struct em_tx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ - uint16_t next_id; /**< Index of next descriptor in ring. */ - uint16_t last_id; /**< Index of last scattered descriptor. */ -}; - -/** - * Structure associated with each RX queue. - */ -struct em_rx_queue { - struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ - volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */ - uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ - volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ - volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ - struct em_rx_entry *sw_ring; /**< address of RX software ring. */ - struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ - struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ - uint16_t nb_rx_desc; /**< number of RX descriptors. */ - uint16_t rx_tail; /**< current value of RDT register. */ - uint16_t nb_rx_hold; /**< number of held free RX desc. */ - uint16_t rx_free_thresh; /**< max free RX desc to hold. */ - uint16_t queue_id; /**< RX queue index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ -}; - -/** - * Hardware context number - */ -enum { - EM_CTX_0 = 0, /**< CTX0 */ - EM_CTX_NUM = 1, /**< CTX NUM */ -}; - -/** Offload features */ -union em_vlan_macip { - uint32_t data; - struct { - uint16_t l3_len:9; /**< L3 (IP) Header Length. */ - uint16_t l2_len:7; /**< L2 (MAC) Header Length. */ - uint16_t vlan_tci; - /**< VLAN Tag Control Identifier (CPU order). */ - } f; -}; - -/* - * Compare mask for vlan_macip_len.data, - * should be in sync with em_vlan_macip.f layout. - * */ -#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */ -#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */ -#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */ -/** MAC+IP length. */ -#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK) - -/** - * Structure to check if new context need be built - */ -struct em_ctx_info { - uint64_t flags; /**< ol_flags related to context build. */ - uint32_t cmp_mask; /**< compare mask */ - union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */ -}; - -/** - * Structure associated with each TX queue. - */ -struct em_tx_queue { - volatile struct e1000_data_desc *tx_ring; /**< TX ring address */ - uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ - struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */ - volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ - uint16_t nb_tx_desc; /**< number of TX descriptors. */ - uint16_t tx_tail; /**< Current value of TDT register. */ - uint16_t tx_free_thresh;/**< minimum TX before freeing. */ - /**< Number of TX descriptors to use before RS bit is set. */ - uint16_t tx_rs_thresh; - /** Number of TX descriptors used since RS bit was set. */ - uint16_t nb_tx_used; - /** Index to last TX descriptor to have been cleaned. */ - uint16_t last_desc_cleaned; - /** Total number of TX descriptors ready to be allocated. */ - uint16_t nb_tx_free; - uint16_t queue_id; /**< TX queue index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - struct em_ctx_info ctx_cache; - /**< Hardware context history.*/ -}; - -#if 1 -#define RTE_PMD_USE_PREFETCH -#endif - -#ifdef RTE_PMD_USE_PREFETCH -#define rte_em_prefetch(p) rte_prefetch0(p) -#else -#define rte_em_prefetch(p) do {} while(0) -#endif - -#ifdef RTE_PMD_PACKET_PREFETCH -#define rte_packet_prefetch(p) rte_prefetch1(p) -#else -#define rte_packet_prefetch(p) do {} while(0) -#endif - -#ifndef DEFAULT_TX_FREE_THRESH -#define DEFAULT_TX_FREE_THRESH 32 -#endif /* DEFAULT_TX_FREE_THRESH */ - -#ifndef DEFAULT_TX_RS_THRESH -#define DEFAULT_TX_RS_THRESH 32 -#endif /* DEFAULT_TX_RS_THRESH */ - - -/********************************************************************* - * - * TX function - * - **********************************************************************/ - -/* - * Populates TX context descriptor. - */ -static inline void -em_set_xmit_ctx(struct em_tx_queue* txq, - volatile struct e1000_context_desc *ctx_txd, - uint64_t flags, - union em_vlan_macip hdrlen) -{ - uint32_t cmp_mask, cmd_len; - uint16_t ipcse, l2len; - struct e1000_context_desc ctx; - - cmp_mask = 0; - cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C; - - l2len = hdrlen.f.l2_len; - ipcse = (uint16_t)(l2len + hdrlen.f.l3_len); - - /* setup IPCS* fields */ - ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len; - ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len + - offsetof(struct ipv4_hdr, hdr_checksum)); - - /* - * When doing checksum or TCP segmentation with IPv6 headers, - * IPCSE field should be set t0 0. - */ - if (flags & PKT_TX_IP_CKSUM) { - ctx.lower_setup.ip_fields.ipcse = - (uint16_t)rte_cpu_to_le_16(ipcse - 1); - cmd_len |= E1000_TXD_CMD_IP; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - } else { - ctx.lower_setup.ip_fields.ipcse = 0; - } - - /* setup TUCS* fields */ - ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse; - ctx.upper_setup.tcp_fields.tucse = 0; - - switch (flags & PKT_TX_L4_MASK) { - case PKT_TX_UDP_CKSUM: - ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + - offsetof(struct udp_hdr, dgram_cksum)); - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - break; - case PKT_TX_TCP_CKSUM: - ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse + - offsetof(struct tcp_hdr, cksum)); - cmd_len |= E1000_TXD_CMD_TCP; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - break; - default: - ctx.upper_setup.tcp_fields.tucso = 0; - } - - ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len); - ctx.tcp_seg_setup.data = 0; - - *ctx_txd = ctx; - - txq->ctx_cache.flags = flags; - txq->ctx_cache.cmp_mask = cmp_mask; - txq->ctx_cache.hdrlen = hdrlen; -} - -/* - * Check which hardware context can be used. Use the existing match - * or create a new context descriptor. - */ -static inline uint32_t -what_ctx_update(struct em_tx_queue *txq, uint64_t flags, - union em_vlan_macip hdrlen) -{ - /* If match with the current context */ - if (likely (txq->ctx_cache.flags == flags && - ((txq->ctx_cache.hdrlen.data ^ hdrlen.data) & - txq->ctx_cache.cmp_mask) == 0)) - return (EM_CTX_0); - - /* Mismatch */ - return (EM_CTX_NUM); -} - -/* Reset transmit descriptors after they have been used */ -static inline int -em_xmit_cleanup(struct em_tx_queue *txq) -{ - struct em_tx_entry *sw_ring = txq->sw_ring; - volatile struct e1000_data_desc *txr = txq->tx_ring; - uint16_t last_desc_cleaned = txq->last_desc_cleaned; - uint16_t nb_tx_desc = txq->nb_tx_desc; - uint16_t desc_to_clean_to; - uint16_t nb_tx_to_clean; - - /* Determine the last descriptor needing to be cleaned */ - desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh); - if (desc_to_clean_to >= nb_tx_desc) - desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); - - /* Check to make sure the last descriptor to clean is done */ - desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; - if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD)) - { - PMD_TX_FREE_LOG(DEBUG, - "TX descriptor %4u is not done" - "(port=%d queue=%d)", desc_to_clean_to, - txq->port_id, txq->queue_id); - /* Failed to clean any descriptors, better luck next time */ - return -(1); - } - - /* Figure out how many descriptors will be cleaned */ - if (last_desc_cleaned > desc_to_clean_to) - nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + - desc_to_clean_to); - else - nb_tx_to_clean = (uint16_t)(desc_to_clean_to - - last_desc_cleaned); - - PMD_TX_FREE_LOG(DEBUG, - "Cleaning %4u TX descriptors: %4u to %4u " - "(port=%d queue=%d)", nb_tx_to_clean, - last_desc_cleaned, desc_to_clean_to, txq->port_id, - txq->queue_id); - - /* - * The last descriptor to clean is done, so that means all the - * descriptors from the last descriptor that was cleaned - * up to the last descriptor with the RS bit set - * are done. Only reset the threshold descriptor. - */ - txr[desc_to_clean_to].upper.fields.status = 0; - - /* Update the txq to reflect the last descriptor that was cleaned */ - txq->last_desc_cleaned = desc_to_clean_to; - txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); - - /* No Error */ - return (0); -} - -static inline uint32_t -tx_desc_cksum_flags_to_upper(uint64_t ol_flags) -{ - static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8}; - static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8}; - uint32_t tmp; - - tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; - tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; - return (tmp); -} - -uint16_t -eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts) -{ - struct em_tx_queue *txq; - struct em_tx_entry *sw_ring; - struct em_tx_entry *txe, *txn; - volatile struct e1000_data_desc *txr; - volatile struct e1000_data_desc *txd; - struct rte_mbuf *tx_pkt; - struct rte_mbuf *m_seg; - uint64_t buf_dma_addr; - uint32_t popts_spec; - uint32_t cmd_type_len; - uint16_t slen; - uint64_t ol_flags; - uint16_t tx_id; - uint16_t tx_last; - uint16_t nb_tx; - uint16_t nb_used; - uint64_t tx_ol_req; - uint32_t ctx; - uint32_t new_ctx; - union em_vlan_macip hdrlen; - - txq = tx_queue; - sw_ring = txq->sw_ring; - txr = txq->tx_ring; - tx_id = txq->tx_tail; - txe = &sw_ring[tx_id]; - - /* Determine if the descriptor ring needs to be cleaned. */ - if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh) { - em_xmit_cleanup(txq); - } - - /* TX loop */ - for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { - new_ctx = 0; - tx_pkt = *tx_pkts++; - - RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); - - /* - * Determine how many (if any) context descriptors - * are needed for offload functionality. - */ - ol_flags = tx_pkt->ol_flags; - - /* If hardware offload required */ - tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)); - if (tx_ol_req) { - hdrlen.f.vlan_tci = tx_pkt->vlan_tci; - hdrlen.f.l2_len = tx_pkt->l2_len; - hdrlen.f.l3_len = tx_pkt->l3_len; - /* If new context to be built or reuse the exist ctx. */ - ctx = what_ctx_update(txq, tx_ol_req, hdrlen); - - /* Only allocate context descriptor if required*/ - new_ctx = (ctx == EM_CTX_NUM); - } - - /* - * Keep track of how many descriptors are used this loop - * This will always be the number of segments + the number of - * Context descriptors required to transmit the packet - */ - nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx); - - /* - * The number of descriptors that must be allocated for a - * packet is the number of segments of that packet, plus 1 - * Context Descriptor for the hardware offload, if any. - * Determine the last TX descriptor to allocate in the TX ring - * for the packet, starting from the current position (tx_id) - * in the ring. - */ - tx_last = (uint16_t) (tx_id + nb_used - 1); - - /* Circular ring */ - if (tx_last >= txq->nb_tx_desc) - tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); - - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" - " tx_first=%u tx_last=%u", - (unsigned) txq->port_id, - (unsigned) txq->queue_id, - (unsigned) tx_pkt->pkt_len, - (unsigned) tx_id, - (unsigned) tx_last); - - /* - * Make sure there are enough TX descriptors available to - * transmit the entire packet. - * nb_used better be less than or equal to txq->tx_rs_thresh - */ - while (unlikely (nb_used > txq->nb_tx_free)) { - PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors " - "nb_used=%4u nb_free=%4u " - "(port=%d queue=%d)", - nb_used, txq->nb_tx_free, - txq->port_id, txq->queue_id); - - if (em_xmit_cleanup(txq) != 0) { - /* Could not clean any descriptors */ - if (nb_tx == 0) - return (0); - goto end_of_tx; - } - } - - /* - * By now there are enough free TX descriptors to transmit - * the packet. - */ - - /* - * Set common flags of all TX Data Descriptors. - * - * The following bits must be set in all Data Descriptors: - * - E1000_TXD_DTYP_DATA - * - E1000_TXD_DTYP_DEXT - * - * The following bits must be set in the first Data Descriptor - * and are ignored in the other ones: - * - E1000_TXD_POPTS_IXSM - * - E1000_TXD_POPTS_TXSM - * - * The following bits must be set in the last Data Descriptor - * and are ignored in the other ones: - * - E1000_TXD_CMD_VLE - * - E1000_TXD_CMD_IFCS - * - * The following bits must only be set in the last Data - * Descriptor: - * - E1000_TXD_CMD_EOP - * - * The following bits can be set in any Data Descriptor, but - * are only set in the last Data Descriptor: - * - E1000_TXD_CMD_RS - */ - cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | - E1000_TXD_CMD_IFCS; - popts_spec = 0; - - /* Set VLAN Tag offload fields. */ - if (ol_flags & PKT_TX_VLAN_PKT) { - cmd_type_len |= E1000_TXD_CMD_VLE; - popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT; - } - - if (tx_ol_req) { - /* - * Setup the TX Context Descriptor if required - */ - if (new_ctx) { - volatile struct e1000_context_desc *ctx_txd; - - ctx_txd = (volatile struct e1000_context_desc *) - &txr[tx_id]; - - txn = &sw_ring[txe->next_id]; - RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); - - if (txe->mbuf != NULL) { - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = NULL; - } - - em_set_xmit_ctx(txq, ctx_txd, tx_ol_req, - hdrlen); - - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - } - - /* - * Setup the TX Data Descriptor, - * This path will go through - * whatever new/reuse the context descriptor - */ - popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags); - } - - m_seg = tx_pkt; - do { - txd = &txr[tx_id]; - txn = &sw_ring[txe->next_id]; - - if (txe->mbuf != NULL) - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = m_seg; - - /* - * Set up Transmit Data Descriptor. - */ - slen = m_seg->data_len; - buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg); - - txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr); - txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen); - txd->upper.data = rte_cpu_to_le_32(popts_spec); - - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - m_seg = m_seg->next; - } while (m_seg != NULL); - - /* - * The last packet data descriptor needs End Of Packet (EOP) - */ - cmd_type_len |= E1000_TXD_CMD_EOP; - txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used); - txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); - - /* Set RS bit only on threshold packets' last descriptor */ - if (txq->nb_tx_used >= txq->tx_rs_thresh) { - PMD_TX_FREE_LOG(DEBUG, - "Setting RS bit on TXD id=%4u " - "(port=%d queue=%d)", - tx_last, txq->port_id, txq->queue_id); - - cmd_type_len |= E1000_TXD_CMD_RS; - - /* Update txq RS bit counters */ - txq->nb_tx_used = 0; - } - txd->lower.data |= rte_cpu_to_le_32(cmd_type_len); - } -end_of_tx: - rte_wmb(); - - /* - * Set the Transmit Descriptor Tail (TDT) - */ - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", - (unsigned) txq->port_id, (unsigned) txq->queue_id, - (unsigned) tx_id, (unsigned) nb_tx); - E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id); - txq->tx_tail = tx_id; - - return (nb_tx); -} - -/********************************************************************* - * - * RX functions - * - **********************************************************************/ - -static inline uint64_t -rx_desc_status_to_pkt_flags(uint32_t rx_status) -{ - uint64_t pkt_flags; - - /* Check if VLAN present */ - pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0); - - return pkt_flags; -} - -static inline uint64_t -rx_desc_error_to_pkt_flags(uint32_t rx_error) -{ - uint64_t pkt_flags = 0; - - if (rx_error & E1000_RXD_ERR_IPE) - pkt_flags |= PKT_RX_IP_CKSUM_BAD; - if (rx_error & E1000_RXD_ERR_TCPE) - pkt_flags |= PKT_RX_L4_CKSUM_BAD; - return (pkt_flags); -} - -uint16_t -eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - volatile struct e1000_rx_desc *rx_ring; - volatile struct e1000_rx_desc *rxdp; - struct em_rx_queue *rxq; - struct em_rx_entry *sw_ring; - struct em_rx_entry *rxe; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - struct e1000_rx_desc rxd; - uint64_t dma_addr; - uint16_t pkt_len; - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint8_t status; - - rxq = rx_queue; - - nb_rx = 0; - nb_hold = 0; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - while (nb_rx < nb_pkts) { - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - status = rxdp->status; - if (! (status & E1000_RXD_STAT_DD)) - break; - rxd = *rxdp; - - /* - * End of packet. - * - * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is - * likely to be invalid and to be dropped by the various - * validation checks performed by the network stack. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy do not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "status=0x%x pkt_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) status, - (unsigned) rte_le_to_cpu_16(rxd.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", - (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_em_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_em_prefetch(&rx_ring[rx_id]); - rte_em_prefetch(&sw_ring[rx_id]); - } - - /* Rearm RXD: attach new mbuf and reset status to zero. */ - - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma_addr = - rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->buffer_addr = dma_addr; - rxdp->status = 0; - - /* - * Initialize the returned mbuf. - * 1) setup generic mbuf fields: - * - number of segments, - * - next segment, - * - packet length, - * - RX port identifier. - * 2) integrate hardware offload data, if any: - * - RSS flag & hash, - * - IP checksum flag, - * - VLAN TCI, if any, - * - error flags. - */ - pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) - - rxq->crc_len); - rxm->data_off = RTE_PKTMBUF_HEADROOM; - rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); - rxm->nb_segs = 1; - rxm->next = NULL; - rxm->pkt_len = pkt_len; - rxm->data_len = pkt_len; - rxm->port = rxq->port_id; - - rxm->ol_flags = rx_desc_status_to_pkt_flags(status); - rxm->ol_flags = rxm->ol_flags | - rx_desc_error_to_pkt_flags(rxd.errors); - - /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ - rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = rxm; - } - rxq->rx_tail = rx_id; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -uint16_t -eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - struct em_rx_queue *rxq; - volatile struct e1000_rx_desc *rx_ring; - volatile struct e1000_rx_desc *rxdp; - struct em_rx_entry *sw_ring; - struct em_rx_entry *rxe; - struct rte_mbuf *first_seg; - struct rte_mbuf *last_seg; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - struct e1000_rx_desc rxd; - uint64_t dma; /* Physical address of mbuf data buffer */ - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint16_t data_len; - uint8_t status; - - rxq = rx_queue; - - nb_rx = 0; - nb_hold = 0; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - - /* - * Retrieve RX context of current packet, if any. - */ - first_seg = rxq->pkt_first_seg; - last_seg = rxq->pkt_last_seg; - - while (nb_rx < nb_pkts) { - next_desc: - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - status = rxdp->status; - if (! (status & E1000_RXD_STAT_DD)) - break; - rxd = *rxdp; - - /* - * Descriptor done. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy does not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "status=0x%x data_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) status, - (unsigned) rte_le_to_cpu_16(rxd.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_em_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_em_prefetch(&rx_ring[rx_id]); - rte_em_prefetch(&sw_ring[rx_id]); - } - - /* - * Update RX descriptor with the physical address of the new - * data buffer of the new allocated mbuf. - */ - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->buffer_addr = dma; - rxdp->status = 0; - - /* - * Set data length & data buffer address of mbuf. - */ - data_len = rte_le_to_cpu_16(rxd.length); - rxm->data_len = data_len; - rxm->data_off = RTE_PKTMBUF_HEADROOM; - - /* - * If this is the first buffer of the received packet, - * set the pointer to the first mbuf of the packet and - * initialize its context. - * Otherwise, update the total length and the number of segments - * of the current scattered packet, and update the pointer to - * the last mbuf of the current packet. - */ - if (first_seg == NULL) { - first_seg = rxm; - first_seg->pkt_len = data_len; - first_seg->nb_segs = 1; - } else { - first_seg->pkt_len += data_len; - first_seg->nb_segs++; - last_seg->next = rxm; - } - - /* - * If this is not the last buffer of the received packet, - * update the pointer to the last mbuf of the current scattered - * packet and continue to parse the RX ring. - */ - if (! (status & E1000_RXD_STAT_EOP)) { - last_seg = rxm; - goto next_desc; - } - - /* - * This is the last buffer of the received packet. - * If the CRC is not stripped by the hardware: - * - Subtract the CRC length from the total packet length. - * - If the last buffer only contains the whole CRC or a part - * of it, free the mbuf associated to the last buffer. - * If part of the CRC is also contained in the previous - * mbuf, subtract the length of that CRC part from the - * data length of the previous mbuf. - */ - rxm->next = NULL; - if (unlikely(rxq->crc_len > 0)) { - first_seg->pkt_len -= ETHER_CRC_LEN; - if (data_len <= ETHER_CRC_LEN) { - rte_pktmbuf_free_seg(rxm); - first_seg->nb_segs--; - last_seg->data_len = (uint16_t) - (last_seg->data_len - - (ETHER_CRC_LEN - data_len)); - last_seg->next = NULL; - } else - rxm->data_len = - (uint16_t) (data_len - ETHER_CRC_LEN); - } - - /* - * Initialize the first mbuf of the returned packet: - * - RX port identifier, - * - hardware offload data, if any: - * - IP checksum flag, - * - error flags. - */ - first_seg->port = rxq->port_id; - - first_seg->ol_flags = rx_desc_status_to_pkt_flags(status); - first_seg->ol_flags = first_seg->ol_flags | - rx_desc_error_to_pkt_flags(rxd.errors); - - /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ - rxm->vlan_tci = rte_le_to_cpu_16(rxd.special); - - /* Prefetch data of first segment, if configured to do so. */ - rte_packet_prefetch((char *)first_seg->buf_addr + - first_seg->data_off); - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = first_seg; - - /* - * Setup receipt context for a new packet. - */ - first_seg = NULL; - } - - /* - * Record index of the next RX descriptor to probe. - */ - rxq->rx_tail = rx_id; - - /* - * Save receive context. - */ - rxq->pkt_first_seg = first_seg; - rxq->pkt_last_seg = last_seg; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -/* - * Rings setup and release. - * - * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be - * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. - * This will also optimize cache line size effect. - * H/W supports up to cache line size 128. - */ -#define EM_ALIGN 128 - -/* - * Maximum number of Ring Descriptors. - * - * Since RDLEN/TDLEN should be multiple of 128 bytes, the number of ring - * desscriptors should meet the following condition: - * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 - */ -#define EM_MIN_RING_DESC 32 -#define EM_MAX_RING_DESC 4096 - -#define EM_MAX_BUF_SIZE 16384 -#define EM_RCTL_FLXBUF_STEP 1024 - -static const struct rte_memzone * -ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name, - uint16_t queue_id, uint32_t ring_size, int socket_id) -{ - const struct rte_memzone *mz; - char z_name[RTE_MEMZONE_NAMESIZE]; - - snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", - dev->driver->pci_drv.name, ring_name, dev->data->port_id, - queue_id); - - if ((mz = rte_memzone_lookup(z_name)) != 0) - return (mz); - -#ifdef RTE_LIBRTE_XEN_DOM0 - return rte_memzone_reserve_bounded(z_name, ring_size, - socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M); -#else - return rte_memzone_reserve(z_name, ring_size, socket_id, 0); -#endif -} - -static void -em_tx_queue_release_mbufs(struct em_tx_queue *txq) -{ - unsigned i; - - if (txq->sw_ring != NULL) { - for (i = 0; i != txq->nb_tx_desc; i++) { - if (txq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); - txq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -em_tx_queue_release(struct em_tx_queue *txq) -{ - if (txq != NULL) { - em_tx_queue_release_mbufs(txq); - rte_free(txq->sw_ring); - rte_free(txq); - } -} - -void -eth_em_tx_queue_release(void *txq) -{ - em_tx_queue_release(txq); -} - -/* (Re)set dynamic em_tx_queue fields to defaults */ -static void -em_reset_tx_queue(struct em_tx_queue *txq) -{ - uint16_t i, nb_desc, prev; - static const struct e1000_data_desc txd_init = { - .upper.fields = {.status = E1000_TXD_STAT_DD}, - }; - - nb_desc = txq->nb_tx_desc; - - /* Initialize ring entries */ - - prev = (uint16_t) (nb_desc - 1); - - for (i = 0; i < nb_desc; i++) { - txq->tx_ring[i] = txd_init; - txq->sw_ring[i].mbuf = NULL; - txq->sw_ring[i].last_id = i; - txq->sw_ring[prev].next_id = i; - prev = i; - } - - /* - * Always allow 1 descriptor to be un-allocated to