summaryrefslogtreecommitdiffstats
path: root/external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
diff options
context:
space:
mode:
Diffstat (limited to 'external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c')
-rw-r--r--external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c391
1 files changed, 0 insertions, 391 deletions
diff --git a/external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c b/external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
deleted file mode 100644
index a5202ed6..00000000
--- a/external_libs/python/pyzmq-14.7.0/bundled/libsodium/src/libsodium/crypto_pwhash/scryptsalsa208sha256/sse/pwhash_scryptsalsa208sha256_sse.c
+++ /dev/null
@@ -1,391 +0,0 @@
-/*-
- * Copyright 2009 Colin Percival
- * Copyright 2012,2013 Alexander Peslyak
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
-
-#if defined(HAVE_EMMINTRIN_H) || defined(_MSC_VER)
-#if __GNUC__
-# pragma GCC target("sse2")
-#endif
-#include <emmintrin.h>
-#if defined(__XOP__) && defined(DISABLED)
-# include <x86intrin.h>
-#endif
-
-#include <errno.h>
-#include <limits.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "../pbkdf2-sha256.h"
-#include "../sysendian.h"
-#include "../crypto_scrypt.h"
-
-#if defined(__XOP__) && defined(DISABLED)
-#define ARX(out, in1, in2, s) \
- out = _mm_xor_si128(out, _mm_roti_epi32(_mm_add_epi32(in1, in2), s));
-#else
-#define ARX(out, in1, in2, s) \
- { \
- __m128i T = _mm_add_epi32(in1, in2); \
- out = _mm_xor_si128(out, _mm_slli_epi32(T, s)); \
- out = _mm_xor_si128(out, _mm_srli_epi32(T, 32-s)); \
- }
-#endif
-
-#define SALSA20_2ROUNDS \
- /* Operate on "columns". */ \
- ARX(X1, X0, X3, 7) \
- ARX(X2, X1, X0, 9) \
- ARX(X3, X2, X1, 13) \
- ARX(X0, X3, X2, 18) \
-\
- /* Rearrange data. */ \
- X1 = _mm_shuffle_epi32(X1, 0x93); \
- X2 = _mm_shuffle_epi32(X2, 0x4E); \
- X3 = _mm_shuffle_epi32(X3, 0x39); \
-\
- /* Operate on "rows". */ \
- ARX(X3, X0, X1, 7) \
- ARX(X2, X3, X0, 9) \
- ARX(X1, X2, X3, 13) \
- ARX(X0, X1, X2, 18) \
-\
- /* Rearrange data. */ \
- X1 = _mm_shuffle_epi32(X1, 0x39); \
- X2 = _mm_shuffle_epi32(X2, 0x4E); \
- X3 = _mm_shuffle_epi32(X3, 0x93);
-
-/**
- * Apply the salsa20/8 core to the block provided in (X0 ... X3) ^ (Z0 ... Z3).
- */
-#define SALSA20_8_XOR(in, out) \
- { \
- __m128i Y0 = X0 = _mm_xor_si128(X0, (in)[0]); \
- __m128i Y1 = X1 = _mm_xor_si128(X1, (in)[1]); \
- __m128i Y2 = X2 = _mm_xor_si128(X2, (in)[2]); \
- __m128i Y3 = X3 = _mm_xor_si128(X3, (in)[3]); \
- SALSA20_2ROUNDS \
- SALSA20_2ROUNDS \
- SALSA20_2ROUNDS \
- SALSA20_2ROUNDS \
- (out)[0] = X0 = _mm_add_epi32(X0, Y0); \
- (out)[1] = X1 = _mm_add_epi32(X1, Y1); \
- (out)[2] = X2 = _mm_add_epi32(X2, Y2); \
- (out)[3] = X3 = _mm_add_epi32(X3, Y3); \
- }
-
-/**
- * blockmix_salsa8(Bin, Bout, r):
- * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
- * bytes in length; the output Bout must also be the same size.
