diff options
Diffstat (limited to 'src/dpdk22/drivers/net/e1000/igb_rxtx.c')
-rw-r--r-- | src/dpdk22/drivers/net/e1000/igb_rxtx.c | 2531 |
1 files changed, 0 insertions, 2531 deletions
diff --git a/src/dpdk22/drivers/net/e1000/igb_rxtx.c b/src/dpdk22/drivers/net/e1000/igb_rxtx.c deleted file mode 100644 index 996e7da4..00000000 --- a/src/dpdk22/drivers/net/e1000/igb_rxtx.c +++ /dev/null @@ -1,2531 +0,0 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2015 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#include <sys/queue.h> - -#include <stdio.h> -#include <stdlib.h> -#include <string.h> -#include <errno.h> -#include <stdint.h> -#include <stdarg.h> -#include <inttypes.h> - -#include <rte_interrupts.h> -#include <rte_byteorder.h> -#include <rte_common.h> -#include <rte_log.h> -#include <rte_debug.h> -#include <rte_pci.h> -#include <rte_memory.h> -#include <rte_memcpy.h> -#include <rte_memzone.h> -#include <rte_launch.h> -#include <rte_eal.h> -#include <rte_per_lcore.h> -#include <rte_lcore.h> -#include <rte_atomic.h> -#include <rte_branch_prediction.h> -#include <rte_ring.h> -#include <rte_mempool.h> -#include <rte_malloc.h> -#include <rte_mbuf.h> -#include <rte_ether.h> -#include <rte_ethdev.h> -#include <rte_prefetch.h> -#include <rte_udp.h> -#include <rte_tcp.h> -#include <rte_sctp.h> -#include <rte_string_fns.h> - -#include "e1000_logs.h" -#include "base/e1000_api.h" -#include "e1000_ethdev.h" - -/* Bit Mask to indicate what bits required for building TX context */ -#define IGB_TX_OFFLOAD_MASK ( \ - PKT_TX_VLAN_PKT | \ - PKT_TX_IP_CKSUM | \ - PKT_TX_L4_MASK | \ - PKT_TX_TCP_SEG) - -static inline struct rte_mbuf * -rte_rxmbuf_alloc(struct rte_mempool *mp) -{ - struct rte_mbuf *m; - - m = __rte_mbuf_raw_alloc(mp); - __rte_mbuf_sanity_check_raw(m, 0); - return (m); -} - -#define RTE_MBUF_DATA_DMA_ADDR(mb) \ - (uint64_t) ((mb)->buf_physaddr + (mb)->data_off) - -#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \ - (uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM) - -/** - * Structure associated with each descriptor of the RX ring of a RX queue. - */ -struct igb_rx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */ -}; - -/** - * Structure associated with each descriptor of the TX ring of a TX queue. - */ -struct igb_tx_entry { - struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */ - uint16_t next_id; /**< Index of next descriptor in ring. */ - uint16_t last_id; /**< Index of last scattered descriptor. */ -}; - -/** - * Structure associated with each RX queue. - */ -struct igb_rx_queue { - struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */ - volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */ - uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */ - volatile uint32_t *rdt_reg_addr; /**< RDT register address. */ - volatile uint32_t *rdh_reg_addr; /**< RDH register address. */ - struct igb_rx_entry *sw_ring; /**< address of RX software ring. */ - struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */ - struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */ - uint16_t nb_rx_desc; /**< number of RX descriptors. */ - uint16_t rx_tail; /**< current value of RDT register. */ - uint16_t nb_rx_hold; /**< number of held free RX desc. */ - uint16_t rx_free_thresh; /**< max free RX desc to hold. */ - uint16_t queue_id; /**< RX queue index. */ - uint16_t reg_idx; /**< RX queue register index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */ - uint8_t drop_en; /**< If not 0, set SRRCTL.Drop_En. */ -}; - -/** - * Hardware context number - */ -enum igb_advctx_num { - IGB_CTX_0 = 0, /**< CTX0 */ - IGB_CTX_1 = 1, /**< CTX1 */ - IGB_CTX_NUM = 2, /**< CTX_NUM */ -}; - -/** Offload features */ -union igb_tx_offload { - uint64_t data; - struct { - uint64_t l3_len:9; /**< L3 (IP) Header Length. */ - uint64_t l2_len:7; /**< L2 (MAC) Header Length. */ - uint64_t vlan_tci:16; /**< VLAN Tag Control Identifier(CPU order). */ - uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */ - uint64_t tso_segsz:16; /**< TCP TSO segment size. */ - - /* uint64_t unused:8; */ - }; -}; - -/* - * Compare mask for igb_tx_offload.data, - * should be in sync with igb_tx_offload layout. - * */ -#define TX_MACIP_LEN_CMP_MASK 0x000000000000FFFFULL /**< L2L3 header mask. */ -#define TX_VLAN_CMP_MASK 0x00000000FFFF0000ULL /**< Vlan mask. */ -#define TX_TCP_LEN_CMP_MASK 0x000000FF00000000ULL /**< TCP header mask. */ -#define TX_TSO_MSS_CMP_MASK 0x00FFFF0000000000ULL /**< TSO segsz mask. */ -/** Mac + IP + TCP + Mss mask. */ -#define TX_TSO_CMP_MASK \ - (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK) - -/** - * Strucutre to check if new context need be built - */ -struct igb_advctx_info { - uint64_t flags; /**< ol_flags related to context build. */ - /** tx offload: vlan, tso, l2-l3-l4 lengths. */ - union igb_tx_offload tx_offload; - /** compare mask for tx offload. */ - union igb_tx_offload tx_offload_mask; -}; - -/** - * Structure associated with each TX queue. - */ -struct igb_tx_queue { - volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */ - uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */ - struct igb_tx_entry *sw_ring; /**< virtual address of SW ring. */ - volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */ - uint32_t txd_type; /**< Device-specific TXD type */ - uint16_t nb_tx_desc; /**< number of TX descriptors. */ - uint16_t tx_tail; /**< Current value of TDT register. */ - uint16_t tx_head; - /**< Index of first used TX descriptor. */ - uint16_t queue_id; /**< TX queue index. */ - uint16_t reg_idx; /**< TX queue register index. */ - uint8_t port_id; /**< Device port identifier. */ - uint8_t pthresh; /**< Prefetch threshold register. */ - uint8_t hthresh; /**< Host threshold register. */ - uint8_t wthresh; /**< Write-back threshold register. */ - uint32_t ctx_curr; - /**< Current used hardware descriptor. */ - uint32_t ctx_start; - /**< Start context position for transmit queue. */ - struct igb_advctx_info ctx_cache[IGB_CTX_NUM]; - /**< Hardware context history.*/ -}; - -#if 1 -#define RTE_PMD_USE_PREFETCH -#endif - -#ifdef RTE_PMD_USE_PREFETCH -#define rte_igb_prefetch(p) rte_prefetch0(p) -#else -#define rte_igb_prefetch(p) do {} while(0) -#endif - -#ifdef RTE_PMD_PACKET_PREFETCH -#define rte_packet_prefetch(p) rte_prefetch1(p) -#else -#define rte_packet_prefetch(p) do {} while(0) -#endif - -/* - * Macro for VMDq feature for 1 GbE NIC. - */ -#define E1000_VMOLR_SIZE (8) -#define IGB_TSO_MAX_HDRLEN (512) -#define IGB_TSO_MAX_MSS (9216) - -/********************************************************************* - * - * TX function - * - **********************************************************************/ - -/* - *There're some limitations in hardware for TCP segmentation offload. We - *should check whether the parameters are valid. - */ -static inline uint64_t -check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para) -{ - if (!(ol_req & PKT_TX_TCP_SEG)) - return ol_req; - if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len + - ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) { - ol_req &= ~PKT_TX_TCP_SEG; - ol_req |= PKT_TX_TCP_CKSUM; - } - return ol_req; -} - -/* - * Advanced context descriptor are almost same between igb/ixgbe - * This is a separate function, looking for optimization opportunity here - * Rework required to go with the pre-defined values. - */ - -static inline void -igbe_set_xmit_ctx(struct igb_tx_queue* txq, - volatile struct e1000_adv_tx_context_desc *ctx_txd, - uint64_t ol_flags, union igb_tx_offload tx_offload) -{ - uint32_t type_tucmd_mlhl; - uint32_t mss_l4len_idx; - uint32_t ctx_idx, ctx_curr; - uint32_t vlan_macip_lens; - union igb_tx_offload tx_offload_mask; - - ctx_curr = txq->ctx_curr; - ctx_idx = ctx_curr + txq->ctx_start; - - tx_offload_mask.data = 0; - type_tucmd_mlhl = 0; - - /* Specify which HW CTX to upload. */ - mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT); - - if (ol_flags & PKT_TX_VLAN_PKT) - tx_offload_mask.data |= TX_VLAN_CMP_MASK; - - /* check if TCP segmentation required for this packet */ - if (ol_flags & PKT_TX_TCP_SEG) { - /* implies IP cksum in IPv4 */ - if (ol_flags & PKT_TX_IP_CKSUM) - type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 | - E1000_ADVTXD_TUCMD_L4T_TCP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - else - type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 | - E1000_ADVTXD_TUCMD_L4T_TCP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - - tx_offload_mask.data |= TX_TSO_CMP_MASK; - mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT; - mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT; - } else { /* no TSO, check if hardware checksum is needed */ - if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK)) - tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK; - - if (ol_flags & PKT_TX_IP_CKSUM) - type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4; - - switch (ol_flags & PKT_TX_L4_MASK) { - case PKT_TX_UDP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - break; - case PKT_TX_TCP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - break; - case PKT_TX_SCTP_CKSUM: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT; - break; - default: - type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV | - E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT; - break; - } - } - - txq->ctx_cache[ctx_curr].flags = ol_flags; - txq->ctx_cache[ctx_idx].tx_offload.data = - tx_offload_mask.data & tx_offload.data; - txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask; - - ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl); - vlan_macip_lens = (uint32_t)tx_offload.data; - ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens); - ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx); - ctx_txd->seqnum_seed = 0; -} - -/* - * Check which hardware context can be used. Use the existing match - * or create a new context descriptor. - */ -static inline uint32_t -what_advctx_update(struct igb_tx_queue *txq, uint64_t flags, - union igb_tx_offload tx_offload) -{ - /* If match with the current context */ - if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && - (txq->ctx_cache[txq->ctx_curr].tx_offload.data == - (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) { - return txq->ctx_curr; - } - - /* If match with the second context */ - txq->ctx_curr ^= 1; - if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) && - (txq->ctx_cache[txq->ctx_curr].tx_offload.data == - (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) { - return txq->ctx_curr; - } - - /* Mismatch, use the previous context */ - return (IGB_CTX_NUM); -} - -static inline uint32_t -tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags) -{ - static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM}; - static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM}; - uint32_t tmp; - - tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM]; - tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0]; - tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0]; - return tmp; -} - -static inline uint32_t -tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags) -{ - uint32_t cmdtype; - static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE}; - static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE}; - cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0]; - cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0]; - return cmdtype; -} - -uint16_t -eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, - uint16_t nb_pkts) -{ - struct igb_tx_queue *txq; - struct igb_tx_entry *sw_ring; - struct igb_tx_entry *txe, *txn; - volatile union e1000_adv_tx_desc *txr; - volatile union e1000_adv_tx_desc *txd; - struct rte_mbuf *tx_pkt; - struct rte_mbuf *m_seg; - uint64_t buf_dma_addr; - uint32_t olinfo_status; - uint32_t cmd_type_len; - uint32_t pkt_len; - uint16_t slen; - uint64_t ol_flags; - uint16_t tx_end; - uint16_t tx_id; - uint16_t tx_last; - uint16_t nb_tx; - uint64_t tx_ol_req; - uint32_t new_ctx = 0; - uint32_t ctx = 0; - union igb_tx_offload tx_offload = {0}; - - txq = tx_queue; - sw_ring = txq->sw_ring; - txr = txq->tx_ring; - tx_id = txq->tx_tail; - txe = &sw_ring[tx_id]; - - for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { - tx_pkt = *tx_pkts++; - pkt_len = tx_pkt->pkt_len; - - RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf); - - /* - * The number of descriptors that must be allocated for a - * packet is the number of segments of that packet, plus 1 - * Context Descriptor for the VLAN Tag Identifier, if any. - * Determine the last TX descriptor to allocate in the TX ring - * for the packet, starting from the current position (tx_id) - * in the ring. - */ - tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1); - - ol_flags = tx_pkt->ol_flags; - tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK; - - /* If a Context Descriptor need be built . */ - if (tx_ol_req) { - tx_offload.l2_len = tx_pkt->l2_len; - tx_offload.l3_len = tx_pkt->l3_len; - tx_offload.l4_len = tx_pkt->l4_len; - tx_offload.vlan_tci = tx_pkt->vlan_tci; - tx_offload.tso_segsz = tx_pkt->tso_segsz; - tx_ol_req = check_tso_para(tx_ol_req, tx_offload); - - ctx = what_advctx_update(txq, tx_ol_req, tx_offload); - /* Only allocate context descriptor if required*/ - new_ctx = (ctx == IGB_CTX_NUM); - ctx = txq->ctx_curr; - tx_last = (uint16_t) (tx_last + new_ctx); - } - if (tx_last >= txq->nb_tx_desc) - tx_last = (uint16_t) (tx_last - txq->nb_tx_desc); - - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" - " tx_first=%u tx_last=%u", - (unsigned) txq->port_id, - (unsigned) txq->queue_id, - (unsigned) pkt_len, - (unsigned) tx_id, - (unsigned) tx_last); - - /* - * Check if there are enough free descriptors in the TX ring - * to transmit the next packet. - * This operation is based on the two following rules: - * - * 1- Only check that the last needed TX descriptor can be - * allocated (by construction, if that descriptor is free, - * all intermediate ones are also free). - * - * For this purpose, the index of the last TX descriptor - * used for a packet (the "last descriptor" of a packet) - * is recorded in the TX entries (the last one included) - * that are associated with all TX descriptors allocated - * for that packet. - * - * 2- Avoid to allocate the last free TX descriptor of the - * ring, in order to never set the TDT register with the - * same value stored in parallel by the NIC in the TDH - * register, which makes the TX engine of the NIC enter - * in a deadlock situation. - * - * By extension, avoid to allocate a free descriptor that - * belongs to the last set of free descriptors allocated - * to the same packet previously transmitted. - */ - - /* - * The "last descriptor" of the previously sent packet, if any, - * which used the last descriptor to allocate. - */ - tx_end = sw_ring[tx_last].last_id; - - /* - * The next descriptor following that "last descriptor" in the - * ring. - */ - tx_end = sw_ring[tx_end].next_id; - - /* - * The "last descriptor" associated with that next descriptor. - */ - tx_end = sw_ring[tx_end].last_id; - - /* - * Check that this descriptor is free. - */ - if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) { - if (nb_tx == 0) - return (0); - goto end_of_tx; - } - - /* - * Set common flags of all TX Data Descriptors. - * - * The following bits must be set in all Data Descriptors: - * - E1000_ADVTXD_DTYP_DATA - * - E1000_ADVTXD_DCMD_DEXT - * - * The following bits must be set in the first Data Descriptor - * and are ignored in the other ones: - * - E1000_ADVTXD_DCMD_IFCS - * - E1000_ADVTXD_MAC_1588 - * - E1000_ADVTXD_DCMD_VLE - * - * The following bits must only be set in the last Data - * Descriptor: - * - E1000_TXD_CMD_EOP - * - * The following bits can be set in any Data Descriptor, but - * are only set in the last Data Descriptor: - * - E1000_TXD_CMD_RS - */ - cmd_type_len = txq->txd_type | - E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT; - if (tx_ol_req & PKT_TX_TCP_SEG) - pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len); - olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT); -#if defined(RTE_LIBRTE_IEEE1588) - if (ol_flags & PKT_TX_IEEE1588_TMST) - cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP; -#endif - if (tx_ol_req) { - /* Setup