avoid - * a H/W race condition - */ - txq->nb_tx_free = (uint16_t)(nb_desc - 1); - txq->last_desc_cleaned = (uint16_t)(nb_desc - 1); - txq->nb_tx_used = 0; - txq->tx_tail = 0; - - memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache)); -} - -int -eth_em_tx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_txconf *tx_conf) -{ - const struct rte_memzone *tz; - struct em_tx_queue *txq; - struct e1000_hw *hw; - uint32_t tsize; - uint16_t tx_rs_thresh, tx_free_thresh; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of transmit descriptors. - * It must not exceed hardware maximum, and must be multiple - * of EM_ALIGN. - */ - if (((nb_desc * sizeof(*txq->tx_ring)) % EM_ALIGN) != 0 || - (nb_desc > EM_MAX_RING_DESC) || - (nb_desc < EM_MIN_RING_DESC)) { - return -(EINVAL); - } - - tx_free_thresh = tx_conf->tx_free_thresh; - if (tx_free_thresh == 0) - tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4, - DEFAULT_TX_FREE_THRESH); - - tx_rs_thresh = tx_conf->tx_rs_thresh; - if (tx_rs_thresh == 0) - tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh, - DEFAULT_TX_RS_THRESH); - - if (tx_free_thresh >= (nb_desc - 3)) { - PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the " - "number of TX descriptors minus 3. " - "(tx_free_thresh=%u port=%d queue=%d)", - (unsigned int)tx_free_thresh, - (int)dev->data->port_id, (int)queue_idx); - return -(EINVAL); - } - if (tx_rs_thresh > tx_free_thresh) { - PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to " - "tx_free_thresh. (tx_free_thresh=%u " - "tx_rs_thresh=%u port=%d queue=%d)", - (unsigned int)tx_free_thresh, - (unsigned int)tx_rs_thresh, - (int)dev->data->port_id, - (int)queue_idx); - return -(EINVAL); - } - - /* - * If rs_bit_thresh is greater than 1, then TX WTHRESH should be - * set to 0. If WTHRESH is greater than zero, the RS bit is ignored - * by the NIC and all descriptors are written back after the NIC - * accumulates WTHRESH descriptors. - */ - if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) { - PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if " - "tx_rs_thresh is greater than 1. (tx_rs_thresh=%u " - "port=%d queue=%d)", (unsigned int)tx_rs_thresh, - (int)dev->data->port_id, (int)queue_idx); - return -(EINVAL); - } - - /* Free memory prior to re-allocation if needed... */ - if (dev->data->tx_queues[queue_idx] != NULL) { - em_tx_queue_release(dev->data->tx_queues[queue_idx]); - dev->data->tx_queues[queue_idx] = NULL; - } - - /* - * Allocate TX ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - tsize = sizeof (txq->tx_ring[0]) * EM_MAX_RING_DESC; - if ((tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize, - socket_id)) == NULL) - return (-ENOMEM); - - /* Allocate the tx queue data structure. */ - if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq), - RTE_CACHE_LINE_SIZE)) == NULL) - return (-ENOMEM); - - /* Allocate software ring */ - if ((txq->sw_ring = rte_zmalloc("txq->sw_ring", - sizeof(txq->sw_ring[0]) * nb_desc, - RTE_CACHE_LINE_SIZE)) == NULL) { - em_tx_queue_release(txq); - return (-ENOMEM); - } - - txq->nb_tx_desc = nb_desc; - txq->tx_free_thresh = tx_free_thresh; - txq->tx_rs_thresh = tx_rs_thresh; - txq->pthresh = tx_conf->tx_thresh.pthresh; - txq->hthresh = tx_conf->tx_thresh.hthresh; - txq->wthresh = tx_conf->tx_thresh.wthresh; - txq->queue_id = queue_idx; - txq->port_id = dev->data->port_id; - - txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx)); -#ifndef RTE_LIBRTE_XEN_DOM0 - txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr; -#else - txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); -#endif - txq->tx_ring = (struct e1000_data_desc *) tz->addr; - - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); - - em_reset_tx_queue(txq); - - dev->data->tx_queues[queue_idx] = txq; - return (0); -} - -static void -em_rx_queue_release_mbufs(struct em_rx_queue *rxq) -{ - unsigned i; - - if (rxq->sw_ring != NULL) { - for (i = 0; i != rxq->nb_rx_desc; i++) { - if (rxq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); - rxq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -em_rx_queue_release(struct em_rx_queue *rxq) -{ - if (rxq != NULL) { - em_rx_queue_release_mbufs(rxq); - rte_free(rxq->sw_ring); - rte_free(rxq); - } -} - -void -eth_em_rx_queue_release(void *rxq) -{ - em_rx_queue_release(rxq); -} - -/* Reset dynamic em_rx_queue fields back to defaults */ -static void -em_reset_rx_queue(struct em_rx_queue *rxq) -{ - rxq->rx_tail = 0; - rxq->nb_rx_hold = 0; - rxq->pkt_first_seg = NULL; - rxq->pkt_last_seg = NULL; -} - -int -eth_em_rx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mp) -{ - const struct rte_memzone *rz; - struct em_rx_queue *rxq; - struct e1000_hw *hw; - uint32_t rsize; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of receive descriptors. - * It must not exceed hardware maximum, and must be multiple - * of EM_ALIGN. - */ - if (((nb_desc * sizeof(rxq->rx_ring[0])) % EM_ALIGN) != 0 || - (nb_desc > EM_MAX_RING_DESC) || - (nb_desc < EM_MIN_RING_DESC)) { - return (-EINVAL); - } - - /* - * EM devices don't support drop_en functionality - */ - if (rx_conf->rx_drop_en) { - PMD_INIT_LOG(ERR, "drop_en functionality not supported by " - "device"); - return (-EINVAL); - } - - /* Free memory prior to re-allocation if needed. */ - if (dev->data->rx_queues[queue_idx] != NULL) { - em_rx_queue_release(dev->data->rx_queues[queue_idx]); - dev->data->rx_queues[queue_idx] = NULL; - } - - /* Allocate RX ring for max possible mumber of hardware descriptors. */ - rsize = sizeof (rxq->rx_ring[0]) * EM_MAX_RING_DESC; - if ((rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize, - socket_id)) == NULL) - return (-ENOMEM); - - /* Allocate the RX queue data structure. */ - if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq), - RTE_CACHE_LINE_SIZE)) == NULL) - return (-ENOMEM); - - /* Allocate software ring. */ - if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring", - sizeof (rxq->sw_ring[0]) * nb_desc, - RTE_CACHE_LINE_SIZE)) == NULL) { - em_rx_queue_release(rxq); - return (-ENOMEM); - } - - rxq->mb_pool = mp; - rxq->nb_rx_desc = nb_desc; - rxq->pthresh = rx_conf->rx_thresh.pthresh; - rxq->hthresh = rx_conf->rx_thresh.hthresh; - rxq->wthresh = rx_conf->rx_thresh.wthresh; - rxq->rx_free_thresh = rx_conf->rx_free_thresh; - rxq->queue_id = queue_idx; - rxq->port_id = dev->data->port_id; - rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? - 0 : ETHER_CRC_LEN); - - rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx)); - rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx)); -#ifndef RTE_LIBRTE_XEN_DOM0 - rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr; -#else - rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); -#endif - rxq->rx_ring = (struct e1000_rx_desc *) rz->addr; - - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); - - dev->data->rx_queues[queue_idx] = rxq; - em_reset_rx_queue(rxq); - - return (0); -} - -uint32_t -eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) -{ -#define EM_RXQ_SCAN_INTERVAL 4 - volatile struct e1000_rx_desc *rxdp; - struct em_rx_queue *rxq; - uint32_t desc = 0; - - if (rx_queue_id >= dev->data->nb_rx_queues) { - PMD_RX_LOG(DEBUG, "Invalid RX queue_id=%d", rx_queue_id); - return 0; - } - - rxq = dev->data->rx_queues[rx_queue_id]; - rxdp = &(rxq->rx_ring[rxq->rx_tail]); - - while ((desc < rxq->nb_rx_desc) && - (rxdp->status & E1000_RXD_STAT_DD)) { - desc += EM_RXQ_SCAN_INTERVAL; - rxdp += EM_RXQ_SCAN_INTERVAL; - if (rxq->rx_tail + desc >= rxq->nb_rx_desc) - rxdp = &(rxq->rx_ring[rxq->rx_tail + - desc - rxq->nb_rx_desc]); - } - - return desc; -} - -int -eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset) -{ - volatile struct e1000_rx_desc *rxdp; - struct em_rx_queue *rxq = rx_queue; - uint32_t desc; - - if (unlikely(offset >= rxq->nb_rx_desc)) - return 0; - desc = rxq->rx_tail + offset; - if (desc >= rxq->nb_rx_desc) - desc -= rxq->nb_rx_desc; - - rxdp = &rxq->rx_ring[desc]; - return !!(rxdp->status & E1000_RXD_STAT_DD); -} - -void -em_dev_clear_queues(struct rte_eth_dev *dev) -{ - uint16_t i; - struct em_tx_queue *txq; - struct em_rx_queue *rxq; - - for (i = 0; i < dev->data->nb_tx_queues; i++) { - txq = dev->data->tx_queues[i]; - if (txq != NULL) { - em_tx_queue_release_mbufs(txq); - em_reset_tx_queue(txq); - } - } - - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - if (rxq != NULL) { - em_rx_queue_release_mbufs(rxq); - em_reset_rx_queue(rxq); - } - } -} - -/* - * Takes as input/output parameter RX buffer size. - * Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register. - */ -static uint32_t -em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz) -{ - /* - * For BSIZE & BSEX all configurable sizes are: - * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); - * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); - * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); - * 2048: rctl |= E1000_RCTL_SZ_2048; - * 1024: rctl |= E1000_RCTL_SZ_1024; - * 512: rctl |= E1000_RCTL_SZ_512; - * 256: rctl |= E1000_RCTL_SZ_256; - */ - static const struct { - uint32_t bufsz; - uint32_t rctl; - } bufsz_to_rctl[] = { - {16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)}, - {8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)}, - {4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)}, - {2048, E1000_RCTL_SZ_2048}, - {1024, E1000_RCTL_SZ_1024}, - {512, E1000_RCTL_SZ_512}, - {256, E1000_RCTL_SZ_256}, - }; - - int i; - uint32_t rctl_bsize; - - rctl_bsize = *bufsz; - - /* - * Starting from 82571 it is possible to specify RX buffer size - * by RCTL.FLXBUF. When this field is different from zero, the - * RX buffer size = RCTL.FLXBUF * 1K - * (e.g. t is possible to specify RX buffer size 1,2,...,15KB). - * It is working ok on real HW, but by some reason doesn't work - * on VMware emulated 82574L. - * So for now, always use BSIZE/BSEX to setup RX buffer size. - * If you don't plan to use it on VMware emulated 82574L and - * would like to specify RX buffer size in 1K granularity, - * uncomment the following lines: - * *************************************************************** - * if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 && - * rctl_bsize >= EM_RCTL_FLXBUF_STEP) { - * rctl_bsize /= EM_RCTL_FLXBUF_STEP; - * *bufsz = rctl_bsize; - * return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT & - * E1000_RCTL_FLXBUF_MASK); - * } - * *************************************************************** - */ - - for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]); - i++) { - if (rctl_bsize >= bufsz_to_rctl[i].bufsz) { - *bufsz = bufsz_to_rctl[i].bufsz; - return (bufsz_to_rctl[i].rctl); - } - } - - /* Should never happen. */ - return (-EINVAL); -} - -static int -em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq) -{ - struct em_rx_entry *rxe = rxq->sw_ring; - uint64_t dma_addr; - unsigned i; - static const struct e1000_rx_desc rxd_init = { - .buffer_addr = 0, - }; - - /* Initialize software ring entries */ - for (i = 0; i < rxq->nb_rx_desc; i++) { - volatile struct e1000_rx_desc *rxd; - struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool); - - if (mbuf == NULL) { - PMD_INIT_LOG(ERR, "RX mbuf alloc failed " - "queue_id=%hu", rxq->queue_id); - return (-ENOMEM); - } - - dma_addr = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf)); - - /* Clear HW ring memory */ - rxq->rx_ring[i] = rxd_init; - - rxd = &rxq->rx_ring[i]; - rxd->buffer_addr = dma_addr; - rxe[i].mbuf = mbuf; - } - - return 0; -} - -/********************************************************************* - * - * Enable receive unit. - * - **********************************************************************/ -int -eth_em_rx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct em_rx_queue *rxq; - uint32_t rctl; - uint32_t rfctl; - uint32_t rxcsum; - uint32_t rctl_bsize; - uint16_t i; - int ret; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Make sure receives are disabled while setting - * up the descriptor ring. - */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); - - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - - /* Disable extended descriptor type. */ - rfctl &= ~E1000_RFCTL_EXTEN; - /* Disable accelerated acknowledge */ - if (hw->mac.type == e1000_82574) - rfctl |= E1000_RFCTL_ACK_DIS; - - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); - - /* - * XXX TEMPORARY WORKAROUND: on some systems with 82573 - * long latencies are observed, like Lenovo X60. This - * change eliminates the problem, but since having positive - * values in RDTR is a known source of problems on other - * platforms another solution is being sought. - */ - if (hw->mac.type == e1000_82573) - E1000_WRITE_REG(hw, E1000_RDTR, 0x20); - - dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts; - - /* Determine RX bufsize. */ - rctl_bsize = EM_MAX_BUF_SIZE; - for (i = 0; i < dev->data->nb_rx_queues; i++) { - struct rte_pktmbuf_pool_private *mbp_priv; - uint32_t buf_size; - - rxq = dev->data->rx_queues[i]; - mbp_priv = rte_mempool_get_priv(rxq->mb_pool); - buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM; - rctl_bsize = RTE_MIN(rctl_bsize, buf_size); - } - - rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize); - - /* Configure and enable each RX queue. */ - for (i = 0; i < dev->data->nb_rx_queues; i++) { - uint64_t bus_addr; - uint32_t rxdctl; - - rxq = dev->data->rx_queues[i]; - - /* Allocate buffers for descriptor rings and setup queue */ - ret = em_alloc_rx_queue_mbufs(rxq); - if (ret) - return ret; - - /* - * Reset crc_len in case it was changed after queue setup by a - * call to configure - */ - rxq->crc_len = - (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ? - 0 : ETHER_CRC_LEN); - - bus_addr = rxq->rx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_RDLEN(i), - rxq->nb_rx_desc * - sizeof(*rxq->rx_ring)); - E1000_WRITE_REG(hw, E1000_RDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); - - E1000_WRITE_REG(hw, E1000_RDH(i), 0); - E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); - - rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); - rxdctl &= 0xFE000000; - rxdctl |= rxq->pthresh & 0x3F; - rxdctl |= (rxq->hthresh & 0x3F) << 8; - rxdctl |= (rxq->wthresh & 0x3F) << 16; - rxdctl |= E1000_RXDCTL_GRAN; - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); - - /* - * Due to EM devices not having any sort of hardware - * limit for packet length, jumbo frame of any size - * can be accepted, thus we have to enable scattered - * rx if jumbo frames are enabled (or if buffer size - * is too small to accommodate non-jumbo packets) - * to avoid splitting packets that don't fit into - * one buffer. - */ - if (dev->data->dev_conf.rxmode.jumbo_frame || - rctl_bsize < ETHER_MAX_LEN) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = - (eth_rx_burst_t)eth_em_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - } - - if (dev->data->dev_conf.rxmode.enable_scatter) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_em_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* - * Setup the Checksum Register. - * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. - */ - rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); - - if (dev->data->dev_conf.rxmode.hw_ip_checksum) - rxcsum |= E1000_RXCSUM_IPOFL; - else - rxcsum &= ~E1000_RXCSUM_IPOFL; - E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); - - /* No MRQ or RSS support for now */ - - /* Set early receive threshold on appropriate hw */ - if ((hw->mac.type == e1000_ich9lan || - hw->mac.type == e1000_pch2lan || - hw->mac.type == e1000_ich10lan) && - dev->data->dev_conf.rxmode.jumbo_frame == 1) { - u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0)); - E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3); - E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13)); - } - - if (hw->mac.type == e1000_pch2lan) { - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) - e1000_lv_jumbo_workaround_ich8lan(hw, TRUE); - else - e1000_lv_jumbo_workaround_ich8lan(hw, FALSE); - } - - /* Setup the Receive Control Register. */ - if (dev->data->dev_conf.rxmode.hw_strip_crc) - rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ - else - rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | - E1000_RCTL_RDMTS_HALF | - (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - - /* Make sure VLAN Filters are off. */ - rctl &= ~E1000_RCTL_VFE; - /* Don't store bad packets. */ - rctl &= ~E1000_RCTL_SBP; - /* Legacy descriptor type. */ - rctl &= ~E1000_RCTL_DTYP_MASK; - - /* - * Configure support of jumbo frames, if any. - */ - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) - rctl |= E1000_RCTL_LPE; - else - rctl &= ~E1000_RCTL_LPE; - - /* Enable Receives. */ - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - return 0; -} - -/********************************************************************* - * - * Enable transmit unit. - * - **********************************************************************/ -void -eth_em_tx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct em_tx_queue *txq; - uint32_t tctl; - uint32_t txdctl; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Setup the Base and Length of the Tx Descriptor Rings. */ - for (i = 0; i < dev->data->nb_tx_queues; i++) { - uint64_t bus_addr; - - txq = dev->data->tx_queues[i]; - bus_addr = txq->tx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_TDLEN(i), - txq->nb_tx_desc * - sizeof(*txq->tx_ring)); - E1000_WRITE_REG(hw, E1000_TDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); - - /* Setup the HW Tx Head and Tail descriptor pointers. */ - E1000_WRITE_REG(hw, E1000_TDT(i), 0); - E1000_WRITE_REG(hw, E1000_TDH(i), 0); - - /* Setup Transmit threshold registers. */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); - /* - * bit 22 is reserved, on some models should always be 0, - * on others - always 1. - */ - txdctl &= E1000_TXDCTL_COUNT_DESC; - txdctl |= txq->pthresh & 0x3F; - txdctl |= (txq->hthresh & 0x3F) << 8; - txdctl |= (txq->wthresh & 0x3F) << 16; - txdctl |= E1000_TXDCTL_GRAN; - E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); - } - - /* Program the Transmit Control Register. */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); - - /* This write will effectively turn on the transmit unit. */ - E1000_WRITE_REG(hw, E1000_TCTL, tctl); -} - diff --git a/src/dpdk_lib18/librte_pmd_e1000/igb_ethdev.c b/src/dpdk_lib18/librte_pmd_e1000/igb_ethdev.c deleted file mode 100755 index 0cebf985..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/igb_ethdev.c +++ /dev/null @@ -1,3164 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/queue.h> -#include <stdio.h> -#include <errno.h> -#include <stdint.h> -#include <stdarg.h> - -#include <rte_common.h> -#include <rte_interrupts.h> -#include <rte_byteorder.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_pci.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_memory.h> -#include <rte_memzone.h> -#include <rte_tailq.h> -#include <rte_eal.h> -#include <rte_atomic.h> -#include <rte_malloc.h> -#include <rte_dev.h> - -#include "e1000_logs.h" -#include "e1000/e1000_api.h" -#include "e1000_ethdev.h" - -/* - * Default values for port configuration - */ -#define IGB_DEFAULT_RX_FREE_THRESH 32 -#define IGB_DEFAULT_RX_PTHRESH 8 -#define IGB_DEFAULT_RX_HTHRESH 8 -#define IGB_DEFAULT_RX_WTHRESH 0 - -#define IGB_DEFAULT_TX_PTHRESH 32 -#define IGB_DEFAULT_TX_HTHRESH 0 -#define IGB_DEFAULT_TX_WTHRESH 0 - -/* Bit shift and mask */ -#define IGB_4_BIT_WIDTH (CHAR_BIT / 2) -#define IGB_4_BIT_MASK RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t) -#define IGB_8_BIT_WIDTH CHAR_BIT -#define IGB_8_BIT_MASK UINT8_MAX - -static int eth_igb_configure(struct rte_eth_dev *dev); -static int eth_igb_start(struct rte_eth_dev *dev); -static void eth_igb_stop(struct rte_eth_dev *dev); -static void eth_igb_close(struct rte_eth_dev *dev); -static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev); -static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev); -static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev); -static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev); -static int eth_igb_link_update(struct rte_eth_dev *dev, - int wait_to_complete); -static void eth_igb_stats_get(struct rte_eth_dev *dev, - struct rte_eth_stats *rte_stats); -static void eth_igb_stats_reset(struct rte_eth_dev *dev); -static void eth_igb_infos_get(struct rte_eth_dev *dev, - struct rte_eth_dev_info *dev_info); -static void eth_igbvf_infos_get(struct rte_eth_dev *dev, - struct rte_eth_dev_info *dev_info); -static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, - struct rte_eth_fc_conf *fc_conf); -static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, - struct rte_eth_fc_conf *fc_conf); -static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev); -static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev); -static int eth_igb_interrupt_action(struct rte_eth_dev *dev); -static void eth_igb_interrupt_handler(struct rte_intr_handle *handle, - void *param); -static int igb_hardware_init(struct e1000_hw *hw); -static void igb_hw_control_acquire(struct e1000_hw *hw); -static void igb_hw_control_release(struct e1000_hw *hw); -static void igb_init_manageability(struct e1000_hw *hw); -static void igb_release_manageability(struct e1000_hw *hw); - -static int eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu); - -static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev, - uint16_t vlan_id, int on); -static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id); -static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask); - -static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev); -static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev); -static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev); -static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev); -static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev); -static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev); - -static int eth_igb_led_on(struct rte_eth_dev *dev); -static int eth_igb_led_off(struct rte_eth_dev *dev); - -static void igb_intr_disable(struct e1000_hw *hw); -static int igb_get_rx_buffer_size(struct e1000_hw *hw); -static void eth_igb_rar_set(struct rte_eth_dev *dev, - struct ether_addr *mac_addr, - uint32_t index, uint32_t pool); -static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index); - -static void igbvf_intr_disable(struct e1000_hw *hw); -static int igbvf_dev_configure(struct rte_eth_dev *dev); -static int igbvf_dev_start(struct rte_eth_dev *dev); -static void igbvf_dev_stop(struct rte_eth_dev *dev); -static void igbvf_dev_close(struct rte_eth_dev *dev); -static int eth_igbvf_link_update(struct e1000_hw *hw); -static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats); -static void eth_igbvf_stats_reset(struct rte_eth_dev *dev); -static int igbvf_vlan_filter_set(struct rte_eth_dev *dev, - uint16_t vlan_id, int on); -static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on); -static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on); -static int eth_igb_rss_reta_update(struct rte_eth_dev *dev, - struct rte_eth_rss_reta_entry64 *reta_conf, - uint16_t reta_size); -static int eth_igb_rss_reta_query(struct rte_eth_dev *dev, - struct rte_eth_rss_reta_entry64 *reta_conf, - uint16_t reta_size); -static int eth_igb_add_syn_filter(struct rte_eth_dev *dev, - struct rte_syn_filter *filter, uint16_t rx_queue); -static int eth_igb_remove_syn_filter(struct rte_eth_dev *dev); -static int eth_igb_get_syn_filter(struct rte_eth_dev *dev, - struct rte_syn_filter *filter, uint16_t *rx_queue); -static int eth_igb_add_ethertype_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_ethertype_filter *filter, uint16_t rx_queue); -static int eth_igb_remove_ethertype_filter(struct rte_eth_dev *dev, - uint16_t index); -static int eth_igb_get_ethertype_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_ethertype_filter *filter, uint16_t *rx_queue); -static int eth_igb_add_2tuple_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_2tuple_filter *filter, uint16_t rx_queue); -static int eth_igb_remove_2tuple_filter(struct rte_eth_dev *dev, - uint16_t index); -static int eth_igb_get_2tuple_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_2tuple_filter *filter, uint16_t *rx_queue); -static int eth_igb_add_flex_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_flex_filter *filter, uint16_t rx_queue); -static int eth_igb_remove_flex_filter(struct rte_eth_dev *dev, - uint16_t index); -static int eth_igb_get_flex_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_flex_filter *filter, uint16_t *rx_queue); -static int eth_igb_add_5tuple_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_5tuple_filter *filter, uint16_t rx_queue); -static int eth_igb_remove_5tuple_filter(struct