- */
-static inline void
-blockmix_salsa8(const __m128i * Bin, __m128i * Bout, size_t r)
-{
- __m128i X0, X1, X2, X3;
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- X0 = Bin[8 * r - 4];
- X1 = Bin[8 * r - 3];
- X2 = Bin[8 * r - 2];
- X3 = Bin[8 * r - 1];
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- SALSA20_8_XOR(Bin, Bout)
-
- /* 2: for i = 0 to 2r - 1 do */
- r--;
- for (i = 0; i < r;) {
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
-
- i++;
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- SALSA20_8_XOR(&Bin[i * 8], &Bout[i * 4])
- }
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- SALSA20_8_XOR(&Bin[i * 8 + 4], &Bout[(r + i) * 4 + 4])
-}
-
-#define XOR4(in) \
- X0 = _mm_xor_si128(X0, (in)[0]); \
- X1 = _mm_xor_si128(X1, (in)[1]); \
- X2 = _mm_xor_si128(X2, (in)[2]); \
- X3 = _mm_xor_si128(X3, (in)[3]);
-
-#define XOR4_2(in1, in2) \
- X0 = _mm_xor_si128((in1)[0], (in2)[0]); \
- X1 = _mm_xor_si128((in1)[1], (in2)[1]); \
- X2 = _mm_xor_si128((in1)[2], (in2)[2]); \
- X3 = _mm_xor_si128((in1)[3], (in2)[3]);
-
-static inline uint32_t
-blockmix_salsa8_xor(const __m128i * Bin1, const __m128i * Bin2, __m128i * Bout,
- size_t r)
-{
- __m128i X0, X1, X2, X3;
- size_t i;
-
- /* 1: X <-- B_{2r - 1} */
- XOR4_2(&Bin1[8 * r - 4], &Bin2[8 * r - 4])
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- XOR4(Bin1)
- SALSA20_8_XOR(Bin2, Bout)
-
- /* 2: for i = 0 to 2r - 1 do */
- r--;
- for (i = 0; i < r;) {
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- XOR4(&Bin1[i * 8 + 4])
- SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
-
- i++;
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- XOR4(&Bin1[i * 8])
- SALSA20_8_XOR(&Bin2[i * 8], &Bout[i * 4])
- }
-
- /* 3: X <-- H(X \xor B_i) */
- /* 4: Y_i <-- X */
- /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
- XOR4(&Bin1[i * 8 + 4])
- SALSA20_8_XOR(&Bin2[i * 8 + 4], &Bout[(r + i) * 4 + 4])
-
- return _mm_cvtsi128_si32(X0);
-}
-
-#undef ARX
-#undef SALSA20_2ROUNDS
-#undef SALSA20_8_XOR
-#undef XOR4
-#undef XOR4_2
-
-/**
- * integerify(B, r):
- * Return the result of parsing B_{2r-1} as a little-endian integer.
- */
-static inline uint32_t
-integerify(const void * B, size_t r)
-{
- return *(const uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64);
-}
-
-/**
- * smix(B, r, N, V, XY):
- * Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
- * the temporary storage V must be 128rN bytes in length; the temporary
- * storage XY must be 256r + 64 bytes in length. The value N must be a
- * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
- * multiple of 64 bytes.