TX Advanced context descriptor if required */ - if (new_ctx) { - volatile struct e1000_adv_tx_context_desc * - ctx_txd; - - ctx_txd = (volatile struct - e1000_adv_tx_context_desc *) - &txr[tx_id]; - - txn = &sw_ring[txe->next_id]; - RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf); - - if (txe->mbuf != NULL) { - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = NULL; - } - - igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload); - - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - } - - /* Setup the TX Advanced Data Descriptor */ - cmd_type_len |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req); - olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req); - olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT); - } - - m_seg = tx_pkt; - do { - txn = &sw_ring[txe->next_id]; - txd = &txr[tx_id]; - - if (txe->mbuf != NULL) - rte_pktmbuf_free_seg(txe->mbuf); - txe->mbuf = m_seg; - - /* - * Set up transmit descriptor. - */ - slen = (uint16_t) m_seg->data_len; - buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg); - txd->read.buffer_addr = - rte_cpu_to_le_64(buf_dma_addr); - txd->read.cmd_type_len = - rte_cpu_to_le_32(cmd_type_len | slen); - txd->read.olinfo_status = - rte_cpu_to_le_32(olinfo_status); - txe->last_id = tx_last; - tx_id = txe->next_id; - txe = txn; - m_seg = m_seg->next; - } while (m_seg != NULL); - - /* - * The last packet data descriptor needs End Of Packet (EOP) - * and Report Status (RS). - */ - txd->read.cmd_type_len |= - rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS); - } - end_of_tx: - rte_wmb(); - - /* - * Set the Transmit Descriptor Tail (TDT). - */ - E1000_PCI_REG_WRITE(txq->tdt_reg_addr, tx_id); - PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", - (unsigned) txq->port_id, (unsigned) txq->queue_id, - (unsigned) tx_id, (unsigned) nb_tx); - txq->tx_tail = tx_id; - - return (nb_tx); -} - -/********************************************************************* - * - * RX functions - * - **********************************************************************/ -#define IGB_PACKET_TYPE_IPV4 0X01 -#define IGB_PACKET_TYPE_IPV4_TCP 0X11 -#define IGB_PACKET_TYPE_IPV4_UDP 0X21 -#define IGB_PACKET_TYPE_IPV4_SCTP 0X41 -#define IGB_PACKET_TYPE_IPV4_EXT 0X03 -#define IGB_PACKET_TYPE_IPV4_EXT_SCTP 0X43 -#define IGB_PACKET_TYPE_IPV6 0X04 -#define IGB_PACKET_TYPE_IPV6_TCP 0X14 -#define IGB_PACKET_TYPE_IPV6_UDP 0X24 -#define IGB_PACKET_TYPE_IPV6_EXT 0X0C -#define IGB_PACKET_TYPE_IPV6_EXT_TCP 0X1C -#define IGB_PACKET_TYPE_IPV6_EXT_UDP 0X2C -#define IGB_PACKET_TYPE_IPV4_IPV6 0X05 -#define IGB_PACKET_TYPE_IPV4_IPV6_TCP 0X15 -#define IGB_PACKET_TYPE_IPV4_IPV6_UDP 0X25 -#define IGB_PACKET_TYPE_IPV4_IPV6_EXT 0X0D -#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D -#define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D -#define IGB_PACKET_TYPE_MAX 0X80 -#define IGB_PACKET_TYPE_MASK 0X7F -#define IGB_PACKET_TYPE_SHIFT 0X04 -static inline uint32_t -igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info) -{ - static const uint32_t - ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = { - [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4, - [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4_EXT, - [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6, - [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6, - [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6_EXT, - [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6_EXT, - [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP, - [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP, - [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP, - [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP, - [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP, - [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP, - [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP, - [IGB_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP, - [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP, - [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP | - RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP, - [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP, - [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER | - RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP, - }; - if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF)) - return RTE_PTYPE_UNKNOWN; - - pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK; - - return ptype_table[pkt_info]; -} - -static inline uint64_t -rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs) -{ - uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ? 