rte_eth_dev *dev, - uint16_t index); -static int eth_igb_get_5tuple_filter(struct rte_eth_dev *dev, - uint16_t index, - struct rte_5tuple_filter *filter, uint16_t *rx_queue); - -/* - * Define VF Stats MACRO for Non "cleared on read" register - */ -#define UPDATE_VF_STAT(reg, last, cur) \ -{ \ - u32 latest = E1000_READ_REG(hw, reg); \ - cur += latest - last; \ - last = latest; \ -} - - -#define IGB_FC_PAUSE_TIME 0x0680 -#define IGB_LINK_UPDATE_CHECK_TIMEOUT 10 /* 9s */ -#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */ - - -#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */ - -static enum e1000_fc_mode igb_fc_setting = e1000_fc_full; - -/* - * The set of PCI devices this driver supports - */ -static struct rte_pci_id pci_id_igb_map[] = { - -#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)}, -#include "rte_pci_dev_ids.h" - -{.device_id = 0}, -}; - -/* - * The set of PCI devices this driver supports (for 82576&I350 VF) - */ -static struct rte_pci_id pci_id_igbvf_map[] = { - -#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)}, -#include "rte_pci_dev_ids.h" - -{.device_id = 0}, -}; - -static struct eth_dev_ops eth_igb_ops = { - .dev_configure = eth_igb_configure, - .dev_start = eth_igb_start, - .dev_stop = eth_igb_stop, - .dev_close = eth_igb_close, - .promiscuous_enable = eth_igb_promiscuous_enable, - .promiscuous_disable = eth_igb_promiscuous_disable, - .allmulticast_enable = eth_igb_allmulticast_enable, - .allmulticast_disable = eth_igb_allmulticast_disable, - .link_update = eth_igb_link_update, - .stats_get = eth_igb_stats_get, - .stats_reset = eth_igb_stats_reset, - .dev_infos_get = eth_igb_infos_get, - .mtu_set = eth_igb_mtu_set, - .vlan_filter_set = eth_igb_vlan_filter_set, - .vlan_tpid_set = eth_igb_vlan_tpid_set, - .vlan_offload_set = eth_igb_vlan_offload_set, - .rx_queue_setup = eth_igb_rx_queue_setup, - .rx_queue_release = eth_igb_rx_queue_release, - .rx_queue_count = eth_igb_rx_queue_count, - .rx_descriptor_done = eth_igb_rx_descriptor_done, - .tx_queue_setup = eth_igb_tx_queue_setup, - .tx_queue_release = eth_igb_tx_queue_release, - .dev_led_on = eth_igb_led_on, - .dev_led_off = eth_igb_led_off, - .flow_ctrl_get = eth_igb_flow_ctrl_get, - .flow_ctrl_set = eth_igb_flow_ctrl_set, - .mac_addr_add = eth_igb_rar_set, - .mac_addr_remove = eth_igb_rar_clear, - .reta_update = eth_igb_rss_reta_update, - .reta_query = eth_igb_rss_reta_query, - .rss_hash_update = eth_igb_rss_hash_update, - .rss_hash_conf_get = eth_igb_rss_hash_conf_get, - .add_syn_filter = eth_igb_add_syn_filter, - .remove_syn_filter = eth_igb_remove_syn_filter, - .get_syn_filter = eth_igb_get_syn_filter, - .add_ethertype_filter = eth_igb_add_ethertype_filter, - .remove_ethertype_filter = eth_igb_remove_ethertype_filter, - .get_ethertype_filter = eth_igb_get_ethertype_filter, - .add_2tuple_filter = eth_igb_add_2tuple_filter, - .remove_2tuple_filter = eth_igb_remove_2tuple_filter, - .get_2tuple_filter = eth_igb_get_2tuple_filter, - .add_flex_filter = eth_igb_add_flex_filter, - .remove_flex_filter = eth_igb_remove_flex_filter, - .get_flex_filter = eth_igb_get_flex_filter, - .add_5tuple_filter = eth_igb_add_5tuple_filter, - .remove_5tuple_filter = eth_igb_remove_5tuple_filter, - .get_5tuple_filter = eth_igb_get_5tuple_filter, -}; - -/* - * dev_ops for virtual function, bare necessities for basic vf - * operation have been implemented - */ -static struct eth_dev_ops igbvf_eth_dev_ops = { - .dev_configure = igbvf_dev_configure, - .dev_start = igbvf_dev_start, - .dev_stop = igbvf_dev_stop, - .dev_close = igbvf_dev_close, - .link_update = eth_igb_link_update, - .stats_get = eth_igbvf_stats_get, - .stats_reset = eth_igbvf_stats_reset, - .vlan_filter_set = igbvf_vlan_filter_set, - .dev_infos_get = eth_igbvf_infos_get, - .rx_queue_setup = eth_igb_rx_queue_setup, - .rx_queue_release = eth_igb_rx_queue_release, - .tx_queue_setup = eth_igb_tx_queue_setup, - .tx_queue_release = eth_igb_tx_queue_release, -}; - -/** - * Atomically reads the link status information from global - * structure rte_eth_dev. - * - * @param dev - * - Pointer to the structure rte_eth_dev to read from. - * - Pointer to the buffer to be saved with the link status. - * - * @return - * - On success, zero. - * - On failure, negative value. - */ -static inline int -rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev, - struct rte_eth_link *link) -{ - struct rte_eth_link *dst = link; - struct rte_eth_link *src = &(dev->data->dev_link); - - if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, - *(uint64_t *)src) == 0) - return -1; - - return 0; -} - -/** - * Atomically writes the link status information into global - * structure rte_eth_dev. - * - * @param dev - * - Pointer to the structure rte_eth_dev to read from. - * - Pointer to the buffer to be saved with the link status. - * - * @return - * - On success, zero. - * - On failure, negative value. - */ -static inline int -rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev, - struct rte_eth_link *link) -{ - struct rte_eth_link *dst = &(dev->data->dev_link); - struct rte_eth_link *src = link; - - if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst, - *(uint64_t *)src) == 0) - return -1; - - return 0; -} - -static inline void -igb_intr_enable(struct rte_eth_dev *dev) -{ - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - E1000_WRITE_REG(hw, E1000_IMS, intr->mask); - E1000_WRITE_FLUSH(hw); -} - -static void -igb_intr_disable(struct e1000_hw *hw) -{ - E1000_WRITE_REG(hw, E1000_IMC, ~0); - E1000_WRITE_FLUSH(hw); -} - -static inline int32_t -igb_pf_reset_hw(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - int32_t status; - - status = e1000_reset_hw(hw); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - /* Set PF Reset Done bit so PF/VF Mail Ops can work */ - ctrl_ext |= E1000_CTRL_EXT_PFRSTD; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - return status; -} - -static void -igb_identify_hardware(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - hw->vendor_id = dev->pci_dev->id.vendor_id; - hw->device_id = dev->pci_dev->id.device_id; - hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id; - hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id; - - e1000_set_mac_type(hw); - - /* need to check if it is a vf device below */ -} - -static int -igb_reset_swfw_lock(struct e1000_hw *hw) -{ - int ret_val; - - /* - * Do mac ops initialization manually here, since we will need - * some function pointers set by this call. - */ - ret_val = e1000_init_mac_params(hw); - if (ret_val) - return ret_val; - - /* - * SMBI lock should not fail in this early stage. If this is the case, - * it is due to an improper exit of the application. - * So force the release of the faulty lock. - */ - if (e1000_get_hw_semaphore_generic(hw) < 0) { - PMD_DRV_LOG(DEBUG, "SMBI lock released"); - } - e1000_put_hw_semaphore_generic(hw); - - if (hw->mac.ops.acquire_swfw_sync != NULL) { - uint16_t mask; - - /* - * Phy lock should not fail in this early stage. If this is the case, - * it is due to an improper exit of the application. - * So force the release of the faulty lock. - */ - mask = E1000_SWFW_PHY0_SM << hw->bus.func; - if (hw->bus.func > E1000_FUNC_1) - mask <<= 2; - if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { - PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released", - hw->bus.func); - } - hw->mac.ops.release_swfw_sync(hw, mask); - - /* - * This one is more tricky since it is common to all ports; but - * swfw_sync retries last long enough (1s) to be almost sure that if - * lock can not be taken it is due to an improper lock of the - * semaphore. - */ - mask = E1000_SWFW_EEP_SM; - if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) { - PMD_DRV_LOG(DEBUG, "SWFW common locks released"); - } - hw->mac.ops.release_swfw_sync(hw, mask); - } - - return E1000_SUCCESS; -} - -static int -eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv, - struct rte_eth_dev *eth_dev) -{ - int error = 0; - struct rte_pci_device *pci_dev; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private); - uint32_t ctrl_ext; - - pci_dev = eth_dev->pci_dev; - eth_dev->dev_ops = ð_igb_ops; - eth_dev->rx_pkt_burst = ð_igb_recv_pkts; - eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; - - /* for secondary processes, we don't initialise any further as primary - * has already done this work. Only check we don't need a different - * RX function */ - if (rte_eal_process_type() != RTE_PROC_PRIMARY){ - if (eth_dev->data->scattered_rx) - eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; - return 0; - } - - hw->hw_addr= (void *)pci_dev->mem_resource[0].addr; - - igb_identify_hardware(eth_dev); - if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) { - error = -EIO; - goto err_late; - } - - e1000_get_bus_info(hw); - - /* Reset any pending lock */ - if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) { - error = -EIO; - goto err_late; - } - - /* Finish initialization */ - if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) { - error = -EIO; - goto err_late; - } - - hw->mac.autoneg = 1; - hw->phy.autoneg_wait_to_complete = 0; - hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; - - /* Copper options */ - if (hw->phy.media_type == e1000_media_type_copper) { - hw->phy.mdix = 0; /* AUTO_ALL_MODES */ - hw->phy.disable_polarity_correction = 0; - hw->phy.ms_type = e1000_ms_hw_default; - } - - /* - * Start from a known state, this is important in reading the nvm - * and mac from that. - */ - igb_pf_reset_hw(hw); - - /* Make sure we have a good EEPROM before we read from it */ - if (e1000_validate_nvm_checksum(hw) < 0) { - /* - * Some PCI-E parts fail the first check due to - * the link being in sleep state, call it again, - * if it fails a second time its a real issue. - */ - if (e1000_validate_nvm_checksum(hw) < 0) { - PMD_INIT_LOG(ERR, "EEPROM checksum invalid"); - error = -EIO; - goto err_late; - } - } - - /* Read the permanent MAC address out of the EEPROM */ - if (e1000_read_mac_addr(hw) != 0) { - PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address"); - error = -EIO; - goto err_late; - } - - /* Allocate memory for storing MAC addresses */ - eth_dev->data->mac_addrs = rte_zmalloc("e1000", - ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0); - if (eth_dev->data->mac_addrs == NULL) { - PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to " - "store MAC addresses", - ETHER_ADDR_LEN * hw->mac.rar_entry_count); - error = -ENOMEM; - goto err_late; - } - - /* Copy the permanent MAC address */ - ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]); - - /* initialize the vfta */ - memset(shadow_vfta, 0, sizeof(*shadow_vfta)); - - /* Now initialize the hardware */ - if (igb_hardware_init(hw) != 0) { - PMD_INIT_LOG(ERR, "Hardware initialization failed"); - rte_free(eth_dev->data->mac_addrs); - eth_dev->data->mac_addrs = NULL; - error = -ENODEV; - goto err_late; - } - hw->mac.get_link_status = 1; - - /* Indicate SOL/IDER usage */ - if (e1000_check_reset_block(hw) < 0) { - PMD_INIT_LOG(ERR, "PHY reset is blocked due to" - "SOL/IDER session"); - } - - /* initialize PF if max_vfs not zero */ - igb_pf_host_init(eth_dev); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - /* Set PF Reset Done bit so PF/VF Mail Ops can work */ - ctrl_ext |= E1000_CTRL_EXT_PFRSTD; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x", - eth_dev->data->port_id, pci_dev->id.vendor_id, - pci_dev->id.device_id); - - rte_intr_callback_register(&(pci_dev->intr_handle), - eth_igb_interrupt_handler, (void *)eth_dev); - - /* enable uio intr after callback register */ - rte_intr_enable(&(pci_dev->intr_handle)); - - /* enable support intr */ - igb_intr_enable(eth_dev); - - return 0; - -err_late: - igb_hw_control_release(hw); - - return (error); -} - -/* - * Virtual Function device init - */ -static int -eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv, - struct rte_eth_dev *eth_dev) -{ - struct rte_pci_device *pci_dev; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - int diag; - - PMD_INIT_FUNC_TRACE(); - - eth_dev->dev_ops = &igbvf_eth_dev_ops; - eth_dev->rx_pkt_burst = ð_igb_recv_pkts; - eth_dev->tx_pkt_burst = ð_igb_xmit_pkts; - - /* for secondary processes, we don't initialise any further as primary - * has already done this work. Only check we don't need a different - * RX function */ - if (rte_eal_process_type() != RTE_PROC_PRIMARY){ - if (eth_dev->data->scattered_rx) - eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts; - return 0; - } - - pci_dev = eth_dev->pci_dev; - - hw->device_id = pci_dev->id.device_id; - hw->vendor_id = pci_dev->id.vendor_id; - hw->hw_addr = (void *)pci_dev->mem_resource[0].addr; - - /* Initialize the shared code (base driver) */ - diag = e1000_setup_init_funcs(hw, TRUE); - if (diag != 0) { - PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d", - diag); - return -EIO; - } - - /* init_mailbox_params */ - hw->mbx.ops.init_params(hw); - - /* Disable the interrupts for VF */ - igbvf_intr_disable(hw); - - diag = hw->mac.ops.reset_hw(hw); - - /* Allocate memory for storing MAC addresses */ - eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN * - hw->mac.rar_entry_count, 0); - if (eth_dev->data->mac_addrs == NULL) { - PMD_INIT_LOG(ERR, - "Failed to allocate %d bytes needed to store MAC " - "addresses", - ETHER_ADDR_LEN * hw->mac.rar_entry_count); - return -ENOMEM; - } - - /* Copy the permanent MAC address */ - ether_addr_copy((struct ether_addr *) hw->mac.perm_addr, - ð_dev->data->mac_addrs[0]); - - PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x " - "mac.type=%s", - eth_dev->data->port_id, pci_dev->id.vendor_id, - pci_dev->id.device_id, "igb_mac_82576_vf"); - - return 0; -} - -static struct eth_driver rte_igb_pmd = { - { - .name = "rte_igb_pmd", - .id_table = pci_id_igb_map, - .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC, - }, - .eth_dev_init = eth_igb_dev_init, - .dev_private_size = sizeof(struct e1000_adapter), -}; - -/* - * virtual function driver struct - */ -static struct eth_driver rte_igbvf_pmd = { - { - .name = "rte_igbvf_pmd", - .id_table = pci_id_igbvf_map, - .drv_flags = RTE_PCI_DRV_NEED_MAPPING, - }, - .eth_dev_init = eth_igbvf_dev_init, - .dev_private_size = sizeof(struct e1000_adapter), -}; - -static int -rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused) -{ - rte_eth_driver_register(&rte_igb_pmd); - return 0; -} - -static void -igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - /* RCTL: enable VLAN filter since VMDq always use VLAN filter */ - uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -/* - * VF Driver initialization routine. - * Invoked one at EAL init time. - * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices. - */ -static int -rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused) -{ - PMD_INIT_FUNC_TRACE(); - - rte_eth_driver_register(&rte_igbvf_pmd); - return (0); -} - -static int -eth_igb_configure(struct rte_eth_dev *dev) -{ - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - PMD_INIT_FUNC_TRACE(); - intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; - PMD_INIT_FUNC_TRACE(); - - return (0); -} - -static int -eth_igb_start(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - int ret, i, mask; - uint32_t ctrl_ext; - - PMD_INIT_FUNC_TRACE(); - - /* Power up the phy. Needed to make the link go Up */ - e1000_power_up_phy(hw); - - /* - * Packet Buffer Allocation (PBA) - * Writing PBA sets the receive portion of the buffer - * the remainder is used for the transmit buffer. - */ - if (hw->mac.type == e1000_82575) { - uint32_t pba; - - pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ - E1000_WRITE_REG(hw, E1000_PBA, pba); - } - - /* Put the address into the Receive Address Array */ - e1000_rar_set(hw, hw->mac.addr, 0); - - /* Initialize the hardware */ - if (igb_hardware_init(hw)) { - PMD_INIT_LOG(ERR, "Unable to initialize the hardware"); - return (-EIO); - } - - E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); - - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - /* Set PF Reset Done bit so PF/VF Mail Ops can work */ - ctrl_ext |= E1000_CTRL_EXT_PFRSTD; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(hw); - - /* configure PF module if SRIOV enabled */ - igb_pf_host_configure(dev); - - /* Configure for OS presence */ - igb_init_manageability(hw); - - eth_igb_tx_init(dev); - - /* This can fail when allocating mbufs for descriptor rings */ - ret = eth_igb_rx_init(dev); - if (ret) { - PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); - igb_dev_clear_queues(dev); - return ret; - } - - e1000_clear_hw_cntrs_base_generic(hw); - - /* - * VLAN Offload Settings - */ - mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \ - ETH_VLAN_EXTEND_MASK; - eth_igb_vlan_offload_set(dev, mask); - - if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) { - /* Enable VLAN filter since VMDq always use VLAN filter */ - igb_vmdq_vlan_hw_filter_enable(dev); - } - - /* - * Configure the Interrupt Moderation register (EITR) with the maximum - * possible value (0xFFFF) to minimize "System Partial Write" issued by - * spurious [DMA] memory updates of RX and TX ring descriptors. - * - * With a EITR granularity of 2 microseconds in the 82576, only 7/8 - * spurious memory updates per second should be expected. - * ((65535 * 2) / 1000.1000 ~= 0.131 second). - * - * Because interrupts are not used at all, the MSI-X is not activated - * and interrupt moderation is controlled by EITR[0]. - * - * Note that having [almost] disabled memory updates of RX and TX ring - * descriptors through the Interrupt Moderation mechanism, memory - * updates of ring descriptors are now moderated by the configurable - * value of Write-Back Threshold registers. - */ - if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) || - (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) || - (hw->mac.type == e1000_i211)) { - uint32_t ivar; - - /* Enable all RX & TX queues in the IVAR registers */ - ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID); - for (i = 0; i < 8; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar); - - /* Configure EITR with the maximum possible value (0xFFFF) */ - E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF); - } - - /* Setup link speed and duplex */ - switch (dev->data->dev_conf.link_speed) { - case ETH_LINK_SPEED_AUTONEG: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_10: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_10_SPEED; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_10_HALF; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_10_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_100: - if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) - hw->phy.autoneg_advertised = E1000_ALL_100_SPEED; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_100_HALF; - else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX) - hw->phy.autoneg_advertised = ADVERTISE_100_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_1000: - if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) || - (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)) - hw->phy.autoneg_advertised = ADVERTISE_1000_FULL; - else - goto error_invalid_config; - break; - case ETH_LINK_SPEED_10000: - default: - goto error_invalid_config; - } - e1000_setup_link(hw); - - /* check if lsc interrupt feature is enabled */ - if (dev->data->dev_conf.intr_conf.lsc != 0) - ret = eth_igb_lsc_interrupt_setup(dev); - - /* resume enabled intr since hw reset */ - igb_intr_enable(dev); - - PMD_INIT_LOG(DEBUG, "<<"); - - return (0); - -error_invalid_config: - PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u", - dev->data->dev_conf.link_speed, - dev->data->dev_conf.link_duplex, dev->data->port_id); - igb_dev_clear_queues(dev); - return (-EINVAL); -} - -/********************************************************************* - * - * This routine disables all traffic on the adapter by issuing a - * global reset on the MAC. - * - **********************************************************************/ -static void -eth_igb_stop(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct rte_eth_link link; - - igb_intr_disable(hw); - igb_pf_reset_hw(hw); - E1000_WRITE_REG(hw, E1000_WUC, 0); - - /* Set bit for Go Link disconnect */ - if (hw->mac.type >= e1000_82580) { - uint32_t phpm_reg; - - phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - phpm_reg |= E1000_82580_PM_GO_LINKD; - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); - } - - /* Power down the phy. Needed to make the link go Down */ - e1000_power_down_phy(hw); - - igb_dev_clear_queues(dev); - - /* clear the recorded link status */ - memset(&link, 0, sizeof(link)); - rte_igb_dev_atomic_write_link_status(dev, &link); -} - -static void -eth_igb_close(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct rte_eth_link link; - - eth_igb_stop(dev); - e1000_phy_hw_reset(hw); - igb_release_manageability(hw); - igb_hw_control_release(hw); - - /* Clear bit for Go Link disconnect */ - if (hw->mac.type >= e1000_82580) { - uint32_t phpm_reg; - - phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT); - phpm_reg &= ~E1000_82580_PM_GO_LINKD; - E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg); - } - - igb_dev_clear_queues(dev); - - memset(&link, 0, sizeof(link)); - rte_igb_dev_atomic_write_link_status(dev, &link); -} - -static int -igb_get_rx_buffer_size(struct e1000_hw *hw) -{ - uint32_t rx_buf_size; - if (hw->mac.type == e1000_82576) { - rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10; - } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) { - /* PBS needs to be translated according to a lookup table */ - rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf); - rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size); - rx_buf_size = (rx_buf_size << 10); - } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { - rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10; - } else { - rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10; - } - - return rx_buf_size; -} - -/********************************************************************* - * - * Initialize the hardware - * - **********************************************************************/ -static int -igb_hardware_init(struct e1000_hw *hw) -{ - uint32_t rx_buf_size; - int diag; - - /* Let the firmware know the OS is in control */ - igb_hw_control_acquire(hw); - - /* - * These parameters control the automatic generation (Tx) and - * response (Rx) to Ethernet PAUSE frames. - * - High water mark should allow for at least two standard size (1518) - * frames to be received after sending an XOFF. - * - Low water mark works best when it is very near the high water mark. - * This allows the receiver to restart by sending XON when it has - * drained a bit. Here we use an arbitrary value of 1500 which will - * restart after one full frame is pulled from the buffer. There - * could be several smaller frames in the buffer and if so they will - * not trigger the XON until their total number reduces the buffer - * by 1500. - * - The pause time is fairly large at 1000 x 512ns = 512 usec. - */ - rx_buf_size = igb_get_rx_buffer_size(hw); - - hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2); - hw->fc.low_water = hw->fc.high_water - 1500; - hw->fc.pause_time = IGB_FC_PAUSE_TIME; - hw->fc.send_xon = 1; - - /* Set Flow control, use the tunable location if sane */ - if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4)) - hw->fc.requested_mode = igb_fc_setting; - else - hw->fc.requested_mode = e1000_fc_none; - - /* Issue a global reset */ - igb_pf_reset_hw(hw); - E1000_WRITE_REG(hw, E1000_WUC, 0); - - diag = e1000_init_hw(hw); - if (diag < 0) - return (diag); - - E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN); - e1000_get_phy_info(hw); - e1000_check_for_link(hw); - - return (0); -} - -/* This function is based on igb_update_stats_counters() in igb/if_igb.c */ -static void -eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_hw_stats *stats = - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - int pause_frames; - - if(hw->phy.media_type == e1000_media_type_copper || - (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) { - stats->symerrs += - E1000_READ_REG(hw,E1000_SYMERRS); - stats->sec += E1000_READ_REG(hw, E1000_SEC); - } - - stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS); - stats->mpc += E1000_READ_REG(hw, E1000_MPC); - stats->scc += E1000_READ_REG(hw, E1000_SCC); - stats->ecol += E1000_READ_REG(hw, E1000_ECOL); - - stats->mcc += E1000_READ_REG(hw, E1000_MCC); - stats->latecol += E1000_READ_REG(hw, E1000_LATECOL); - stats->colc += E1000_READ_REG(hw, E1000_COLC); - stats->dc += E1000_READ_REG(hw, E1000_DC); - stats->rlec += E1000_READ_REG(hw, E1000_RLEC); - stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC); - stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC); - /* - ** For