- */
-static void
-smix(uint8_t * B, size_t r, uint32_t N, void * V, void * XY)
-{
- size_t s = 128 * r;
- __m128i * X = (__m128i *) V, * Y;
- uint32_t * X32 = (uint32_t *) V;
- uint32_t i, j;
- size_t k;
-
- /* 1: X <-- B */
- /* 3: V_i <-- X */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- X32[k * 16 + i] =
- le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
- }
- }
-
- /* 2: for i = 0 to N - 1 do */
- for (i = 1; i < N - 1; i += 2) {
- /* 4: X <-- H(X) */
- /* 3: V_i <-- X */
- Y = (__m128i *)((uintptr_t)(V) + i * s);
- blockmix_salsa8(X, Y, r);
-
- /* 4: X <-- H(X) */
- /* 3: V_i <-- X */
- X = (__m128i *)((uintptr_t)(V) + (i + 1) * s);
- blockmix_salsa8(Y, X, r);
- }
-
- /* 4: X <-- H(X) */
- /* 3: V_i <-- X */
- Y = (__m128i *)((uintptr_t)(V) + i * s);
- blockmix_salsa8(X, Y, r);
-
- /* 4: X <-- H(X) */
- /* 3: V_i <-- X */
- X = (__m128i *) XY;
- blockmix_salsa8(Y, X, r);
-
- X32 = (uint32_t *) XY;
- Y = (__m128i *)((uintptr_t)(XY) + s);
-
- /* 7: j <-- Integerify(X) mod N */
- j = integerify(X, r) & (N - 1);
-
- /* 6: for i = 0 to N - 1 do */
- for (i = 0; i < N; i += 2) {
- __m128i * V_j = (__m128i *)((uintptr_t)(V) + j * s);
-
- /* 8: X <-- H(X \xor V_j) */
- /* 7: j <-- Integerify(X) mod N */
- j = blockmix_salsa8_xor(X, V_j, Y, r) & (N - 1);
- V_j = (__m128i *)((uintptr_t)(V) + j * s);
-
- /* 8: X <-- H(X \xor V_j) */
- /* 7: j <-- Integerify(X) mod N */
- j = blockmix_salsa8_xor(Y, V_j, X, r) & (N - 1);
- }
-
- /* 10: B' <-- X */
- for (k = 0; k < 2 * r; k++) {
- for (i = 0; i < 16; i++) {
- le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
- X32[k * 16 + i]);
- }
- }
-}
-
-/**
- * escrypt_kdf(local, passwd, passwdlen, salt, saltlen,
- * N, r, p, buf, buflen):
- * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
- * p, buflen) and write the result into buf. The parameters r, p, and buflen
- * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
- * must be a power of 2 greater than 1.
- *
- * Return 0 on success; or -1 on error.
- */
-int
-escrypt_kdf_sse(escrypt_local_t * local,
- const uint8_t * passwd, size_t passwdlen,
- const uint8_t * salt, size_t saltlen,
- uint64_t N, uint32_t _r, uint32_t _p,
- uint8_t * buf, size_t buflen)
-{
- size_t B_size, V_size, XY_size, need;
- uint8_t * B;
- uint32_t * V, * XY;
- size_t r = _r, p = _p;
- uint32_t i;
-
- /* Sanity-check parameters. */
-#if SIZE_MAX > UINT32_MAX
- if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
- errno = EFBIG;
- return -1;
- }
-#endif
- if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
- errno = EFBIG;
- return -1;
- }
- if (N > UINT32_MAX) {
- errno = EFBIG;
- return -1;
- }
- if (((N & (N - 1)) != 0) || (N < 2)) {
- errno = EINVAL;
- return -1;
- }
- if (r == 0 || p == 0) {
- errno = EINVAL;
- return -1;
- }
- if ((r > SIZE_MAX / 128 / p) ||
-#if SIZE_MAX / 256 <= UINT32_MAX
- (r > SIZE_MAX / 256) ||
-#endif
- (N > SIZE_MAX / 128 / r)) {
- errno = ENOMEM;
- return -1;
- }
-
- /* Allocate memory. */
- B_size = (size_t)128 * r * p;
- V_size = (size_t)128 * r * N;
- need = B_size + V_size;
- if (need < V_size) {
- errno = ENOMEM;
- return -1;
- }
- XY_size = (size_t)256 * r + 64;
- need += XY_size;
- if (need < XY_size) {
- errno = ENOMEM;
- return -1;
- }
- if (local->size < need) {
- if (free_region(local))
- return -1; /* LCOV_EXCL_LINE */
- if (!alloc_region(local, need))
- return -1; /* LCOV_EXCL_LINE */
- }
- B = (uint8_t *)local->aligned;
- V = (uint32_t *)((uint8_t *)B + B_size);
- XY = (uint32_t *)((uint8_t *)V + V_size);
-
- /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
- PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
-
- /* 2: for i = 0 to p - 1 do */
- for (i = 0; i < p; i++) {
- /* 3: B_i <-- MF(B_i, N) */
- smix(&B[(size_t)128 * i * r], r, (uint32_t) N, V, XY);
- }
-
- /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
- PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
-
- /* Success! */
- return 0;
-}
-#endif