watchdog management we need to know if we have been - ** paused during the last interval, so capture that here. - */ - pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC); - stats->xoffrxc += pause_frames; - stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC); - stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC); - stats->prc64 += E1000_READ_REG(hw, E1000_PRC64); - stats->prc127 += E1000_READ_REG(hw, E1000_PRC127); - stats->prc255 += E1000_READ_REG(hw, E1000_PRC255); - stats->prc511 += E1000_READ_REG(hw, E1000_PRC511); - stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023); - stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522); - stats->gprc += E1000_READ_REG(hw, E1000_GPRC); - stats->bprc += E1000_READ_REG(hw, E1000_BPRC); - stats->mprc += E1000_READ_REG(hw, E1000_MPRC); - stats->gptc += E1000_READ_REG(hw, E1000_GPTC); - - /* For the 64-bit byte counters the low dword must be read first. */ - /* Both registers clear on the read of the high dword */ - - stats->gorc += E1000_READ_REG(hw, E1000_GORCL); - stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32); - stats->gotc += E1000_READ_REG(hw, E1000_GOTCL); - stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32); - - stats->rnbc += E1000_READ_REG(hw, E1000_RNBC); - stats->ruc += E1000_READ_REG(hw, E1000_RUC); - stats->rfc += E1000_READ_REG(hw, E1000_RFC); - stats->roc += E1000_READ_REG(hw, E1000_ROC); - stats->rjc += E1000_READ_REG(hw, E1000_RJC); - - stats->tor += E1000_READ_REG(hw, E1000_TORH); - stats->tot += E1000_READ_REG(hw, E1000_TOTH); - - stats->tpr += E1000_READ_REG(hw, E1000_TPR); - stats->tpt += E1000_READ_REG(hw, E1000_TPT); - stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64); - stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127); - stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255); - stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511); - stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023); - stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522); - stats->mptc += E1000_READ_REG(hw, E1000_MPTC); - stats->bptc += E1000_READ_REG(hw, E1000_BPTC); - - /* Interrupt Counts */ - - stats->iac += E1000_READ_REG(hw, E1000_IAC); - stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC); - stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC); - stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC); - stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC); - stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC); - stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC); - stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC); - stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC); - - /* Host to Card Statistics */ - - stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC); - stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC); - stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC); - stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC); - stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC); - stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC); - stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC); - stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL); - stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32); - stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL); - stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32); - stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS); - stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC); - stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC); - - stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC); - stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC); - stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS); - stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR); - stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC); - stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC); - - if (rte_stats == NULL) - return; - - /* Rx Errors */ - rte_stats->ibadcrc = stats->crcerrs; - rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc; - rte_stats->imissed = stats->mpc; - rte_stats->ierrors = rte_stats->ibadcrc + - rte_stats->ibadlen + - rte_stats->imissed + - stats->rxerrc + stats->algnerrc + stats->cexterr; - - /* Tx Errors */ - rte_stats->oerrors = stats->ecol + stats->latecol; - - /* XON/XOFF pause frames */ - rte_stats->tx_pause_xon = stats->xontxc; - rte_stats->rx_pause_xon = stats->xonrxc; - rte_stats->tx_pause_xoff = stats->xofftxc; - rte_stats->rx_pause_xoff = stats->xoffrxc; - - rte_stats->ipackets = stats->gprc; - rte_stats->opackets = stats->gptc; - rte_stats->ibytes = stats->gorc; - rte_stats->obytes = stats->gotc; -} - -static void -eth_igb_stats_reset(struct rte_eth_dev *dev) -{ - struct e1000_hw_stats *hw_stats = - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - - /* HW registers are cleared on read */ - eth_igb_stats_get(dev, NULL); - - /* Reset software totals */ - memset(hw_stats, 0, sizeof(*hw_stats)); -} - -static void -eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - - /* Good Rx packets, include VF loopback */ - UPDATE_VF_STAT(E1000_VFGPRC, - hw_stats->last_gprc, hw_stats->gprc); - - /* Good Rx octets, include VF loopback */ - UPDATE_VF_STAT(E1000_VFGORC, - hw_stats->last_gorc, hw_stats->gorc); - - /* Good Tx packets, include VF loopback */ - UPDATE_VF_STAT(E1000_VFGPTC, - hw_stats->last_gptc, hw_stats->gptc); - - /* Good Tx octets, include VF loopback */ - UPDATE_VF_STAT(E1000_VFGOTC, - hw_stats->last_gotc, hw_stats->gotc); - - /* Rx Multicst packets */ - UPDATE_VF_STAT(E1000_VFMPRC, - hw_stats->last_mprc, hw_stats->mprc); - - /* Good Rx loopback packets */ - UPDATE_VF_STAT(E1000_VFGPRLBC, - hw_stats->last_gprlbc, hw_stats->gprlbc); - - /* Good Rx loopback octets */ - UPDATE_VF_STAT(E1000_VFGORLBC, - hw_stats->last_gorlbc, hw_stats->gorlbc); - - /* Good Tx loopback packets */ - UPDATE_VF_STAT(E1000_VFGPTLBC, - hw_stats->last_gptlbc, hw_stats->gptlbc); - - /* Good Tx loopback octets */ - UPDATE_VF_STAT(E1000_VFGOTLBC, - hw_stats->last_gotlbc, hw_stats->gotlbc); - - if (rte_stats == NULL) - return; - - memset(rte_stats, 0, sizeof(*rte_stats)); - rte_stats->ipackets = hw_stats->gprc; - rte_stats->ibytes = hw_stats->gorc; - rte_stats->opackets = hw_stats->gptc; - rte_stats->obytes = hw_stats->gotc; - rte_stats->imcasts = hw_stats->mprc; - rte_stats->ilbpackets = hw_stats->gprlbc; - rte_stats->ilbbytes = hw_stats->gorlbc; - rte_stats->olbpackets = hw_stats->gptlbc; - rte_stats->olbbytes = hw_stats->gotlbc; - -} - -static void -eth_igbvf_stats_reset(struct rte_eth_dev *dev) -{ - struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*) - E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private); - - /* Sync HW register to the last stats */ - eth_igbvf_stats_get(dev, NULL); - - /* reset HW current stats*/ - memset(&hw_stats->gprc, 0, sizeof(*hw_stats) - - offsetof(struct e1000_vf_stats, gprc)); - -} - -static void -eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ - dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ - dev_info->max_mac_addrs = hw->mac.rar_entry_count; - dev_info->rx_offload_capa = - DEV_RX_OFFLOAD_VLAN_STRIP | - DEV_RX_OFFLOAD_IPV4_CKSUM | - DEV_RX_OFFLOAD_UDP_CKSUM | - DEV_RX_OFFLOAD_TCP_CKSUM; - dev_info->tx_offload_capa = - DEV_TX_OFFLOAD_VLAN_INSERT | - DEV_TX_OFFLOAD_IPV4_CKSUM | - DEV_TX_OFFLOAD_UDP_CKSUM | - DEV_TX_OFFLOAD_TCP_CKSUM | - DEV_TX_OFFLOAD_SCTP_CKSUM; - - switch (hw->mac.type) { - case e1000_82575: - dev_info->max_rx_queues = 4; - dev_info->max_tx_queues = 4; - dev_info->max_vmdq_pools = 0; - break; - - case e1000_82576: - dev_info->max_rx_queues = 16; - dev_info->max_tx_queues = 16; - dev_info->max_vmdq_pools = ETH_8_POOLS; - dev_info->vmdq_queue_num = 16; - break; - - case e1000_82580: - dev_info->max_rx_queues = 8; - dev_info->max_tx_queues = 8; - dev_info->max_vmdq_pools = ETH_8_POOLS; - dev_info->vmdq_queue_num = 8; - break; - - case e1000_i350: - dev_info->max_rx_queues = 8; - dev_info->max_tx_queues = 8; - dev_info->max_vmdq_pools = ETH_8_POOLS; - dev_info->vmdq_queue_num = 8; - break; - - case e1000_i354: - dev_info->max_rx_queues = 8; - dev_info->max_tx_queues = 8; - break; - - case e1000_i210: - dev_info->max_rx_queues = 4; - dev_info->max_tx_queues = 4; - dev_info->max_vmdq_pools = 0; - break; - - case e1000_i211: - dev_info->max_rx_queues = 2; - dev_info->max_tx_queues = 2; - dev_info->max_vmdq_pools = 0; - break; - - default: - /* Should not happen */ - break; - } - dev_info->reta_size = ETH_RSS_RETA_SIZE_128; - - dev_info->default_rxconf = (struct rte_eth_rxconf) { - .rx_thresh = { - .pthresh = IGB_DEFAULT_RX_PTHRESH, - .hthresh = IGB_DEFAULT_RX_HTHRESH, - .wthresh = IGB_DEFAULT_RX_WTHRESH, - }, - .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, - .rx_drop_en = 0, - }; - - dev_info->default_txconf = (struct rte_eth_txconf) { - .tx_thresh = { - .pthresh = IGB_DEFAULT_TX_PTHRESH, - .hthresh = IGB_DEFAULT_TX_HTHRESH, - .wthresh = IGB_DEFAULT_TX_WTHRESH, - }, - .txq_flags = 0, - }; -} - -static void -eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */ - dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */ - dev_info->max_mac_addrs = hw->mac.rar_entry_count; - dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP | - DEV_RX_OFFLOAD_IPV4_CKSUM | - DEV_RX_OFFLOAD_UDP_CKSUM | - DEV_RX_OFFLOAD_TCP_CKSUM; - dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT | - DEV_TX_OFFLOAD_IPV4_CKSUM | - DEV_TX_OFFLOAD_UDP_CKSUM | - DEV_TX_OFFLOAD_TCP_CKSUM | - DEV_TX_OFFLOAD_SCTP_CKSUM; - switch (hw->mac.type) { - case e1000_vfadapt: - dev_info->max_rx_queues = 2; - dev_info->max_tx_queues = 2; - break; - case e1000_vfadapt_i350: - dev_info->max_rx_queues = 1; - dev_info->max_tx_queues = 1; - break; - default: - /* Should not happen */ - break; - } - - dev_info->default_rxconf = (struct rte_eth_rxconf) { - .rx_thresh = { - .pthresh = IGB_DEFAULT_RX_PTHRESH, - .hthresh = IGB_DEFAULT_RX_HTHRESH, - .wthresh = IGB_DEFAULT_RX_WTHRESH, - }, - .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH, - .rx_drop_en = 0, - }; - - dev_info->default_txconf = (struct rte_eth_txconf) { - .tx_thresh = { - .pthresh = IGB_DEFAULT_TX_PTHRESH, - .hthresh = IGB_DEFAULT_TX_HTHRESH, - .wthresh = IGB_DEFAULT_TX_WTHRESH, - }, - .txq_flags = 0, - }; -} - -/* return 0 means link status changed, -1 means not changed */ -static int -eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct rte_eth_link link, old; - int link_check, count; - - link_check = 0; - hw->mac.get_link_status = 1; - - /* possible wait-to-complete in up to 9 seconds */ - for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) { - /* Read the real link status */ - switch (hw->phy.media_type) { - case e1000_media_type_copper: - /* Do the work to read phy */ - e1000_check_for_link(hw); - link_check = !hw->mac.get_link_status; - break; - - case e1000_media_type_fiber: - e1000_check_for_link(hw); - link_check = (E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_LU); - break; - - case e1000_media_type_internal_serdes: - e1000_check_for_link(hw); - link_check = hw->mac.serdes_has_link; - break; - - /* VF device is type_unknown */ - case e1000_media_type_unknown: - eth_igbvf_link_update(hw); - link_check = !hw->mac.get_link_status; - break; - - default: - break; - } - if (link_check || wait_to_complete == 0) - break; - rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL); - } - memset(&link, 0, sizeof(link)); - rte_igb_dev_atomic_read_link_status(dev, &link); - old = link; - - /* Now we check if a transition has happened */ - if (link_check) { - hw->mac.ops.get_link_up_info(hw, &link.link_speed, - &link.link_duplex); - link.link_status = 1; - } else if (!link_check) { - link.link_speed = 0; - link.link_duplex = 0; - link.link_status = 0; - } - rte_igb_dev_atomic_write_link_status(dev, &link); - - /* not changed */ - if (old.link_status == link.link_status) - return -1; - - /* changed */ - return 0; -} - -/* - * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means - * that the driver is loaded. - */ -static void -igb_hw_control_acquire(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - - /* Let firmware know the driver has taken over */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); -} - -/* - * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit. - * For ASF and Pass Through versions of f/w this means that the - * driver is no longer loaded. - */ -static void -igb_hw_control_release(struct e1000_hw *hw) -{ - uint32_t ctrl_ext; - - /* Let firmware taken over control of h/w */ - ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); - E1000_WRITE_REG(hw, E1000_CTRL_EXT, - ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); -} - -/* - * Bit of a misnomer, what this really means is - * to enable OS management of the system... aka - * to disable special hardware management features. - */ -static void -igb_init_manageability(struct e1000_hw *hw) -{ - if (e1000_enable_mng_pass_thru(hw)) { - uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H); - uint32_t manc = E1000_READ_REG(hw, E1000_MANC); - - /* disable hardware interception of ARP */ - manc &= ~(E1000_MANC_ARP_EN); - - /* enable receiving management packets to the host */ - manc |= E1000_MANC_EN_MNG2HOST; - manc2h |= 1 << 5; /* Mng Port 623 */ - manc2h |= 1 << 6; /* Mng Port 664 */ - E1000_WRITE_REG(hw, E1000_MANC2H, manc2h); - E1000_WRITE_REG(hw, E1000_MANC, manc); - } -} - -static void -igb_release_manageability(struct e1000_hw *hw) -{ - if (e1000_enable_mng_pass_thru(hw)) { - uint32_t manc = E1000_READ_REG(hw, E1000_MANC); - - manc |= E1000_MANC_ARP_EN; - manc &= ~E1000_MANC_EN_MNG2HOST; - - E1000_WRITE_REG(hw, E1000_MANC, manc); - } -} - -static void -eth_igb_promiscuous_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_igb_promiscuous_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= (~E1000_RCTL_UPE); - if (dev->data->all_multicast == 1) - rctl |= E1000_RCTL_MPE; - else - rctl &= (~E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_igb_allmulticast_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_MPE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static void -eth_igb_allmulticast_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rctl; - - if (dev->data->promiscuous == 1) - return; /* must remain in all_multicast mode */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl &= (~E1000_RCTL_MPE); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); -} - -static int -eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - uint32_t vfta; - uint32_t vid_idx; - uint32_t vid_bit; - - vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK); - vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); - vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); - if (on) - vfta |= vid_bit; - else - vfta &= ~vid_bit; - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); - - /* update local VFTA copy */ - shadow_vfta->vfta[vid_idx] = vfta; - - return 0; -} - -static void -eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg = ETHER_TYPE_VLAN ; - - reg |= (tpid << 16); - E1000_WRITE_REG(hw, E1000_VET, reg); -} - -static void -igb_vlan_hw_filter_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* Filter Table Disable */ - reg = E1000_READ_REG(hw, E1000_RCTL); - reg &= ~E1000_RCTL_CFIEN; - reg &= ~E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, reg); -} - -static void -igb_vlan_hw_filter_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - uint32_t reg; - int i; - - /* Filter Table Enable, CFI not used for packet acceptance */ - reg = E1000_READ_REG(hw, E1000_RCTL); - reg &= ~E1000_RCTL_CFIEN; - reg |= E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, reg); - - /* restore VFTA table */ - for (i = 0; i < IGB_VFTA_SIZE; i++) - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]); -} - -static void -igb_vlan_hw_strip_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* VLAN Mode Disable */ - reg = E1000_READ_REG(hw, E1000_CTRL); - reg &= ~E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, reg); -} - -static void -igb_vlan_hw_strip_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* VLAN Mode Enable */ - reg = E1000_READ_REG(hw, E1000_CTRL); - reg |= E1000_CTRL_VME; - E1000_WRITE_REG(hw, E1000_CTRL, reg); -} - -static void -igb_vlan_hw_extend_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* CTRL_EXT: Extended VLAN */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg &= ~E1000_CTRL_EXT_EXTEND_VLAN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* Update maximum packet length */ - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) - E1000_WRITE_REG(hw, E1000_RLPML, - dev->data->dev_conf.rxmode.max_rx_pkt_len + - VLAN_TAG_SIZE); -} - -static void -igb_vlan_hw_extend_enable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* CTRL_EXT: Extended VLAN */ - reg = E1000_READ_REG(hw, E1000_CTRL_EXT); - reg |= E1000_CTRL_EXT_EXTEND_VLAN; - E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); - - /* Update maximum packet length */ - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) - E1000_WRITE_REG(hw, E1000_RLPML, - dev->data->dev_conf.rxmode.max_rx_pkt_len + - 2 * VLAN_TAG_SIZE); -} - -static void -eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask) -{ - if(mask & ETH_VLAN_STRIP_MASK){ - if (dev->data->dev_conf.rxmode.hw_vlan_strip) - igb_vlan_hw_strip_enable(dev); - else - igb_vlan_hw_strip_disable(dev); - } - - if(mask & ETH_VLAN_FILTER_MASK){ - if (dev->data->dev_conf.rxmode.hw_vlan_filter) - igb_vlan_hw_filter_enable(dev); - else - igb_vlan_hw_filter_disable(dev); - } - - if(mask & ETH_VLAN_EXTEND_MASK){ - if (dev->data->dev_conf.rxmode.hw_vlan_extend) - igb_vlan_hw_extend_enable(dev); - else - igb_vlan_hw_extend_disable(dev); - } -} - - -/** - * It enables the interrupt mask and then enable the interrupt. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev) -{ - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - intr->mask |= E1000_ICR_LSC; - - return 0; -} - -/* - * It reads ICR and gets interrupt causes, check it and set a bit flag - * to update link status. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_interrupt_get_status(struct rte_eth_dev *dev) -{ - uint32_t icr; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - igb_intr_disable(hw); - - /* read-on-clear nic registers here */ - icr = E1000_READ_REG(hw, E1000_ICR); - - intr->flags = 0; - if (icr & E1000_ICR_LSC) { - intr->flags |= E1000_FLAG_NEED_LINK_UPDATE; - } - - if (icr & E1000_ICR_VMMB) - intr->flags |= E1000_FLAG_MAILBOX; - - return 0; -} - -/* - * It executes link_update after knowing an interrupt is prsent. - * - * @param dev - * Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_interrupt_action(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - uint32_t tctl, rctl; - struct rte_eth_link link; - int ret; - - if (intr->flags & E1000_FLAG_MAILBOX) { - igb_pf_mbx_process(dev); - intr->flags &= ~E1000_FLAG_MAILBOX; - } - - igb_intr_enable(dev); - rte_intr_enable(&(dev->pci_dev->intr_handle)); - - if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) { - intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE; - - /* set get_link_status to check register later */ - hw->mac.get_link_status = 1; - ret = eth_igb_link_update(dev, 0); - - /* check if link has changed */ - if (ret < 0) - return 0; - - memset(&link, 0, sizeof(link)); - rte_igb_dev_atomic_read_link_status(dev, &link); - if (link.link_status) { - PMD_INIT_LOG(INFO, - " Port %d: Link Up - speed %u Mbps - %s", - dev->data->port_id, - (unsigned)link.link_speed, - link.link_duplex == ETH_LINK_FULL_DUPLEX ? - "full-duplex" : "half-duplex"); - } else { - PMD_INIT_LOG(INFO, " Port %d: Link Down", - dev->data->port_id); - } - PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d", - dev->pci_dev->addr.domain, - dev->pci_dev->addr.bus, - dev->pci_dev->addr.devid, - dev->pci_dev->addr.function); - tctl = E1000_READ_REG(hw, E1000_TCTL); - rctl = E1000_READ_REG(hw, E1000_RCTL); - if (link.link_status) { - /* enable Tx/Rx */ - tctl |= E1000_TCTL_EN; - rctl |= E1000_RCTL_EN; - } else { - /* disable Tx/Rx */ - tctl &= ~E1000_TCTL_EN; - rctl &= ~E1000_RCTL_EN; - } - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC); - } - - return 0; -} - -/** - * Interrupt handler which shall be registered at first. - * - * @param handle - * Pointer to interrupt handle. - * @param param - * The address of parameter (struct rte_eth_dev *) regsitered before. - * - * @return - * void - */ -static void -eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle, - void *param) -{ - struct rte_eth_dev *dev = (struct rte_eth_dev *)param; - - eth_igb_interrupt_get_status(dev); - eth_igb_interrupt_action(dev); -} - -static int -eth_igb_led_on(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); -} - -static int -eth_igb_led_off(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP); -} - -static int -eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) -{ - struct e1000_hw *hw; - uint32_t ctrl; - int tx_pause; - int rx_pause; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - fc_conf->pause_time = hw->fc.pause_time; - fc_conf->high_water = hw->fc.high_water; - fc_conf->low_water = hw->fc.low_water; - fc_conf->send_xon = hw->fc.send_xon; - fc_conf->autoneg = hw->mac.autoneg; - - /* - * Return rx_pause and tx_pause status according to actual setting of - * the TFCE and RFCE bits in the CTRL register. - */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - if (ctrl & E1000_CTRL_TFCE) - tx_pause = 1; - else - tx_pause = 0; - - if (ctrl & E1000_CTRL_RFCE) - rx_pause = 1; - else - rx_pause = 0; - - if (rx_pause && tx_pause) - fc_conf->mode = RTE_FC_FULL; - else if (rx_pause) - fc_conf->mode = RTE_FC_RX_PAUSE; - else if (tx_pause) - fc_conf->mode = RTE_FC_TX_PAUSE; - else - fc_conf->mode = RTE_FC_NONE; - - return 0; -} - -static int -eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf) -{ - struct e1000_hw *hw; - int err; - enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = { - e1000_fc_none, - e1000_fc_rx_pause, - e1000_fc_tx_pause, - e1000_fc_full - }; - uint32_t rx_buf_size; - uint32_t max_high_water; - uint32_t rctl; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - if (fc_conf->autoneg != hw->mac.autoneg) - return -ENOTSUP; - rx_buf_size = igb_get_rx_buffer_size(hw); - PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size); - - /* At least reserve one Ethernet frame for watermark */ - max_high_water = rx_buf_size - ETHER_MAX_LEN; - if ((fc_conf->high_water > max_high_water) || - (fc_conf->high_water < fc_conf->low_water)) { - PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value"); - PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water); - return (-EINVAL); - } - - hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode]; - hw->fc.pause_time = fc_conf->pause_time; - hw->fc.high_water = fc_conf->high_water; - hw->fc.low_water = fc_conf->low_water; - hw->fc.send_xon = fc_conf->send_xon; - - err = e1000_setup_link_generic(hw); - if (err == E1000_SUCCESS) { - - /* check if we want to forward MAC frames - driver doesn't have native - * capability to do that, so we'll write the registers ourselves */ - - rctl = E1000_READ_REG(hw, E1000_RCTL); - - /* set or clear MFLCN.PMCF bit depending on configuration */ - if (fc_conf->mac_ctrl_frame_fwd != 0) - rctl |= E1000_RCTL_PMCF; - else - rctl &= ~E1000_RCTL_PMCF; - - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - E1000_WRITE_FLUSH(hw); - - return 0; - } - - PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err); - return (-EIO); -} - -#define E1000_RAH_POOLSEL_SHIFT (18) -static void -eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr, - uint32_t index, __rte_unused uint32_t pool) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t rah; - - e1000_rar_set(hw, mac_addr->addr_bytes, index); - rah = E1000_READ_REG(hw, E1000_RAH(index)); - rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool)); - E1000_WRITE_REG(hw, E1000_RAH(index), rah); -} - -static void -eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index) -{ - uint8_t addr[ETHER_ADDR_LEN]; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - memset(addr, 0, sizeof(addr)); - - e1000_rar_set(hw, addr, index); -} - -/* - * Virtual Function operations - */ -static void -igbvf_intr_disable(struct e1000_hw *hw) -{ - PMD_INIT_FUNC_TRACE(); - - /* Clear interrupt mask to stop from interrupts being generated */ - E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF); - - E1000_WRITE_FLUSH(hw); -} - -static void -igbvf_stop_adapter(struct rte_eth_dev *dev) -{ - u32 reg_val; - u16 i; - struct rte_eth_dev_info dev_info; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - memset(&dev_info, 0, sizeof(dev_info)); - eth_igbvf_infos_get(dev, &dev_info); - - /* Clear interrupt mask to stop from interrupts being generated */ - igbvf_intr_disable(hw); - - /* Clear any pending interrupts, flush previous writes */ - E1000_READ_REG(hw, E1000_EICR); - - /* Disable the transmit unit. Each queue must be disabled. */ - for (i = 0; i < dev_info.max_tx_queues; i++) - E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH); - - /* Disable the receive unit by stopping each queue */ - for (i = 0; i < dev_info.max_rx_queues; i++) { - reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i)); - reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val); - while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE) - ; - } - - /* flush all queues disables */ - E1000_WRITE_FLUSH(hw); - msec_delay(2); -} - -static int eth_igbvf_link_update(struct e1000_hw *hw) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - struct e1000_mac_info *mac = &hw->mac; - int ret_val = E1000_SUCCESS; - - PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf"); - - /* - * We only want to run this if there has been a rst asserted. - * in this case that could mean a link change, device reset, - * or a virtual function reset - */ - - /* If we were hit with a reset or timeout drop the link */ - if (!e1000_check_for_rst(hw, 0) || !mbx->timeout) - mac->get_link_status = TRUE; - - if (!mac->get_link_status) - goto out; - - /* if link status is down no point in checking to see if pf is up */ - if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) - goto out; - - /* if we passed all the tests above then the link is up and we no - * longer need to check for link */ - mac->get_link_status = FALSE; - -out: - return ret_val; -} - - -static int -igbvf_dev_configure(struct rte_eth_dev *dev) -{ - struct rte_eth_conf* conf = &dev->data->dev_conf; - - PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d", - dev->data->port_id); - - /* - * VF has no ability to enable/disable HW CRC - * Keep the persistent behavior the same as Host PF - */ -#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC - if (!conf->rxmode.hw_strip_crc) { - PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip"); - conf->rxmode.hw_strip_crc = 1; - } -#else - if (conf->rxmode.hw_strip_crc) { - PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip"); - conf->rxmode.hw_strip_crc = 0; - } -#endif - - return 0; -} - -static int -igbvf_dev_start(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - int ret; - - PMD_INIT_FUNC_TRACE(); - - hw->mac.ops.reset_hw(hw); - - /* Set all vfta */ - igbvf_set_vfta_all(dev,1); - - eth_igbvf_tx_init(dev); - - /* This can fail when allocating mbufs for descriptor rings */ - ret = eth_igbvf_rx_init(dev); - if (ret) { - PMD_INIT_LOG(ERR, "Unable to initialize RX hardware"); - igb_dev_clear_queues(dev); - return ret; - } - - return 0; -} - -static void -igbvf_dev_stop(struct rte_eth_dev *dev) -{ - PMD_INIT_FUNC_TRACE(); - - igbvf_stop_adapter(dev); - - /* - * Clear what we set, but we still keep shadow_vfta to - * restore after device starts - */ - igbvf_set_vfta_all(dev,0); - - igb_dev_clear_queues(dev); -} - -static void -igbvf_dev_close(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - PMD_INIT_FUNC_TRACE(); - - e1000_reset_hw(hw); - - igbvf_dev_stop(dev); -} - -static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on) -{ - struct e1000_mbx_info *mbx = &hw->mbx; - uint32_t msgbuf[2]; - - /* After set vlan, vlan strip will also be enabled in igb driver*/ - msgbuf[0] = E1000_VF_SET_VLAN; - msgbuf[1] = vid; - /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */ - if (on) - msgbuf[0] |= E1000_VF_SET_VLAN_ADD; - - return (mbx->ops.write_posted(hw, msgbuf, 2, 0)); -} - -static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - int i = 0, j = 0, vfta = 0, mask = 1; - - for (i = 0; i < IGB_VFTA_SIZE; i++){ - vfta = shadow_vfta->vfta[i]; - if(vfta){ - mask = 1; - for (j = 0; j < 32; j++){ - if(vfta & mask) - igbvf_set_vfta(hw, - (uint16_t)((i<<5)+j), on); - mask<<=1; - } - } - } - -} - -static int -igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vfta * shadow_vfta = - E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private); - uint32_t vid_idx = 0; - uint32_t vid_bit = 0; - int ret = 0; - - PMD_INIT_FUNC_TRACE(); - - /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/ - ret = igbvf_set_vfta(hw, vlan_id, !!on); - if(ret){ - PMD_INIT_LOG(ERR, "Unable to set VF vlan"); - return ret; - } - vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F); - vid_bit = (uint32_t) (1 << (vlan_id & 0x1F)); - - /*Save what we set and retore it after device reset*/ - if (on) - shadow_vfta->vfta[vid_idx] |= vid_bit; - else - shadow_vfta->vfta[vid_idx] &= ~vid_bit; - - return 0; -} - -static int -eth_igb_rss_reta_update(struct rte_eth_dev *dev, - struct rte_eth_rss_reta_entry64 *reta_conf, - uint16_t reta_size) -{ - uint8_t i, j, mask; - uint32_t reta, r; - uint16_t idx, shift; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - if (reta_size != ETH_RSS_RETA_SIZE_128) { - PMD_DRV_LOG(ERR, "The size of hash lookup table configured " - "(%d) doesn't match the number hardware can supported " - "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128); - return -EINVAL; - } - - for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { - idx = i / RTE_RETA_GROUP_SIZE; - shift = i % RTE_RETA_GROUP_SIZE; - mask = (uint8_t)((reta_conf[idx].mask >> shift) & - IGB_4_BIT_MASK); - if (!mask) - continue; - if (mask == IGB_4_BIT_MASK) - r = 0; - else - r = E1000_READ_REG(hw, E1000_RETA(i >> 2)); - for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) { - if (mask & (0x1 << j)) - reta |= reta_conf[idx].reta[shift + j] << - (CHAR_BIT * j); - else - reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j)); - } - E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta); - } - - return 0; -} - -static int -eth_igb_rss_reta_query(struct rte_eth_dev *dev, - struct rte_eth_rss_reta_entry64 *reta_conf, - uint16_t reta_size) -{ - uint8_t i, j, mask; - uint32_t reta; - uint16_t idx, shift; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - if (reta_size != ETH_RSS_RETA_SIZE_128) { - PMD_DRV_LOG(ERR, "The size of hash lookup table configured " - "(%d) doesn't match the number hardware can supported " - "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128); - return -EINVAL; - } - - for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) { - idx = i / RTE_RETA_GROUP_SIZE; - shift = i % RTE_RETA_GROUP_SIZE; - mask = (uint8_t)((reta_conf[idx].mask >> shift) & - IGB_4_BIT_MASK); - if (!mask) - continue; - reta = E1000_READ_REG(hw, E1000_RETA(i >> 2)); - for (j = 0; j < IGB_4_BIT_WIDTH; j++) { - if (mask & (0x1 << j)) - reta_conf[idx].reta[shift + j] = - ((reta >> (CHAR_BIT * j)) & - IGB_8_BIT_MASK); - } - } - - return 0; -} - -#define MAC_TYPE_FILTER_SUP(type) do {\ - if ((type) != e1000_82580 && (type) != e1000_i350 &&\ - (type) != e1000_82576)\ - return -ENOSYS;\ -} while (0) - -/* - * add the syn filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * filter: ponter to the filter that will be added. - * rx_queue: the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_add_syn_filter(struct rte_eth_dev *dev, - struct rte_syn_filter *filter, uint16_t rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t synqf, rfctl; - - MAC_TYPE_FILTER_SUP(hw->mac.type); - - if (rx_queue >= IGB_MAX_RX_QUEUE_NUM) - return -EINVAL; - - synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); - if (synqf & E1000_SYN_FILTER_ENABLE) - return -EINVAL; - - synqf = (uint32_t)(((rx_queue << E1000_SYN_FILTER_QUEUE_SHIFT) & - E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE); - - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - if (filter->hig_pri) - rfctl |= E1000_RFCTL_SYNQFP; - else - rfctl &= ~E1000_RFCTL_SYNQFP; - - E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf); - E1000_WRITE_REG(hw, E1000_RFCTL, rfctl); - return 0; -} - -/* - * remove the syn filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_remove_syn_filter(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - MAC_TYPE_FILTER_SUP(hw->mac.type); - - E1000_WRITE_REG(hw, E1000_SYNQF(0), 0); - return 0; -} - -/* - * get the syn filter's info - * - * @param - * dev: Pointer to struct rte_eth_dev. - * filter: ponter to the filter that returns. - * *rx_queue: pointer to the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_get_syn_filter(struct rte_eth_dev *dev, - struct rte_syn_filter *filter, uint16_t *rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t synqf, rfctl; - - MAC_TYPE_FILTER_SUP(hw->mac.type); - synqf = E1000_READ_REG(hw, E1000_SYNQF(0)); - if (synqf & E1000_SYN_FILTER_ENABLE) { - rfctl = E1000_READ_REG(hw, E1000_RFCTL); - filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0; - *rx_queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >> - E1000_SYN_FILTER_QUEUE_SHIFT); - return 0; - } - return -ENOENT; -} - -/* - * add an ethertype filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that will be added. - * rx_queue: the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_add_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_ethertype_filter *filter, uint16_t rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t etqf; - - MAC_TYPE_FILTER_SUP(hw->mac.type); - - if (index >= E1000_MAX_ETQF_FILTERS || rx_queue >= IGB_MAX_RX_QUEUE_NUM) - return -EINVAL; - - etqf = E1000_READ_REG(hw, E1000_ETQF(index)); - if (etqf & E1000_ETQF_FILTER_ENABLE) - return -EINVAL; /* filter index is in use. */ - else - etqf = 0; - - etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE; - etqf |= (uint32_t)(filter->ethertype & E1000_ETQF_ETHERTYPE); - etqf |= rx_queue << E1000_ETQF_QUEUE_SHIFT; - - if (filter->priority_en) { - PMD_INIT_LOG(ERR, "vlan and priority (%d) is not supported" - " in E1000.", filter->priority); - return -EINVAL; - } - - E1000_WRITE_REG(hw, E1000_ETQF(index), etqf); - return 0; -} - -/* - * remove an ethertype filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_remove_ethertype_filter(struct rte_eth_dev *dev, uint16_t index) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - MAC_TYPE_FILTER_SUP(hw->mac.type); - - if (index >= E1000_MAX_ETQF_FILTERS) - return -EINVAL; - - E1000_WRITE_REG(hw, E1000_ETQF(index), 0); - return 0; -} - -/* - * get an ethertype filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that will be gotten. - * *rx_queue: the ponited of the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_get_ethertype_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_ethertype_filter *filter, uint16_t *rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t etqf; - - MAC_TYPE_FILTER_SUP(hw->mac.type); - - if (index >= E1000_MAX_ETQF_FILTERS) - return -EINVAL; - - etqf = E1000_READ_REG(hw, E1000_ETQF(index)); - if (etqf & E1000_ETQF_FILTER_ENABLE) { - filter->ethertype = etqf & E1000_ETQF_ETHERTYPE; - filter->priority_en = 0; - *rx_queue = (etqf & E1000_ETQF_QUEUE) >> E1000_ETQF_QUEUE_SHIFT; - return 0; - } - return -ENOENT; -} - -#define MAC_TYPE_FILTER_SUP_EXT(type) do {\ - if ((type) != e1000_82580 && (type) != e1000_i350)\ - return -ENOSYS; \ -} while (0) - -/* - * add a 2tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that will be added. - * rx_queue: the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_add_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_2tuple_filter *filter, uint16_t rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t ttqf, imir = 0; - uint32_t imir_ext = 0; - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_TTQF_FILTERS || - rx_queue >= IGB_MAX_RX_QUEUE_NUM || - filter->priority > E1000_2TUPLE_MAX_PRI) - return -EINVAL; /* filter index is out of range. */ - if (filter->tcp_flags > TCP_FLAG_ALL) - return -EINVAL; /* flags is invalid. */ - - ttqf = E1000_READ_REG(hw, E1000_TTQF(index)); - if (ttqf & E1000_TTQF_QUEUE_ENABLE) - return -EINVAL; /* filter index is in use. */ - - imir = (uint32_t)(filter->dst_port & E1000_IMIR_DSTPORT); - if (filter->dst_port_mask == 1) /* 1b means not compare. */ - imir |= E1000_IMIR_PORT_BP; - else - imir &= ~E1000_IMIR_PORT_BP; - - imir |= filter->priority << E1000_IMIR_PRIORITY_SHIFT; - - ttqf = 0; - ttqf |= E1000_TTQF_QUEUE_ENABLE; - ttqf |= (uint32_t)(rx_queue << E1000_TTQF_QUEUE_SHIFT); - ttqf |= (uint32_t)(filter->protocol & E1000_TTQF_PROTOCOL_MASK); - if (filter->protocol_mask == 1) - ttqf |= E1000_TTQF_MASK_ENABLE; - else - ttqf &= ~E1000_TTQF_MASK_ENABLE; - - imir_ext |= E1000_IMIR_EXT_SIZE_BP; - /* tcp flags bits setting. */ - if (filter->tcp_flags & TCP_FLAG_ALL) { - if (filter->tcp_flags & TCP_UGR_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_UGR; - if (filter->tcp_flags & TCP_ACK_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_ACK; - if (filter->tcp_flags & TCP_PSH_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_PSH; - if (filter->tcp_flags & TCP_RST_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_RST; - if (filter->tcp_flags & TCP_SYN_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_SYN; - if (filter->tcp_flags & TCP_FIN_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_FIN; - imir_ext &= ~E1000_IMIR_EXT_CTRL_BP; - } else - imir_ext |= E1000_IMIR_EXT_CTRL_BP; - E1000_WRITE_REG(hw, E1000_IMIR(index), imir); - E1000_WRITE_REG(hw, E1000_TTQF(index), ttqf); - E1000_WRITE_REG(hw, E1000_IMIREXT(index), imir_ext); - return 0; -} - -/* - * remove a 2tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_remove_2tuple_filter(struct rte_eth_dev *dev, - uint16_t index) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_TTQF_FILTERS) - return -EINVAL; /* filter index is out of range */ - - E1000_WRITE_REG(hw, E1000_TTQF(index), 0); - E1000_WRITE_REG(hw, E1000_IMIR(index), 0); - E1000_WRITE_REG(hw, E1000_IMIREXT(index), 0); - return 0; -} - -/* - * get a 2tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that returns. - * *rx_queue: pointer of the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_get_2tuple_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_2tuple_filter *filter, uint16_t *rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t imir, ttqf, imir_ext; - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_TTQF_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - ttqf = E1000_READ_REG(hw, E1000_TTQF(index)); - if (ttqf & E1000_TTQF_QUEUE_ENABLE) { - imir = E1000_READ_REG(hw, E1000_IMIR(index)); - filter->protocol = ttqf & E1000_TTQF_PROTOCOL_MASK; - filter->protocol_mask = (ttqf & E1000_TTQF_MASK_ENABLE) ? 1 : 0; - *rx_queue = (ttqf & E1000_TTQF_RX_QUEUE_MASK) >> - E1000_TTQF_QUEUE_SHIFT; - filter->dst_port = (uint16_t)(imir & E1000_IMIR_DSTPORT); - filter->dst_port_mask = (imir & E1000_IMIR_PORT_BP) ? 1 : 0; - filter->priority = (imir & E1000_IMIR_PRIORITY) >> - E1000_IMIR_PRIORITY_SHIFT; - - imir_ext = E1000_READ_REG(hw, E1000_IMIREXT(index)); - if (!(imir_ext & E1000_IMIR_EXT_CTRL_BP)) { - if (imir_ext & E1000_IMIR_EXT_CTRL_UGR) - filter->tcp_flags |= TCP_UGR_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_ACK) - filter->tcp_flags |= TCP_ACK_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_PSH) - filter->tcp_flags |= TCP_PSH_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_RST) - filter->tcp_flags |= TCP_RST_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_SYN) - filter->tcp_flags |= TCP_SYN_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_FIN) - filter->tcp_flags |= TCP_FIN_FLAG; - } else - filter->tcp_flags = 0; - return 0; - } - return -ENOENT; -} - -/* - * add a flex filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that will be added. - * rx_queue: the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_add_flex_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_flex_filter *filter, uint16_t rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t wufc, en_bits = 0; - uint32_t queueing = 0; - uint32_t reg_off = 0; - uint8_t i, j = 0; - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_FLEXIBLE_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN || - filter->len % 8 != 0 || - filter->priority > E1000_MAX_FLEX_FILTER_PRI) - return -EINVAL; - - wufc = E1000_READ_REG(hw, E1000_WUFC); - en_bits = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index); - if ((wufc & en_bits) == en_bits) - return -EINVAL; /* the filter is in use. */ - - E1000_WRITE_REG(hw, E1000_WUFC, - wufc | E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index)); - - j = 0; - if (index < E1000_MAX_FHFT) - reg_off = E1000_FHFT(index); - else - reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); - - for (i = 0; i < 16; i++) { - E1000_WRITE_REG(hw, reg_off + i*4*4, filter->dwords[j]); - E1000_WRITE_REG(hw, reg_off + (i*4+1)*4, filter->dwords[++j]); - E1000_WRITE_REG(hw, reg_off + (i*4+2)*4, - (uint32_t)filter->mask[i]); - ++j; - } - queueing |= filter->len | - (rx_queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) | - (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT); - E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET, queueing); - return 0; -} - -/* - * remove a flex filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_remove_flex_filter(struct rte_eth_dev *dev, - uint16_t index) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t wufc, reg_off = 0; - uint8_t i; - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_FLEXIBLE_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - wufc = E1000_READ_REG(hw, E1000_WUFC); - E1000_WRITE_REG(hw, E1000_WUFC, wufc & (~(E1000_WUFC_FLX0 << index))); - - if (index < E1000_MAX_FHFT) - reg_off = E1000_FHFT(index); - else - reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); - - for (i = 0; i < 64; i++) - E1000_WRITE_REG(hw, reg_off + i*4, 0); - return 0; -} - -/* - * get a flex filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that returns. - * *rx_queue: the pointer of the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_get_flex_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_flex_filter *filter, uint16_t *rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t wufc, queueing, wufc_en = 0; - uint8_t i, j; - - MAC_TYPE_FILTER_SUP_EXT(hw->mac.type); - - if (index >= E1000_MAX_FLEXIBLE_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - wufc = E1000_READ_REG(hw, E1000_WUFC); - wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << index); - - if ((wufc & wufc_en) == wufc_en) { - uint32_t reg_off = 0; - j = 0; - if (index < E1000_MAX_FHFT) - reg_off = E1000_FHFT(index); - else - reg_off = E1000_FHFT_EXT(index - E1000_MAX_FHFT); - - for (i = 0; i < 16; i++, j = i * 2) { - filter->dwords[j] = - E1000_READ_REG(hw, reg_off + i*4*4); - filter->dwords[j+1] = - E1000_READ_REG(hw, reg_off + (i*4+1)*4); - filter->mask[i] = - E1000_READ_REG(hw, reg_off + (i*4+2)*4); - } - queueing = E1000_READ_REG(hw, - reg_off + E1000_FHFT_QUEUEING_OFFSET); - filter->len = queueing & E1000_FHFT_QUEUEING_LEN; - filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >> - E1000_FHFT_QUEUEING_PRIO_SHIFT; - *rx_queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >> - E1000_FHFT_QUEUEING_QUEUE_SHIFT; - return 0; - } - return -ENOENT; -} - -/* - * add a 5tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates. - * filter: ponter to the filter that will be added. - * rx_queue: the queue id the filter assigned to. - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_add_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_5tuple_filter *filter, uint16_t rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t ftqf, spqf = 0; - uint32_t imir = 0; - uint32_t imir_ext = 0; - - if (hw->mac.type != e1000_82576) - return -ENOSYS; - - if (index >= E1000_MAX_FTQF_FILTERS || - rx_queue >= IGB_MAX_RX_QUEUE_NUM_82576) - return -EINVAL; /* filter index is out of range. */ - - ftqf = E1000_READ_REG(hw, E1000_FTQF(index)); - if (ftqf & E1000_FTQF_QUEUE_ENABLE) - return -EINVAL; /* filter index is in use. */ - - ftqf = 0; - ftqf |= filter->protocol & E1000_FTQF_PROTOCOL_MASK; - if (filter->src_ip_mask == 1) /* 1b means not compare. */ - ftqf |= E1000_FTQF_SOURCE_ADDR_MASK; - if (filter->dst_ip_mask == 1) - ftqf |= E1000_FTQF_DEST_ADDR_MASK; - if (filter->src_port_mask == 1) - ftqf |= E1000_FTQF_SOURCE_PORT_MASK; - if (filter->protocol_mask == 1) - ftqf |= E1000_FTQF_PROTOCOL_COMP_MASK; - ftqf |= (rx_queue << E1000_FTQF_QUEUE_SHIFT) & E1000_FTQF_QUEUE_MASK; - ftqf |= E1000_FTQF_VF_MASK_EN; - ftqf |= E1000_FTQF_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_FTQF(index), ftqf); - E1000_WRITE_REG(hw, E1000_DAQF(index), filter->dst_ip); - E1000_WRITE_REG(hw, E1000_SAQF(index), filter->src_ip); - - spqf |= filter->src_port & E1000_SPQF_SRCPORT; - E1000_WRITE_REG(hw, E1000_SPQF(index), spqf); - - imir |= (uint32_t)(filter->dst_port & E1000_IMIR_DSTPORT); - if (filter->dst_port_mask == 1) /* 1b means not compare. */ - imir |= E1000_IMIR_PORT_BP; - else - imir &= ~E1000_IMIR_PORT_BP; - imir |= filter->priority << E1000_IMIR_PRIORITY_SHIFT; - - imir_ext |= E1000_IMIR_EXT_SIZE_BP; - /* tcp flags bits setting. */ - if (filter->tcp_flags & TCP_FLAG_ALL) { - if (filter->tcp_flags & TCP_UGR_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_UGR; - if (filter->tcp_flags & TCP_ACK_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_ACK; - if (filter->tcp_flags & TCP_PSH_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_PSH; - if (filter->tcp_flags & TCP_RST_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_RST; - if (filter->tcp_flags & TCP_SYN_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_SYN; - if (filter->tcp_flags & TCP_FIN_FLAG) - imir_ext |= E1000_IMIR_EXT_CTRL_FIN; - } else - imir_ext |= E1000_IMIR_EXT_CTRL_BP; - E1000_WRITE_REG(hw, E1000_IMIR(index), imir); - E1000_WRITE_REG(hw, E1000_IMIREXT(index), imir_ext); - return 0; -} - -/* - * remove a 5tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_remove_5tuple_filter(struct rte_eth_dev *dev, - uint16_t index) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - if (hw->mac.type != e1000_82576) - return -ENOSYS; - - if (index >= E1000_MAX_FTQF_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - E1000_WRITE_REG(hw, E1000_FTQF(index), 0); - E1000_WRITE_REG(hw, E1000_DAQF(index), 0); - E1000_WRITE_REG(hw, E1000_SAQF(index), 0); - E1000_WRITE_REG(hw, E1000_SPQF(index), 0); - E1000_WRITE_REG(hw, E1000_IMIR(index), 0); - E1000_WRITE_REG(hw, E1000_IMIREXT(index), 0); - return 0; -} - -/* - * get a 5tuple filter - * - * @param - * dev: Pointer to struct rte_eth_dev. - * index: the index the filter allocates - * filter: ponter to the filter that returns - * *rx_queue: pointer of the queue id the filter assigned to - * - * @return - * - On success, zero. - * - On failure, a negative value. - */ -static int -eth_igb_get_5tuple_filter(struct rte_eth_dev *dev, uint16_t index, - struct rte_5tuple_filter *filter, uint16_t *rx_queue) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t spqf, ftqf, imir, imir_ext; - - if (hw->mac.type != e1000_82576) - return -ENOSYS; - - if (index >= E1000_MAX_FTQF_FILTERS) - return -EINVAL; /* filter index is out of range. */ - - ftqf = E1000_READ_REG(hw, E1000_FTQF(index)); - if (ftqf & E1000_FTQF_QUEUE_ENABLE) { - filter->src_ip_mask = - (ftqf & E1000_FTQF_SOURCE_ADDR_MASK) ? 1 : 0; - filter->dst_ip_mask = - (ftqf & E1000_FTQF_DEST_ADDR_MASK) ? 1 : 0; - filter->src_port_mask = - (ftqf & E1000_FTQF_SOURCE_PORT_MASK) ? 1 : 0; - filter->protocol_mask = - (ftqf & E1000_FTQF_PROTOCOL_COMP_MASK) ? 1 : 0; - filter->protocol = - (uint8_t)ftqf & E1000_FTQF_PROTOCOL_MASK; - *rx_queue = (uint16_t)((ftqf & E1000_FTQF_QUEUE_MASK) >> - E1000_FTQF_QUEUE_SHIFT); - - spqf = E1000_READ_REG(hw, E1000_SPQF(index)); - filter->src_port = spqf & E1000_SPQF_SRCPORT; - - filter->dst_ip = E1000_READ_REG(hw, E1000_DAQF(index)); - filter->src_ip = E1000_READ_REG(hw, E1000_SAQF(index)); - - imir = E1000_READ_REG(hw, E1000_IMIR(index)); - filter->dst_port_mask = (imir & E1000_IMIR_PORT_BP) ? 1 : 0; - filter->dst_port = (uint16_t)(imir & E1000_IMIR_DSTPORT); - filter->priority = (imir & E1000_IMIR_PRIORITY) >> - E1000_IMIR_PRIORITY_SHIFT; - - imir_ext = E1000_READ_REG(hw, E1000_IMIREXT(index)); - if (!(imir_ext & E1000_IMIR_EXT_CTRL_BP)) { - if (imir_ext & E1000_IMIR_EXT_CTRL_UGR) - filter->tcp_flags |= TCP_UGR_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_ACK) - filter->tcp_flags |= TCP_ACK_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_PSH) - filter->tcp_flags |= TCP_PSH_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_RST) - filter->tcp_flags |= TCP_RST_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_SYN) - filter->tcp_flags |= TCP_SYN_FLAG; - if (imir_ext & E1000_IMIR_EXT_CTRL_FIN) - filter->tcp_flags |= TCP_FIN_FLAG; - } else - filter->tcp_flags = 0; - return 0; - } - return -ENOENT; -} - -static int -eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu) -{ - uint32_t rctl; - struct e1000_hw *hw; - struct rte_eth_dev_info dev_info; - uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN + - VLAN_TAG_SIZE); - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - -#ifdef RTE_LIBRTE_82571_SUPPORT - /* XXX: not bigger than max_rx_pktlen */ - if (hw->mac.type == e1000_82571) - return -ENOTSUP; -#endif - eth_igb_infos_get(dev, &dev_info); - - /* check that mtu is within the allowed range */ - if ((mtu < ETHER_MIN_MTU) || - (frame_size > dev_info.max_rx_pktlen)) - return -EINVAL; - - /* refuse mtu that requires the support of scattered packets when this - * feature has not been enabled before. */ - if (!dev->data->scattered_rx && - frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) - return -EINVAL; - - rctl = E1000_READ_REG(hw, E1000_RCTL); - - /* switch to jumbo mode if needed */ - if (frame_size > ETHER_MAX_LEN) { - dev->data->dev_conf.rxmode.jumbo_frame = 1; - rctl |= E1000_RCTL_LPE; - } else { - dev->data->dev_conf.rxmode.jumbo_frame = 0; - rctl &= ~E1000_RCTL_LPE; - } - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* update max frame size */ - dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size; - - E1000_WRITE_REG(hw, E1000_RLPML, - dev->data->dev_conf.rxmode.max_rx_pkt_len); - - return 0; -} - -static struct rte_driver pmd_igb_drv = { - .type = PMD_PDEV, - .init = rte_igb_pmd_init, -}; - -static struct rte_driver pmd_igbvf_drv = { - .type = PMD_PDEV, - .init = rte_igbvf_pmd_init, -}; - -PMD_REGISTER_DRIVER(pmd_igb_drv); -PMD_REGISTER_DRIVER(pmd_igbvf_drv); diff --git a/src/dpdk_lib18/librte_pmd_e1000/igb_pf.c b/src/dpdk_lib18/librte_pmd_e1000/igb_pf.c deleted file mode 100755 index bc3816a7..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/igb_pf.c +++ /dev/null @@ -1,483 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <stdio.h> -#include <errno.h> -#include <stdint.h> -#include <stdlib.h> -#include <unistd.h> -#include <stdarg.h> -#include <inttypes.h> - -#include <rte_interrupts.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_eal.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_memcpy.h> -#include <rte_malloc.h> -#include <rte_random.h> - -#include "e1000/e1000_defines.h" -#include "e1000/e1000_regs.h" -#include "e1000/e1000_hw.h" -#include "e1000_ethdev.h" - -static inline uint16_t -dev_num_vf(struct rte_eth_dev *eth_dev) -{ - return eth_dev->pci_dev->max_vfs; -} - -static inline -int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num) -{ - unsigned char vf_mac_addr[ETHER_ADDR_LEN]; - struct e1000_vf_info *vfinfo = - *E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private); - uint16_t vfn; - - for (vfn = 0; vfn < vf_num; vfn++) { - eth_random_addr(vf_mac_addr); - /* keep the random address as default */ - memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr, - ETHER_ADDR_LEN); - } - - return 0; -} - -static inline int -igb_mb_intr_setup(struct rte_eth_dev *dev) -{ - struct e1000_interrupt *intr = - E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private); - - intr->mask |= E1000_ICR_VMMB; - - return 0; -} - -void igb_pf_host_init(struct rte_eth_dev *eth_dev) -{ - struct e1000_vf_info **vfinfo = - E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private); - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - uint16_t vf_num; - uint8_t nb_queue; - - RTE_ETH_DEV_SRIOV(eth_dev).active = 0; - if (0 == (vf_num = dev_num_vf(eth_dev))) - return; - - if (hw->mac.type == e1000_i350) - nb_queue = 1; - else if(hw->mac.type == e1000_82576) - /* per datasheet, it should be 2, but 1 seems correct */ - nb_queue = 1; - else - return; - - *vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0); - if (*vfinfo == NULL) - rte_panic("Cannot allocate memory for private VF data\n"); - - RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS; - RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue; - RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num; - RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue); - - igb_vf_perm_addr_gen(eth_dev, vf_num); - - /* set mb interrupt mask */ - igb_mb_intr_setup(eth_dev); - - return; -} - -#define E1000_RAH_POOLSEL_SHIFT (18) -int igb_pf_host_configure(struct rte_eth_dev *eth_dev) -{ - uint32_t vtctl; - uint16_t vf_num; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - uint32_t vlanctrl; - int i; - uint32_t rah; - - if (0 == (vf_num = dev_num_vf(eth_dev))) - return -1; - - /* enable VMDq and set the default pool for PF */ - vtctl = E1000_READ_REG(hw, E1000_VT_CTL); - vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK; - vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx - << E1000_VT_CTL_DEFAULT_POOL_SHIFT; - vtctl |= E1000_VT_CTL_VM_REPL_EN; - E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl); - - /* Enable pools reserved to PF only */ - E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num); - E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num); - - /* PFDMA Tx General Switch Control Enables VMDQ loopback */ - if (hw->mac.type == e1000_i350) - E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); - else - E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN); - - /* clear VMDq map to perment rar 0 */ - rah = E1000_READ_REG(hw, E1000_RAH(0)); - rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); - E1000_WRITE_REG(hw, E1000_RAH(0), rah); - - /* clear VMDq map to scan rar 32 */ - rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count)); - rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT); - E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah); - - /* set VMDq map to default PF pool */ - rah = E1000_READ_REG(hw, E1000_RAH(0)); - rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx + - E1000_RAH_POOLSEL_SHIFT)); - E1000_WRITE_REG(hw, E1000_RAH(0), rah); - - /* - * enable vlan filtering and allow all vlan tags through - */ - vlanctrl = E1000_READ_REG(hw, E1000_RCTL); - vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */ - E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl); - - /* VFTA - enable all vlan filters */ - for (i = 0; i < IGB_VFTA_SIZE; i++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF); - } - - /* Enable/Disable MAC Anti-Spoofing */ - e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num); - - return 0; -} - -static void -set_rx_mode(struct rte_eth_dev *dev) -{ - struct rte_eth_dev_data *dev_data = - (struct rte_eth_dev_data*)dev->data->dev_private; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE; - uint16_t vfn = dev_num_vf(dev); - - /* Check for Promiscuous and All Multicast modes */ - fctrl = E1000_READ_REG(hw, E1000_RCTL); - - /* set all bits that we expect to always be set */ - fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */ - fctrl |= E1000_RCTL_BAM;; - - /* clear the bits we are changing the status of */ - fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); - - if (dev_data->promiscuous) { - fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); - vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); - } else { - if (dev_data->all_multicast) { - fctrl |= E1000_RCTL_MPE; - vmolr |= E1000_VMOLR_MPME; - } else { - vmolr |= E1000_VMOLR_ROMPE; - } - } - - if ((hw->mac.type == e1000_82576) || - (hw->mac.type == e1000_i350)) { - vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) & - ~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE | - E1000_VMOLR_ROPE); - E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr); - } - - E1000_WRITE_REG(hw, E1000_RCTL, fctrl); -} - -static inline void -igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_info *vfinfo = - *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); - uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf)); - - vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | - E1000_VMOLR_BAM | E1000_VMOLR_AUPE); - E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr); - - E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0); - - /* reset multicast table array for vf */ - vfinfo[vf].num_vf_mc_hashes = 0; - - /* reset rx mode */ - set_rx_mode(dev); -} - -static inline void -igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t reg; - - /* enable transmit and receive for vf */ - reg = E1000_READ_REG(hw, E1000_VFTE); - reg |= (reg | (1 << vf)); - E1000_WRITE_REG(hw, E1000_VFTE, reg); - - reg = E1000_READ_REG(hw, E1000_VFRE); - reg |= (reg | (1 << vf)); - E1000_WRITE_REG(hw, E1000_VFRE, reg); - - igb_vf_reset_event(dev, vf); -} - -static int -igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_info *vfinfo = - *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); - unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses; - int rar_entry = hw->mac.rar_entry_count - (vf + 1); - uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); - uint32_t rah; - - igb_vf_reset_msg(dev, vf); - - hw->mac.ops.rar_set(hw, vf_mac, rar_entry); - rah = E1000_READ_REG(hw, E1000_RAH(rar_entry)); - rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT)); - E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah); - - /* reply to reset with ack and vf mac address */ - msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; - rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN); - e1000_write_mbx(hw, msgbuf, 3, vf); - - return 0; -} - -static int -igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) -{ - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_info *vfinfo = - *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); - int rar_entry = hw->mac.rar_entry_count - (vf + 1); - uint8_t *new_mac = (uint8_t *)(&msgbuf[1]); - - if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) { - rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6); - hw->mac.ops.rar_set(hw, new_mac, rar_entry); - return 0; - } - return -1; -} - -static int -igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf) -{ - int i; - uint32_t vector_bit; - uint32_t vector_reg; - uint32_t mta_reg; - int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> - E1000_VT_MSGINFO_SHIFT; - uint16_t *hash_list = (uint16_t *)&msgbuf[1]; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_info *vfinfo = - *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); - - /* only so many hash values supported */ - entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES); - - /* - * salt away the number of multi cast addresses assigned - * to this VF for later use to restore when the PF multi cast - * list changes - */ - vfinfo->num_vf_mc_hashes = (uint16_t)entries; - - /* - * VFs are limited to using the MTA hash table for their multicast - * addresses - */ - for (i = 0; i < entries; i++) { - vfinfo->vf_mc_hashes[i] = hash_list[i]; - } - - for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) { - vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F; - vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F; - mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg); - mta_reg |= (1 << vector_bit); - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg); - } - - return 0; -} - -static int -igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf) -{ - int add, vid; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - struct e1000_vf_info *vfinfo = - *(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private)); - uint32_t vid_idx, vid_bit, vfta; - - add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) - >> E1000_VT_MSGINFO_SHIFT; - vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); - - if (add) - vfinfo[vf].vlan_count++; - else if (vfinfo[vf].vlan_count) - vfinfo[vf].vlan_count--; - - vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) & - E1000_VFTA_ENTRY_MASK); - vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK)); - vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx); - if (add) - vfta |= vid_bit; - else - vfta &= ~vid_bit; - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta); - E1000_WRITE_FLUSH(hw); - - return 0; -} - -static int -igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf) -{ - uint16_t mbx_size = E1000_VFMAILBOX_SIZE; - uint32_t msgbuf[E1000_VFMAILBOX_SIZE]; - int32_t retval; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf); - if (retval) { - PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf); - return retval; - } - - /* do nothing with the message already processed */ - if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) - return retval; - - /* flush the ack before we write any messages back */ - E1000_WRITE_FLUSH(hw); - - /* perform VF reset */ - if (msgbuf[0] == E1000_VF_RESET) { - return igb_vf_reset(dev, vf, msgbuf); - } - - /* check & process VF to PF mailbox message */ - switch ((msgbuf[0] & 0xFFFF)) { - case E1000_VF_SET_MAC_ADDR: - retval = igb_vf_set_mac_addr(dev, vf, msgbuf); - break; - case E1000_VF_SET_MULTICAST: - retval = igb_vf_set_multicast(dev, vf, msgbuf); - break; - case E1000_VF_SET_VLAN: - retval = igb_vf_set_vlan(dev, vf, msgbuf); - break; - default: - PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x", - (unsigned) msgbuf[0]); - retval = E1000_ERR_MBX; - break; - } - - /* response the VF according to the message process result */ - if (retval) - msgbuf[0] |= E1000_VT_MSGTYPE_NACK; - else - msgbuf[0] |= E1000_VT_MSGTYPE_ACK; - - msgbuf[0] |= E1000_VT_MSGTYPE_CTS; - - e1000_write_mbx(hw, msgbuf, 1, vf); - - return retval; -} - -static inline void -igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf) -{ - uint32_t msg = E1000_VT_MSGTYPE_NACK; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - e1000_write_mbx(hw, &msg, 1, vf); -} - -void igb_pf_mbx_process(struct rte_eth_dev *eth_dev) -{ - uint16_t vf; - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private); - - for (vf = 0; vf < dev_num_vf(eth_dev); vf++) { - /* check & process vf function level reset */ - if (!e1000_check_for_rst(hw, vf)) - igb_vf_reset_event(eth_dev, vf); - - /* check & process vf mailbox messages */ - if (!e1000_check_for_msg(hw, vf)) - igb_rcv_msg_from_vf(eth_dev, vf); - - /* check & process acks from vf */ - if (!e1000_check_for_ack(hw, vf)) - igb_rcv_ack_from_vf(eth_dev, vf); - } -} diff --git a/src/dpdk_lib18/librte_pmd_e1000/igb_rxtx.c b/src/dpdk_lib18/librte_pmd_e1000/igb_rxtx.c deleted file mode 100755 index 5c394a98..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/igb_rxtx.c +++ /dev/null @@ -1,2415 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/queue.h> - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <errno.h> -#include <stdint.h> -#include <stdarg.h> -#include <inttypes.h> - -#include <rte_interrupts.h> -#include <rte_byteorder.h> -#include <rte_common.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_pci.h> -#include <rte_memory.h> -#include <rte_memcpy.h> -#include <rte_memzone.h> -#include <rte_launch.h> -#include <rte_tailq.h> -#include <rte_eal.h> -#include <rte_per_lcore.h> -#include <rte_lcore.h> -#include <rte_atomic.h> -#include <rte_branch_prediction.h> -#include <rte_ring.h> -#include <rte_mempool.h> -#include <rte_malloc.h> -#include <rte_mbuf.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_prefetch.h> -#include <rte_udp.h> -#include <rte_tcp.h> -#include <rte_sctp.h> -#include <rte_string_fns.h> - -#include "e1000_logs.h" -#include "e1000/e1000_api.h" -#include "e1000_ethdev.h" - -#define IGB_RSS_OFFLOAD_ALL ( \ - ETH_RSS_IPV4 | \ - ETH_RSS_IPV4_TCP | \ - ETH_RSS_IPV6 | \ - ETH_RSS_IPV6_EX | \ - ETH_RSS_IPV6_TCP | \ - ETH_RSS_IPV6_TCP_EX | \ - ETH_RSS_IPV4_UDP | \ - ETH_RSS_IPV6_UDP | \ - ETH_RSS_IPV6_UDP_EX) - -/* Bit Mask to indicate what bits required for building TX context */ -#define IGB_TX_OFFLOAD_MASK ( \ - PKT_TX_VLAN_PKT | \ - PKT_TX_IP_CKSUM | \ - PKT_TX_L4_MASK) - -static inline struct rte_mbuf * -rte_rxmbuf_alloc(struct rte_mempool *mp) -{ - struct rte_mbuf *m; - - m = __rte_mbuf_raw_alloc(mp); - __rte_mbuf_sanity_check_raw(m, 0); - return (m); -} - -#define RTE_MBUF_DATA_DMA_ADDR(mb) \ - (uint64_t) ((mb)->buf_physaddr + (mb)->data_off) - -#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \ - (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM) - -/** - * Structure associated with each descriptor of the RX ring of a RX queue. - */ -struct igb_rx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ -}; - -/** - * Structure associated with each descriptor of the TX ring of a TX queue. - */ -struct igb_tx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ - uint16_t next_id; /**< Index of next descriptor in ring. */ - uint16_t last_id; /**< Index of last scattered descriptor. */ -}; - -/** - * Structure associated with each RX queue. - */ -struct igb_rx_queue { - struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ - volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */ - uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ - volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ - volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ - struct igb_rx_entry *sw_ring; /**< address of RX software ring. */ - struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ - struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ - uint16_t nb_rx_desc; /**< number of RX descriptors. */ - uint16_t rx_tail; /**< current value of RDT register. */ - uint16_t nb_rx_hold; /**< number of held free RX desc. */ - uint16_t rx_free_thresh; /**< max free RX desc to hold. */ - uint16_t queue_id; /**< RX queue index. */ - uint16_t reg_idx; /**< RX queue register index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ - uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */ -}; - -/** - * Hardware context number - */ -enum igb_advctx_num { - IGB_CTX_0 = 0, /**< CTX0 */ - IGB_CTX_1 = 1, /**< CTX1 */ - IGB_CTX_NUM = 2, /**< CTX_NUM */ -}; - -/** Offload features */ -union igb_vlan_macip { - uint32_t data; - struct { - uint16_t l2_l3_len; /**< 7bit L2 and 9b L3 lengths combined */ - uint16_t vlan_tci; - /**< VLAN Tag Control Identifier (CPU order). */ - } f; -}; - -/* - * Compare mask for vlan_macip_len.data, - * should be in sync with igb_vlan_macip.f layout. - * */ -#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */ -#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */ -#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */ -/** MAC+IP length. */ -#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK) - -/** - * Strucutre to check if new context need be built - */ -struct igb_advctx_info { - uint64_t flags; /**< ol_flags related to context build. */ - uint32_t cmp_mask; /**< compare mask for vlan_macip_lens */ - union igb_vlan_macip vlan_macip_lens; /**< vlan, mac & ip length. */ -}; - -/** - * Structure associated with each TX queue. - */ -struct igb_tx_queue { - volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */ - uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ - struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */ - volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ - uint32_t txd_type; /**< Device-specific TXD type */ - uint16_t nb_tx_desc; /**< number of TX descriptors. */ - uint16_t tx_tail; /**< Current value of TDT register. */ - uint16_t tx_head; - /**< Index of first used TX descriptor. */ - uint16_t queue_id; /**< TX queue index. */ - uint16_t reg_idx; /**< TX queue register index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - uint32_t ctx_curr; - /**< Current used hardware descriptor. */ - uint32_t ctx_start; - /**< Start context position for transmit queue. */ - struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; - /**< Hardware context history.*/ -}; - -#if 1 -#define RTE_PMD_USE_PREFETCH -#endif - -#ifdef RTE_PMD_USE_PREFETCH -#define rte_igb_prefetch(p) rte_prefetch0(p) -#else -#define rte_igb_prefetch(p) do {} while(0) -#endif - -#ifdef RTE_PMD_PACKET_PREFETCH -#define rte_packet_prefetch(p) rte_prefetch1(p) -#else -#define rte_packet_prefetch(p) do {} while(0) -#endif - -/* - * Macro for VMDq feature for 1 GbE NIC. - */ -#define E1000_VMOLR_SIZE (8) - -/********************************************************************* - * - * TX function - * - **********************************************************************/ - -/* - * Advanced context descriptor are almost same between igb/ixgbe - * This is a separate function, looking for optimization opportunity here - * Rework required to go with the pre-defined values. - */ - -static inline void -igbe_set_xmit_ctx(struct igb_tx_queue* txq, - volatile struct e1000_adv_tx_context_desc *ctx_txd, - uint64_t ol_flags, uint32_t vlan_macip_lens) -{ - uint32_t type_tucmd_mlhl; - uint32_t mss_l4len_idx; - uint32_t ctx_idx, ctx_curr; - uint32_t cmp_mask; - - ctx_curr = txq->ctx_curr; - ctx_idx = ctx_curr + txq->ctx_start; - - cmp_mask = 0; - type_tucmd_mlhl = 0; - - if (ol_flags & PKT_TX_VLAN_PKT) { - cmp_mask |= TX_VLAN_CMP_MASK; - } - - if (ol_flags & PKT_TX_IP_CKSUM) { - type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - } - - /* Specify which HW CTX to upload. */ - mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT); - switch (ol_flags & PKT_TX_L4_MASK) { - case PKT_TX_UDP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - break; - case PKT_TX_TCP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - break; - case PKT_TX_SCTP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - cmp_mask |= TX_MACIP_LEN_CMP_MASK; - break; - default: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - break; - } - - txq->ctx_cache[ctx_curr].flags = ol_flags; - txq->ctx_cache[ctx_curr].cmp_mask = cmp_mask; - txq->ctx_cache[ctx_curr].vlan_macip_lens.data = - vlan_macip_lens & cmp_mask; - - ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl); - ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens); - ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx); - ctx_txd->seqnum_seed = 0; -} - -/* - * Check which hardware context can be used. Use the existing match - * or create a new context descriptor. - */ -static inline uint32_t -what_advctx_update(struct igb_tx_queue *txq, uint64_t flags, - uint32_t vlan_macip_lens) -{ - /* If match with the current context */ - if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && - (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data == - (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) { - return txq->ctx_curr; - } - - /* If match with the second context */ - txq->ctx_curr ^= 1; - if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && - (txq->ctx_cache[txq->ctx_curr].vlan_macip_lens.data == - (txq->ctx_cache[txq->ctx_curr].cmp_mask & vlan_macip_lens)))) { - return txq->ctx_curr; - } - - /* Mismatch, use the previous context */ - return (IGB_CTX_NUM); -} - -static inline uint32_t -tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags) -{ - static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM}; - static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM}; - uint32_t tmp; - - tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; - tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; - return tmp; -} - -static inline uint32_t -tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags) -{ - static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE}; - return vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0]; -} - -uint16_t -eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts) -{ - struct igb_tx_queue *txq; - struct igb_tx_entry *sw_ring; - struct igb_tx_entry *txe, *txn; - volatile union e1000_adv_tx_desc *txr; - volatile union e1000_adv_tx_desc *txd; - struct rte_mbuf *tx_pkt; - struct rte_mbuf *m_seg; - union igb_vlan_macip vlan_macip_lens; - union { - uint16_t u16; - struct { - uint16_t l3_len:9; - uint16_t l2_len:7; - }; - } l2_l3_len; - uint64_t buf_dma_addr; - uint32_t olinfo_status; - uint32_t cmd_type_len; - uint32_t pkt_len; - uint16_t slen; - uint64_t ol_flags; - uint16_t tx_end; - uint16_t tx_id; - uint16_t tx_last; - uint16_t nb_tx; - uint64_t tx_ol_req; - uint32_t new_ctx = 0; - uint32_t ctx = 0; - - txq = tx_queue; - sw_ring = txq->sw_ring; - txr = txq->tx_ring; - tx_id = txq->tx_tail; - txe = &sw_ring[tx_id]; - - for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { - tx_pkt = *tx_pkts++; - pkt_len = tx_pkt->pkt_len; - - RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); - - /* - * The number of descriptors that must be allocated for a - * packet is the number of segments of that packet, plus 1 - * Context Descriptor for the VLAN Tag Identifier, if any. - * Determine the last TX descriptor to allocate in the TX ring - * for the packet, starting from the current position (tx_id) - * in the ring. - */ - tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1); - - ol_flags = tx_pkt->ol_flags; - l2_l3_len.l2_len = tx_pkt->l2_len; - l2_l3_len.l3_len = tx_pkt->l3_len; - vlan_macip_lens.f.vlan_tci = tx_pkt->vlan_tci; - vlan_macip_lens.f.l2_l3_len = l2_l3_len.u16; - tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK; - - /* If a Context Descriptor need be built . */ - if (tx_ol_req) { - ctx = what_advctx_update(txq, tx_ol_req, - vlan_macip_lens.data); - /* Only allocate context descriptor if required*/ - new_ctx = (ctx == IGB_CTX_NUM); - ctx = txq->ctx_curr; - tx_last = (uint16_t) (tx_last + new_ctx); - } - if (tx_last >= txq->nb_tx_desc) - tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); - - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" - " tx_first=%u tx_last=%u", - (unsigned) txq->port_id, - (unsigned) txq->queue_id, - (unsigned) pkt_len, - (unsigned) tx_id, - (unsigned) tx_last); - - /* - * Check if there are enough free descriptors in the TX ring - * to transmit the next packet. - * This operation is based on the two following rules: - * - * 1- Only check that the last needed TX descriptor can be - * allocated (by construction, if that descriptor is free, - * all intermediate ones are also free). - * - * For this purpose, the index of the last TX descriptor - * used for a packet (the "last descriptor" of a packet) - * is recorded in the TX entries (the last one included) - * that are associated with all TX descriptors allocated - * for that packet. - * - * 2- Avoid to allocate the last free TX descriptor of the - * ring, in order to never set the TDT register with the - * same value stored in parallel by the NIC in the TDH - * register, which makes the TX engine of the NIC enter - * in a deadlock situation. - * - * By extension, avoid to allocate a free descriptor that - * belongs to the last set of free descriptors allocated - * to the same packet previously transmitted. - */ - - /* - * The "last descriptor" of the previously sent packet, if any, - * which used the last descriptor to allocate. - */ - tx_end = sw_ring[tx_last].last_id; - - /* - * The next descriptor following that "last descriptor" in the - * ring. - */ - tx_end = sw_ring[tx_end].next_id; - - /* - * The "last descriptor" associated with that next descriptor. - */ - tx_end = sw_ring[tx_end].last_id; - - /* - * Check that this descriptor is free. - */ - if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) { - if (nb_tx == 0) - return (0); - goto end_of_tx; - } - - /* - * Set common flags of all TX Data Descriptors. - * - * The following bits must be set in all Data Descriptors: - * - E1000_ADVTXD_DTYP_DATA - * - E1000_ADVTXD_DCMD_DEXT - * - * The following bits must be set in the first Data Descriptor - * and are ignored in the other ones: - * - E1000_ADVTXD_DCMD_IFCS - * - E1000_ADVTXD_MAC_1588 - * - E1000_ADVTXD_DCMD_VLE - * - * The following bits must only be set in the last Data - * Descriptor: - * - E1000_TXD_CMD_EOP - * - * The following bits can be set in any Data Descriptor, but - * are only set in the last Data Descriptor: - * - E1000_TXD_CMD_RS - */ - cmd_type_len = txq->txd_type | - E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; - olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT); -#if defined(RTE_LIBRTE_IEEE1588) - if (ol_flags & PKT_TX_IEEE1588_TMST) - cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; -#endif - if (tx_ol_req) { - /* Setup TX Advanced context descriptor if required */ - if (new_ctx) { - volatile struct e1000_adv_tx_context_desc * - ctx_txd; - - ctx_txd = (volatile struct - e1000_adv_tx_context_desc *) - &txr[tx_id]; - - txn = &sw_ring[txe->next_id]; - RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); - - if (txe->mbuf != NULL) { - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = NULL; - } - - igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, - vlan_macip_lens.data); - - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - } - - /* Setup the TX Advanced Data Descriptor */ - cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(ol_flags); - olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags); - olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT); - } - - m_seg = tx_pkt; - do { - txn = &sw_ring[txe->next_id]; - txd = &txr[tx_id]; - - if (txe->mbuf != NULL) - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = m_seg; - - /* - * Set up transmit descriptor. - */ - slen = (uint16_t) m_seg->data_len; - buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg); - txd->read.buffer_addr = - rte_cpu_to_le_64(buf_dma_addr); - txd->read.cmd_type_len = - rte_cpu_to_le_32(cmd_type_len | slen); - txd->read.olinfo_status = - rte_cpu_to_le_32(olinfo_status); - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - m_seg = m_seg->next; - } while (m_seg != NULL); - - /* - * The last packet data descriptor needs End Of Packet (EOP) - * and Report Status (RS). - */ - txd->read.cmd_type_len |= - rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); - } - end_of_tx: - rte_wmb(); - - /* - * Set the Transmit Descriptor Tail (TDT). - */ - E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id); - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", - (unsigned) txq->port_id, (unsigned) txq->queue_id, - (unsigned) tx_id, (unsigned) nb_tx); - txq->tx_tail = tx_id; - - return (nb_tx); -} - -/********************************************************************* - * - * RX functions - * - **********************************************************************/ -static inline uint64_t -rx_desc_hlen_type_rss_to_pkt_flags(uint32_t hl_tp_rs) -{ - uint64_t pkt_flags; - - static uint64_t ip_pkt_types_map[16] = { - 0, PKT_RX_IPV4_HDR, PKT_RX_IPV4_HDR_EXT, PKT_RX_IPV4_HDR_EXT, - PKT_RX_IPV6_HDR, 0, 0, 0, - PKT_RX_IPV6_HDR_EXT, 0, 0, 0, - PKT_RX_IPV6_HDR_EXT, 0, 0, 0, - }; - -#if defined(RTE_LIBRTE_IEEE1588) - static uint32_t ip_pkt_etqf_map[8] = { - 0, 0, 0, PKT_RX_IEEE1588_PTP, - 0, 0, 0, 0, - }; - - pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? - ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07] : - ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]; -#else - pkt_flags = (hl_tp_rs & E1000_RXDADV_PKTTYPE_ETQF) ? 0 : - ip_pkt_types_map[(hl_tp_rs >> 4) & 0x0F]; -#endif - return pkt_flags | (((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH); -} - -static inline uint64_t -rx_desc_status_to_pkt_flags(uint32_t rx_status) -{ - uint64_t pkt_flags; - - /* Check if VLAN present */ - pkt_flags = (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0; - -#if defined(RTE_LIBRTE_IEEE1588) - if (rx_status & E1000_RXD_STAT_TMST) - pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST; -#endif - return pkt_flags; -} - -static inline uint64_t -rx_desc_error_to_pkt_flags(uint32_t rx_status) -{ - /* - * Bit 30: IPE, IPv4 checksum error - * Bit 29: L4I, L4I integrity error - */ - - static uint64_t error_to_pkt_flags_map[4] = { - 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD, - PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD - }; - return error_to_pkt_flags_map[(rx_status >> - E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK]; -} - -uint16_t -eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - struct igb_rx_queue *rxq; - volatile union e1000_adv_rx_desc *rx_ring; - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_entry *sw_ring; - struct igb_rx_entry *rxe; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - union e1000_adv_rx_desc rxd; - uint64_t dma_addr; - uint32_t staterr; - uint32_t hlen_type_rss; - uint16_t pkt_len; - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint64_t pkt_flags; - - nb_rx = 0; - nb_hold = 0; - rxq = rx_queue; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - while (nb_rx < nb_pkts) { - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - staterr = rxdp->wb.upper.status_error; - if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) - break; - rxd = *rxdp; - - /* - * End of packet. - * - * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is - * likely to be invalid and to be dropped by the various - * validation checks performed by the network stack. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy do not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "staterr=0x%x pkt_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) staterr, - (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_igb_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_igb_prefetch(&rx_ring[rx_id]); - rte_igb_prefetch(&sw_ring[rx_id]); - } - - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma_addr = - rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->read.hdr_addr = dma_addr; - rxdp->read.pkt_addr = dma_addr; - - /* - * Initialize the returned mbuf. - * 1) setup generic mbuf fields: - * - number of segments, - * - next segment, - * - packet length, - * - RX port identifier. - * 2) integrate hardware offload data, if any: - * - RSS flag & hash, - * - IP checksum flag, - * - VLAN TCI, if any, - * - error flags. - */ - pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) - - rxq->crc_len); - rxm->data_off = RTE_PKTMBUF_HEADROOM; - rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); - rxm->nb_segs = 1; - rxm->next = NULL; - rxm->pkt_len = pkt_len; - rxm->data_len = pkt_len; - rxm->port = rxq->port_id; - - rxm->hash.rss = rxd.wb.lower.hi_dword.rss; - hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); - /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ - rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan); - - pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss); - pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); - pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); - rxm->ol_flags = pkt_flags; - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = rxm; - } - rxq->rx_tail = rx_id; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -uint16_t -eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - struct igb_rx_queue *rxq; - volatile union e1000_adv_rx_desc *rx_ring; - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_entry *sw_ring; - struct igb_rx_entry *rxe; - struct rte_mbuf *first_seg; - struct rte_mbuf *last_seg; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - union e1000_adv_rx_desc rxd; - uint64_t dma; /* Physical address of mbuf data buffer */ - uint32_t staterr; - uint32_t hlen_type_rss; - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint16_t data_len; - uint64_t pkt_flags; - - nb_rx = 0; - nb_hold = 0; - rxq = rx_queue; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - - /* - * Retrieve RX context of current packet, if any. - */ - first_seg = rxq->pkt_first_seg; - last_seg = rxq->pkt_last_seg; - - while (nb_rx < nb_pkts) { - next_desc: - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - staterr = rxdp->wb.upper.status_error; - if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) - break; - rxd = *rxdp; - - /* - * Descriptor done. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy does not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "staterr=0x%x data_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) staterr, - (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_igb_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_igb_prefetch(&rx_ring[rx_id]); - rte_igb_prefetch(&sw_ring[rx_id]); - } - - /* - * Update RX descriptor with the physical address of the new - * data buffer of the new allocated mbuf. - */ - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->read.pkt_addr = dma; - rxdp->read.hdr_addr = dma; - - /* - * Set data length & data buffer address of mbuf. - */ - data_len = rte_le_to_cpu_16(rxd.wb.upper.length); - rxm->data_len = data_len; - rxm->data_off = RTE_PKTMBUF_HEADROOM; - - /* - * If this is the first buffer of the received packet, - * set the pointer to the first mbuf of the packet and - * initialize its context. - * Otherwise, update the total length and the number of segments - * of the current scattered packet, and update the pointer to - * the last mbuf of the current packet. - */ - if (first_seg == NULL) { - first_seg = rxm; - first_seg->pkt_len = data_len; - first_seg->nb_segs = 1; - } else { - first_seg->pkt_len += data_len; - first_seg->nb_segs++; - last_seg->next = rxm; - } - - /* - * If this is not the last buffer of the received packet, - * update the pointer to the last mbuf of the current scattered - * packet and continue to parse the RX ring. - */ - if (! (staterr & E1000_RXD_STAT_EOP)) { - last_seg = rxm; - goto next_desc; - } - - /* - * This is the last buffer of the received packet. - * If the CRC is not stripped by the hardware: - * - Subtract the CRC length from the total packet length. - * - If the last buffer only contains the whole CRC or a part - * of it, free the mbuf associated to the last buffer. - * If part of the CRC is also contained in the previous - * mbuf, subtract the length of that CRC part from the - * data length of the previous mbuf. - */ - rxm->next = NULL; - if (unlikely(rxq->crc_len > 0)) { - first_seg->pkt_len -= ETHER_CRC_LEN; - if (data_len <= ETHER_CRC_LEN) { - rte_pktmbuf_free_seg(rxm); - first_seg->nb_segs--; - last_seg->data_len = (uint16_t) - (last_seg->data_len - - (ETHER_CRC_LEN - data_len)); - last_seg->next = NULL; - } else - rxm->data_len = - (uint16_t) (data_len - ETHER_CRC_LEN); - } - - /* - * Initialize the first mbuf of the returned packet: - * - RX port identifier, - * - hardware offload data, if any: - * - RSS flag & hash, - * - IP checksum flag, - * - VLAN TCI, if any, - * - error flags. - */ - first_seg->port = rxq->port_id; - first_seg->hash.rss = rxd.wb.lower.hi_dword.rss; - - /* - * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is - * set in the pkt_flags field. - */ - first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan); - hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); - pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(hlen_type_rss); - pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); - pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); - first_seg->ol_flags = pkt_flags; - - /* Prefetch data of first segment, if configured to do so. */ - rte_packet_prefetch((char *)first_seg->buf_addr + - first_seg->data_off); - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = first_seg; - - /* - * Setup receipt context for a new packet. - */ - first_seg = NULL; - } - - /* - * Record index of the next RX descriptor to probe. - */ - rxq->rx_tail = rx_id; - - /* - * Save receive context. - */ - rxq->pkt_first_seg = first_seg; - rxq->pkt_last_seg = last_seg; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -/* - * Rings setup and release. - * - * TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be - * multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. - * This will also optimize cache line size effect. - * H/W supports up to cache line size 128. - */ -#define IGB_ALIGN 128 - -/* - * Maximum number of Ring Descriptors. - * - * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring - * desscriptors should meet the following condition: - * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 - */ -#define IGB_MIN_RING_DESC 32 -#define IGB_MAX_RING_DESC 4096 - -static const struct rte_memzone * -ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name, - uint16_t queue_id, uint32_t ring_size, int socket_id) -{ - char z_name[RTE_MEMZONE_NAMESIZE]; - const struct rte_memzone *mz; - - snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d", - dev->driver->pci_drv.name, ring_name, - dev->data->port_id, queue_id); - mz = rte_memzone_lookup(z_name); - if (mz) - return mz; - -#ifdef RTE_LIBRTE_XEN_DOM0 - return rte_memzone_reserve_bounded(z_name, ring_size, - socket_id, 0, IGB_ALIGN, RTE_PGSIZE_2M); -#else - return rte_memzone_reserve_aligned(z_name, ring_size, - socket_id, 0, IGB_ALIGN); -#endif -} - -static void -igb_tx_queue_release_mbufs(struct igb_tx_queue *txq) -{ - unsigned i; - - if (txq->sw_ring != NULL) { - for (i = 0; i < txq->nb_tx_desc; i++) { - if (txq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); - txq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -igb_tx_queue_release(struct igb_tx_queue *txq) -{ - if (txq != NULL) { - igb_tx_queue_release_mbufs(txq); - rte_free(txq->sw_ring); - rte_free(txq); - } -} - -void -eth_igb_tx_queue_release(void *txq) -{ - igb_tx_queue_release(txq); -} - -static void -igb_reset_tx_queue_stat(struct igb_tx_queue *txq) -{ - txq->tx_head = 0; - txq->tx_tail = 0; - txq->ctx_curr = 0; - memset((void*)&txq->ctx_cache, 0, - IGB_CTX_NUM * sizeof(struct igb_advctx_info)); -} - -static void -igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev) -{ - static const union e1000_adv_tx_desc zeroed_desc = { .read = { - .buffer_addr = 0}}; - struct igb_tx_entry *txe = txq->sw_ring; - uint16_t i, prev; - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - /* Zero out HW ring memory */ - for (i = 0; i < txq->nb_tx_desc; i++) { - txq->tx_ring[i] = zeroed_desc; - } - - /* Initialize ring entries */ - prev = (uint16_t)(txq->nb_tx_desc - 1); - for (i = 0; i < txq->nb_tx_desc; i++) { - volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]); - - txd->wb.status = E1000_TXD_STAT_DD; - txe[i].mbuf = NULL; - txe[i].last_id = i; - txe[prev].next_id = i; - prev = i; - } - - txq->txd_type = E1000_ADVTXD_DTYP_DATA; - /* 82575 specific, each tx queue will use 2 hw contexts */ - if (hw->mac.type == e1000_82575) - txq->ctx_start = txq->queue_id * IGB_CTX_NUM; - - igb_reset_tx_queue_stat(txq); -} - -int -eth_igb_tx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_txconf *tx_conf) -{ - const struct rte_memzone *tz; - struct igb_tx_queue *txq; - struct e1000_hw *hw; - uint32_t size; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of transmit descriptors. - * It must not exceed hardware maximum, and must be multiple - * of IGB_ALIGN. - */ - if (((nb_desc * sizeof(union e1000_adv_tx_desc)) % IGB_ALIGN) != 0 || - (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) { - return -EINVAL; - } - - /* - * The tx_free_thresh and tx_rs_thresh values are not used in the 1G - * driver. - */ - if (tx_conf->tx_free_thresh != 0) - PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not " - "used for the 1G driver."); - if (tx_conf->tx_rs_thresh != 0) - PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not " - "used for the 1G driver."); - if (tx_conf->tx_thresh.wthresh == 0) - PMD_INIT_LOG(WARNING, "To improve 1G driver performance, " - "consider setting the TX WTHRESH value to 4, 8, " - "or 16."); - - /* Free memory prior to re-allocation if needed */ - if (dev->data->tx_queues[queue_idx] != NULL) { - igb_tx_queue_release(dev->data->tx_queues[queue_idx]); - dev->data->tx_queues[queue_idx] = NULL; - } - - /* First allocate the tx queue data structure */ - txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue), - RTE_CACHE_LINE_SIZE); - if (txq == NULL) - return (-ENOMEM); - - /* - * Allocate TX ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - size = sizeof(union e1000_adv_tx_desc) * IGB_MAX_RING_DESC; - tz = ring_dma_zone_reserve(dev, "tx_ring", queue_idx, - size, socket_id); - if (tz == NULL) { - igb_tx_queue_release(txq); - return (-ENOMEM); - } - - txq->nb_tx_desc = nb_desc; - txq->pthresh = tx_conf->tx_thresh.pthresh; - txq->hthresh = tx_conf->tx_thresh.hthresh; - txq->wthresh = tx_conf->tx_thresh.wthresh; - if (txq->wthresh > 0 && hw->mac.type == e1000_82576) - txq->wthresh = 1; - txq->queue_id = queue_idx; - txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? - queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); - txq->port_id = dev->data->port_id; - - txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx)); -#ifndef RTE_LIBRTE_XEN_DOM0 - txq->tx_ring_phys_addr = (uint64_t) tz->phys_addr; -#else - txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); -#endif - txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr; - /* Allocate software ring */ - txq->sw_ring = rte_zmalloc("txq->sw_ring", - sizeof(struct igb_tx_entry) * nb_desc, - RTE_CACHE_LINE_SIZE); - if (txq->sw_ring == NULL) { - igb_tx_queue_release(txq); - return (-ENOMEM); - } - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); - - igb_reset_tx_queue(txq, dev); - dev->tx_pkt_burst = eth_igb_xmit_pkts; - dev->data->tx_queues[queue_idx] = txq; - - return (0); -} - -static void -igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq) -{ - unsigned i; - - if (rxq->sw_ring != NULL) { - for (i = 0; i < rxq->nb_rx_desc; i++) { - if (rxq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); - rxq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -igb_rx_queue_release(struct igb_rx_queue *rxq) -{ - if (rxq != NULL) { - igb_rx_queue_release_mbufs(rxq); - rte_free(rxq->sw_ring); - rte_free(rxq); - } -} - -void -eth_igb_rx_queue_release(void *rxq) -{ - igb_rx_queue_release(rxq); -} - -static void -igb_reset_rx_queue(struct igb_rx_queue *rxq) -{ - static const union e1000_adv_rx_desc zeroed_desc = { .read = { - .pkt_addr = 0}}; - unsigned i; - - /* Zero out HW ring memory */ - for (i = 0; i < rxq->nb_rx_desc; i++) { - rxq->rx_ring[i] = zeroed_desc; - } - - rxq->rx_tail = 0; - rxq->pkt_first_seg = NULL; - rxq->pkt_last_seg = NULL; -} - -int -eth_igb_rx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mp) -{ - const struct rte_memzone *rz; - struct igb_rx_queue *rxq; - struct e1000_hw *hw; - unsigned int size; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of receive descriptors. - * It must not exceed hardware maximum, and must be multiple - * of IGB_ALIGN. - */ - if (((nb_desc * sizeof(union e1000_adv_rx_desc)) % IGB_ALIGN) != 0 || - (nb_desc > IGB_MAX_RING_DESC) || (nb_desc < IGB_MIN_RING_DESC)) { - return (-EINVAL); - } - - /* Free memory prior to re-allocation if needed */ - if (dev->data->rx_queues[queue_idx] != NULL) { - igb_rx_queue_release(dev->data->rx_queues[queue_idx]); - dev->data->rx_queues[queue_idx] = NULL; - } - - /* First allocate the RX queue data structure. */ - rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue), - RTE_CACHE_LINE_SIZE); - if (rxq == NULL) - return (-ENOMEM); - rxq->mb_pool = mp; - rxq->nb_rx_desc = nb_desc; - rxq->pthresh = rx_conf->rx_thresh.pthresh; - rxq->hthresh = rx_conf->rx_thresh.hthresh; - rxq->wthresh = rx_conf->rx_thresh.wthresh; - if (rxq->wthresh > 0 && hw->mac.type == e1000_82576) - rxq->wthresh = 1; - rxq->drop_en = rx_conf->rx_drop_en; - rxq->rx_free_thresh = rx_conf->rx_free_thresh; - rxq->queue_id = queue_idx; - rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? - queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); - rxq->port_id = dev->data->port_id; - rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 : - ETHER_CRC_LEN); - - /* - * Allocate RX ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - size = sizeof(union e1000_adv_rx_desc) * IGB_MAX_RING_DESC; - rz = ring_dma_zone_reserve(dev, "rx_ring", queue_idx, size, socket_id); - if (rz == NULL) { - igb_rx_queue_release(rxq); - return (-ENOMEM); - } - rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx)); - rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx)); -#ifndef RTE_LIBRTE_XEN_DOM0 - rxq->rx_ring_phys_addr = (uint64_t) rz->phys_addr; -#else - rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); -#endif - rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr; - - /* Allocate software ring. */ - rxq->sw_ring = rte_zmalloc("rxq->sw_ring", - sizeof(struct igb_rx_entry) * nb_desc, - RTE_CACHE_LINE_SIZE); - if (rxq->sw_ring == NULL) { - igb_rx_queue_release(rxq); - return (-ENOMEM); - } - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); - - dev->data->rx_queues[queue_idx] = rxq; - igb_reset_rx_queue(rxq); - - return 0; -} - -uint32_t -eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) -{ -#define IGB_RXQ_SCAN_INTERVAL 4 - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_queue *rxq; - uint32_t desc = 0; - - if (rx_queue_id >= dev->data->nb_rx_queues) { - PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id); - return 0; - } - - rxq = dev->data->rx_queues[rx_queue_id]; - rxdp = &(rxq->rx_ring[rxq->rx_tail]); - - while ((desc < rxq->nb_rx_desc) && - (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) { - desc += IGB_RXQ_SCAN_INTERVAL; - rxdp += IGB_RXQ_SCAN_INTERVAL; - if (rxq->rx_tail + desc >= rxq->nb_rx_desc) - rxdp = &(rxq->rx_ring[rxq->rx_tail + - desc - rxq->nb_rx_desc]); - } - - return 0; -} - -int -eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset) -{ - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_queue *rxq = rx_queue; - uint32_t desc; - - if (unlikely(offset >= rxq->nb_rx_desc)) - return 0; - desc = rxq->rx_tail + offset; - if (desc >= rxq->nb_rx_desc) - desc -= rxq->nb_rx_desc; - - rxdp = &rxq->rx_ring[desc]; - return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD); -} - -void -igb_dev_clear_queues(struct rte_eth_dev *dev) -{ - uint16_t i; - struct igb_tx_queue *txq; - struct igb_rx_queue *rxq; - - for (i = 0; i < dev->data->nb_tx_queues; i++) { - txq = dev->data->tx_queues[i]; - if (txq != NULL) { - igb_tx_queue_release_mbufs(txq); - igb_reset_tx_queue(txq, dev); - } - } - - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - if (rxq != NULL) { - igb_rx_queue_release_mbufs(rxq); - igb_reset_rx_queue(rxq); - } - } -} - -/** - * Receive Side Scaling (RSS). - * See section 7.1.1.7 in the following document: - * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009 - * - * Principles: - * The source and destination IP addresses of the IP header and the source and - * destination ports of TCP/UDP headers, if any, of received packets are hashed - * against a configurable random key to compute a 32-bit RSS hash result. - * The seven (7) LSBs of the 32-bit hash result are used as an index into a - * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit - * RSS output index which is used as the RX queue index where to store the - * received packets. - * The following output is supplied in the RX write-back descriptor: - * - 32-bit result of the Microsoft RSS hash function, - * - 4-bit RSS type field. - */ - -/* - * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet. - * Used as the default key. - */ -static uint8_t rss_intel_key[40] = { - 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, - 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, - 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, - 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, - 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA, -}; - -static void -igb_rss_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - uint32_t mrqc; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - mrqc = E1000_READ_REG(hw, E1000_MRQC); - mrqc &= ~E1000_MRQC_ENABLE_MASK; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); -} - -static void -igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf) -{ - uint8_t *hash_key; - uint32_t rss_key; - uint32_t mrqc; - uint64_t rss_hf; - uint16_t i; - - hash_key = rss_conf->rss_key; - if (hash_key != NULL) { - /* Fill in RSS hash key */ - for (i = 0; i < 10; i++) { - rss_key = hash_key[(i * 4)]; - rss_key |= hash_key[(i * 4) + 1] << 8; - rss_key |= hash_key[(i * 4) + 2] << 16; - rss_key |= hash_key[(i * 4) + 3] << 24; - E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key); - } - } - - /* Set configured hashing protocols in MRQC register */ - rss_hf = rss_conf->rss_hf; - mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */ - if (rss_hf & ETH_RSS_IPV4) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4; - if (rss_hf & ETH_RSS_IPV4_TCP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP; - if (rss_hf & ETH_RSS_IPV6) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6; - if (rss_hf & ETH_RSS_IPV6_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX; - if (rss_hf & ETH_RSS_IPV6_TCP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP; - if (rss_hf & ETH_RSS_IPV6_TCP_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; - if (rss_hf & ETH_RSS_IPV4_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; - if (rss_hf & ETH_RSS_IPV6_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; - if (rss_hf & ETH_RSS_IPV6_UDP_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); -} - -int -eth_igb_rss_hash_update(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf) -{ - struct e1000_hw *hw; - uint32_t mrqc; - uint64_t rss_hf; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Before changing anything, first check that the update RSS operation - * does not attempt to disable RSS, if RSS was enabled at - * initialization time, or does not attempt to enable RSS, if RSS was - * disabled at initialization time. - */ - rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL; - mrqc = E1000_READ_REG(hw, E1000_MRQC); - if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */ - if (rss_hf != 0) /* Enable RSS */ - return -(EINVAL); - return 0; /* Nothing to do */ - } - /* RSS enabled */ - if (rss_hf == 0) /* Disable RSS */ - return -(EINVAL); - igb_hw_rss_hash_set(hw, rss_conf); - return 0; -} - -int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf) -{ - struct e1000_hw *hw; - uint8_t *hash_key; - uint32_t rss_key; - uint32_t mrqc; - uint64_t rss_hf; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - hash_key = rss_conf->rss_key; - if (hash_key != NULL) { - /* Return RSS hash key */ - for (i = 0; i < 10; i++) { - rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i); - hash_key[(i * 4)] = rss_key & 0x000000FF; - hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF; - hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF; - hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF; - } - } - - /* Get RSS functions configured in MRQC register */ - mrqc = E1000_READ_REG(hw, E1000_MRQC); - if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */ - rss_conf->rss_hf = 0; - return 0; - } - rss_hf = 0; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) - rss_hf |= ETH_RSS_IPV4; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) - rss_hf |= ETH_RSS_IPV4_TCP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) - rss_hf |= ETH_RSS_IPV6; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX) - rss_hf |= ETH_RSS_IPV6_EX; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) - rss_hf |= ETH_RSS_IPV6_TCP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX) - rss_hf |= ETH_RSS_IPV6_TCP_EX; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP) - rss_hf |= ETH_RSS_IPV4_UDP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP) - rss_hf |= ETH_RSS_IPV6_UDP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX) - rss_hf |= ETH_RSS_IPV6_UDP_EX; - rss_conf->rss_hf = rss_hf; - return 0; -} - -static void -igb_rss_configure(struct rte_eth_dev *dev) -{ - struct rte_eth_rss_conf rss_conf; - struct e1000_hw *hw; - uint32_t shift; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Fill in redirection table. */ - shift = (hw->mac.type == e1000_82575) ? 6 : 0; - for (i = 0; i < 128; i++) { - union e1000_reta { - uint32_t dword; - uint8_t bytes[4]; - } reta; - uint8_t q_idx; - - q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ? - i % dev->data->nb_rx_queues : 0); - reta.bytes[i & 3] = (uint8_t) (q_idx << shift); - if ((i & 3) == 3) - E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword); - } - - /* - * Configure the RSS key and the RSS protocols used to compute - * the RSS hash of input packets. - */ - rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf; - if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) { - igb_rss_disable(dev); - return; - } - if (rss_conf.rss_key == NULL) - rss_conf.rss_key = rss_intel_key; /* Default hash key */ - igb_hw_rss_hash_set(hw, &rss_conf); -} - -/* - * Check if the mac type support VMDq or not. - * Return 1 if it supports, otherwise, return 0. - */ -static int -igb_is_vmdq_supported(const struct rte_eth_dev *dev) -{ - const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - switch (hw->mac.type) { - case e1000_82576: - case e1000_82580: - case e1000_i350: - return 1; - case e1000_82540: - case e1000_82541: - case e1000_82542: - case e1000_82543: - case e1000_82544: - case e1000_82545: - case e1000_82546: - case e1000_82547: - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_82574: - case e1000_82583: - case e1000_i210: - case e1000_i211: - default: - PMD_INIT_LOG(ERR, "Cannot support VMDq feature"); - return 0; - } -} - -static int -igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev) -{ - struct rte_eth_vmdq_rx_conf *cfg; - struct e1000_hw *hw; - uint32_t mrqc, vt_ctl, vmolr, rctl; - int i; - - PMD_INIT_FUNC_TRACE(); - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf; - - /* Check if mac type can support VMDq, return value of 0 means NOT support */ - if (igb_is_vmdq_supported(dev) == 0) - return -1; - - igb_rss_disable(dev); - - /* RCTL: eanble VLAN filter */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* MRQC: enable vmdq */ - mrqc = E1000_READ_REG(hw, E1000_MRQC); - mrqc |= E1000_MRQC_ENABLE_VMDQ; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); - - /* VTCTL: pool selection according to VLAN tag */ - vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); - if (cfg->enable_default_pool) - vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT); - vt_ctl |= E1000_VT_CTL_IGNORE_MAC; - E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); - - for (i = 0; i < E1000_VMOLR_SIZE; i++) { - vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); - vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE | - E1000_VMOLR_ROPE | E1000_VMOLR_BAM | - E1000_VMOLR_MPME); - - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG) - vmolr |= E1000_VMOLR_AUPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC) - vmolr |= E1000_VMOLR_ROMPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC) - vmolr |= E1000_VMOLR_ROPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST) - vmolr |= E1000_VMOLR_BAM; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST) - vmolr |= E1000_VMOLR_MPME; - - E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); - } - - /* - * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1 - * Both 82576 and 82580 support it - */ - if (hw->mac.type != e1000_i350) { - for (i = 0; i < E1000_VMOLR_SIZE; i++) { - vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); - vmolr |= E1000_VMOLR_STRVLAN; - E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); - } - } - - /* VFTA - enable all vlan filters */ - for (i = 0; i < IGB_VFTA_SIZE; i++) - E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX); - - /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */ - if (hw->mac.type != e1000_82580) - E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK); - - /* - * RAH/RAL - allow pools to read specific mac addresses - * In this case, all pools should be able to read from mac addr 0 - */ - E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX)); - E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX); - - /* VLVF: set up filters for vlan tags as configured */ - for (i = 0; i < cfg->nb_pool_maps; i++) { - /* set vlan id in VF register and set the valid bit */ - E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \ - (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \ - ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \ - E1000_VLVF_POOLSEL_MASK))); - } - - E1000_WRITE_FLUSH(hw); - - return 0; -} - - -/********************************************************************* - * - * Enable receive unit. - * - **********************************************************************/ - -static int -igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq) -{ - struct igb_rx_entry *rxe = rxq->sw_ring; - uint64_t dma_addr; - unsigned i; - - /* Initialize software ring entries. */ - for (i = 0; i < rxq->nb_rx_desc; i++) { - volatile union e1000_adv_rx_desc *rxd; - struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool); - - if (mbuf == NULL) { - PMD_INIT_LOG(ERR, "RX mbuf alloc failed " - "queue_id=%hu", rxq->queue_id); - return (-ENOMEM); - } - dma_addr = - rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf)); - rxd = &rxq->rx_ring[i]; - rxd->read.hdr_addr = dma_addr; - rxd->read.pkt_addr = dma_addr; - rxe[i].mbuf = mbuf; - } - - return 0; -} - -#define E1000_MRQC_DEF_Q_SHIFT (3) -static int -igb_dev_mq_rx_configure(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t mrqc; - - if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) { - /* - * SRIOV active scheme - * FIXME if support RSS together with VMDq & SRIOV - */ - mrqc = E1000_MRQC_ENABLE_VMDQ; - /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */ - mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); - } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) { - /* - * SRIOV inactive scheme - */ - switch (dev->data->dev_conf.rxmode.mq_mode) { - case ETH_MQ_RX_RSS: - igb_rss_configure(dev); - break; - case ETH_MQ_RX_VMDQ_ONLY: - /*Configure general VMDQ only RX parameters*/ - igb_vmdq_rx_hw_configure(dev); - break; - case ETH_MQ_RX_NONE: - /* if mq_mode is none, disable rss mode.*/ - default: - igb_rss_disable(dev); - break; - } - } - - return 0; -} - -int -eth_igb_rx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_rx_queue *rxq; - struct rte_pktmbuf_pool_private *mbp_priv; - uint32_t rctl; - uint32_t rxcsum; - uint32_t srrctl; - uint16_t buf_size; - uint16_t rctl_bsize; - uint16_t i; - int ret; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - srrctl = 0; - - /* - * Make sure receives are disabled while setting - * up the descriptor ring. - */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); - - /* - * Configure support of jumbo frames, if any. - */ - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) { - rctl |= E1000_RCTL_LPE; - - /* - * Set maximum packet length by default, and might be updated - * together with enabling/disabling dual VLAN. - */ - E1000_WRITE_REG(hw, E1000_RLPML, - dev->data->dev_conf.rxmode.max_rx_pkt_len + - VLAN_TAG_SIZE); - } else - rctl &= ~E1000_RCTL_LPE; - - /* Configure and enable each RX queue. */ - rctl_bsize = 0; - dev->rx_pkt_burst = eth_igb_recv_pkts; - for (i = 0; i < dev->data->nb_rx_queues; i++) { - uint64_t bus_addr; - uint32_t rxdctl; - - rxq = dev->data->rx_queues[i]; - - /* Allocate buffers for descriptor rings and set up queue */ - ret = igb_alloc_rx_queue_mbufs(rxq); - if (ret) - return ret; - - /* - * Reset crc_len in case it was changed after queue setup by a - * call to configure - */ - rxq->crc_len = - (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ? - 0 : ETHER_CRC_LEN); - - bus_addr = rxq->rx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx), - rxq->nb_rx_desc * - sizeof(union e1000_adv_rx_desc)); - E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr); - - srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; - - /* - * Configure RX buffer size. - */ - mbp_priv = rte_mempool_get_priv(rxq->mb_pool); - buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size - - RTE_PKTMBUF_HEADROOM); - if (buf_size >= 1024) { - /* - * Configure the BSIZEPACKET field of the SRRCTL - * register of the queue. - * Value is in 1 KB resolution, from 1 KB to 127 KB. - * If this field is equal to 0b, then RCTL.BSIZE - * determines the RX packet buffer size. - */ - srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & - E1000_SRRCTL_BSIZEPKT_MASK); - buf_size = (uint16_t) ((srrctl & - E1000_SRRCTL_BSIZEPKT_MASK) << - E1000_SRRCTL_BSIZEPKT_SHIFT); - - /* It adds dual VLAN length for supporting dual VLAN */ - if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + - 2 * VLAN_TAG_SIZE) > buf_size){ - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, - "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - } else { - /* - * Use BSIZE field of the device RCTL register. - */ - if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) - rctl_bsize = buf_size; - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* Set if packets are dropped when no descriptors available */ - if (rxq->drop_en) - srrctl |= E1000_SRRCTL_DROP_EN; - - E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl); - - /* Enable this RX queue. */ - rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx)); - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - rxdctl &= 0xFFF00000; - rxdctl |= (rxq->pthresh & 0x1F); - rxdctl |= ((rxq->hthresh & 0x1F) << 8); - rxdctl |= ((rxq->wthresh & 0x1F) << 16); - E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl); - } - - if (dev->data->dev_conf.rxmode.enable_scatter) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* - * Setup BSIZE field of RCTL register, if needed. - * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL - * register, since the code above configures the SRRCTL register of - * the RX queue in such a case. - * All configurable sizes are: - * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); - * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); - * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); - * 2048: rctl |= E1000_RCTL_SZ_2048; - * 1024: rctl |= E1000_RCTL_SZ_1024; - * 512: rctl |= E1000_RCTL_SZ_512; - * 256: rctl |= E1000_RCTL_SZ_256; - */ - if (rctl_bsize > 0) { - if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */ - rctl |= E1000_RCTL_SZ_512; - else /* 256 <= buf_size < 512 - use 256 */ - rctl |= E1000_RCTL_SZ_256; - } - - /* - * Configure RSS if device configured with multiple RX queues. - */ - igb_dev_mq_rx_configure(dev); - - /* Update the rctl since igb_dev_mq_rx_configure may change its value */ - rctl |= E1000_READ_REG(hw, E1000_RCTL); - - /* - * Setup the Checksum Register. - * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. - */ - rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); - rxcsum |= E1000_RXCSUM_PCSD; - - /* Enable both L3/L4 rx checksum offload */ - if (dev->data->dev_conf.rxmode.hw_ip_checksum) - rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); - else - rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); - E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); - - /* Setup the Receive Control Register. */ - if (dev->data->dev_conf.rxmode.hw_strip_crc) { - rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ - - /* set STRCRC bit in all queues */ - if (hw->mac.type == e1000_i350 || - hw->mac.type == e1000_i210 || - hw->mac.type == e1000_i211 || - hw->mac.type == e1000_i354) { - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - uint32_t dvmolr = E1000_READ_REG(hw, - E1000_DVMOLR(rxq->reg_idx)); - dvmolr |= E1000_DVMOLR_STRCRC; - E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); - } - } - } else { - rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ - - /* clear STRCRC bit in all queues */ - if (hw->mac.type == e1000_i350 || - hw->mac.type == e1000_i210 || - hw->mac.type == e1000_i211 || - hw->mac.type == e1000_i354) { - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - uint32_t dvmolr = E1000_READ_REG(hw, - E1000_DVMOLR(rxq->reg_idx)); - dvmolr &= ~E1000_DVMOLR_STRCRC; - E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); - } - } - } - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | - E1000_RCTL_RDMTS_HALF | - (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - - /* Make sure VLAN Filters are off. */ - if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY) - rctl &= ~E1000_RCTL_VFE; - /* Don't store bad packets. */ - rctl &= ~E1000_RCTL_SBP; - - /* Enable Receives. */ - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* - * Setup the HW Rx Head and Tail Descriptor Pointers. - * This needs to be done after enable. - */ - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0); - E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1); - } - - return 0; -} - -/********************************************************************* - * - * Enable transmit unit. - * - **********************************************************************/ -void -eth_igb_tx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_tx_queue *txq; - uint32_t tctl; - uint32_t txdctl; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Setup the Base and Length of the Tx Descriptor Rings. */ - for (i = 0; i < dev->data->nb_tx_queues; i++) { - uint64_t bus_addr; - txq = dev->data->tx_queues[i]; - bus_addr = txq->tx_ring_phys_addr; - - E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx), - txq->nb_tx_desc * - sizeof(union e1000_adv_tx_desc)); - E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr); - - /* Setup the HW Tx Head and Tail descriptor pointers. */ - E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0); - E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0); - - /* Setup Transmit threshold registers. */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx)); - txdctl |= txq->pthresh & 0x1F; - txdctl |= ((txq->hthresh & 0x1F) << 8); - txdctl |= ((txq->wthresh & 0x1F) << 16); - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl); - } - - /* Program the Transmit Control Register. */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); - - e1000_config_collision_dist(hw); - - /* This write will effectively turn on the transmit unit. */ - E1000_WRITE_REG(hw, E1000_TCTL, tctl); -} - -/********************************************************************* - * - * Enable VF receive unit. - * - **********************************************************************/ -int -eth_igbvf_rx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_rx_queue *rxq; - struct rte_pktmbuf_pool_private *mbp_priv; - uint32_t srrctl; - uint16_t buf_size; - uint16_t rctl_bsize; - uint16_t i; - int ret; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* setup MTU */ - e1000_rlpml_set_vf(hw, - (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len + - VLAN_TAG_SIZE)); - - /* Configure and enable each RX queue. */ - rctl_bsize = 0; - dev->rx_pkt_burst = eth_igb_recv_pkts; - for (i = 0; i < dev->data->nb_rx_queues; i++) { - uint64_t bus_addr; - uint32_t rxdctl; - - rxq = dev->data->rx_queues[i]; - - /* Allocate buffers for descriptor rings and set up queue */ - ret = igb_alloc_rx_queue_mbufs(rxq); - if (ret) - return ret; - - bus_addr = rxq->rx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_RDLEN(i), - rxq->nb_rx_desc * - sizeof(union e1000_adv_rx_desc)); - E1000_WRITE_REG(hw, E1000_RDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); - - srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; - - /* - * Configure RX buffer size. - */ - mbp_priv = rte_mempool_get_priv(rxq->mb_pool); - buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size - - RTE_PKTMBUF_HEADROOM); - if (buf_size >= 1024) { - /* - * Configure the BSIZEPACKET field of the SRRCTL - * register of the queue. - * Value is in 1 KB resolution, from 1 KB to 127 KB. - * If this field is equal to 0b, then RCTL.BSIZE - * determines the RX packet buffer size. - */ - srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & - E1000_SRRCTL_BSIZEPKT_MASK); - buf_size = (uint16_t) ((srrctl & - E1000_SRRCTL_BSIZEPKT_MASK) << - E1000_SRRCTL_BSIZEPKT_SHIFT); - - /* It adds dual VLAN length for supporting dual VLAN */ - if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + - 2 * VLAN_TAG_SIZE) > buf_size){ - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, - "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - } else { - /* - * Use BSIZE field of the device RCTL register. - */ - if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) - rctl_bsize = buf_size; - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* Set if packets are dropped when no descriptors available */ - if (rxq->drop_en) - srrctl |= E1000_SRRCTL_DROP_EN; - - E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); - - /* Enable this RX queue. */ - rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - rxdctl &= 0xFFF00000; - rxdctl |= (rxq->pthresh & 0x1F); - rxdctl |= ((rxq->hthresh & 0x1F) << 8); - if (hw->mac.type == e1000_vfadapt) { - /* - * Workaround of 82576 VF Erratum - * force set WTHRESH to 1 - * to avoid Write-Back not triggered sometimes - */ - rxdctl |= 0x10000; - PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !"); - } - else - rxdctl |= ((rxq->wthresh & 0x1F) << 16); - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); - } - - if (dev->data->dev_conf.rxmode.enable_scatter) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* - * Setup the HW Rx Head and Tail Descriptor Pointers. - * This needs to be done after enable. - */ - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - E1000_WRITE_REG(hw, E1000_RDH(i), 0); - E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); - } - - return 0; -} - -/********************************************************************* - * - * Enable VF transmit unit. - * - **********************************************************************/ -void -eth_igbvf_tx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_tx_queue *txq; - uint32_t txdctl; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Setup the Base and Length of the Tx Descriptor Rings. */ - for (i = 0; i < dev->data->nb_tx_queues; i++) { - uint64_t bus_addr; - - txq = dev->data->tx_queues[i]; - bus_addr = txq->tx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_TDLEN(i), - txq->nb_tx_desc * - sizeof(union e1000_adv_tx_desc)); - E1000_WRITE_REG(hw, E1000_TDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); - - /* Setup the HW Tx Head and Tail descriptor pointers. */ - E1000_WRITE_REG(hw, E1000_TDT(i), 0); - E1000_WRITE_REG(hw, E1000_TDH(i), 0); - - /* Setup Transmit threshold registers. */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); - txdctl |= txq->pthresh & 0x1F; - txdctl |= ((txq->hthresh & 0x1F) << 8); - if (hw->mac.type == e1000_82576) { - /* - * Workaround of 82576 VF Erratum - * force set WTHRESH to 1 - * to avoid Write-Back not triggered sometimes - */ - txdctl |= 0x10000; - PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !"); - } - else - txdctl |= ((txq->wthresh & 0x1F) << 16); - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); - } - -} - |