0 : PKT_RX_RSS_HASH; - -#if defined(RTE_LIBRTE_IEEE1588) - static uint32_t ip_pkt_etqf_map[8] = { - 0, 0, 0, PKT_RX_IEEE1588_PTP, - 0, 0, 0, 0, - }; - - struct rte_eth_dev dev = rte_eth_devices[rxq->port_id]; - struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private); - - /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */ - if (hw->mac.type == e1000_i210) - pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07]; - else - pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07]; -#else - RTE_SET_USED(rxq); -#endif - - return pkt_flags; -} - -static inline uint64_t -rx_desc_status_to_pkt_flags(uint32_t rx_status) -{ - uint64_t pkt_flags; - - /* Check if VLAN present */ - pkt_flags = (rx_status & E1000_RXD_STAT_VP) ? PKT_RX_VLAN_PKT : 0; - -#if defined(RTE_LIBRTE_IEEE1588) - if (rx_status & E1000_RXD_STAT_TMST) - pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST; -#endif - return pkt_flags; -} - -static inline uint64_t -rx_desc_error_to_pkt_flags(uint32_t rx_status) -{ - /* - * Bit 30: IPE, IPv4 checksum error - * Bit 29: L4I, L4I integrity error - */ - - static uint64_t error_to_pkt_flags_map[4] = { - 0, PKT_RX_L4_CKSUM_BAD, PKT_RX_IP_CKSUM_BAD, - PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD - }; - return error_to_pkt_flags_map[(rx_status >> - E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK]; -} - -uint16_t -eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - struct igb_rx_queue *rxq; - volatile union e1000_adv_rx_desc *rx_ring; - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_entry *sw_ring; - struct igb_rx_entry *rxe; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - union e1000_adv_rx_desc rxd; - uint64_t dma_addr; - uint32_t staterr; - uint32_t hlen_type_rss; - uint16_t pkt_len; - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint64_t pkt_flags; - - nb_rx = 0; - nb_hold = 0; - rxq = rx_queue; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - while (nb_rx < nb_pkts) { - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - staterr = rxdp->wb.upper.status_error; - if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) - break; - rxd = *rxdp; - - /* - * End of packet. - * - * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is - * likely to be invalid and to be dropped by the various - * validation checks performed by the network stack. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy do not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "staterr=0x%x pkt_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) staterr, - (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_igb_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_igb_prefetch(&rx_ring[rx_id]); - rte_igb_prefetch(&sw_ring[rx_id]); - } - - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma_addr = - rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->read.hdr_addr = 0; - rxdp->read.pkt_addr = dma_addr; - - /* - * Initialize the returned mbuf. - * 1) setup generic mbuf fields: - * - number of segments, - * - next segment, - * - packet length, - * - RX port identifier. - * 2) integrate hardware offload data, if any: - * - RSS flag & hash, - * - IP checksum flag, - * - VLAN TCI, if any, - * - error flags. - */ - pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) - - rxq->crc_len); - rxm->data_off = RTE_PKTMBUF_HEADROOM; - rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); - rxm->nb_segs = 1; - rxm->next = NULL; - rxm->pkt_len = pkt_len; - rxm->data_len = pkt_len; - rxm->port = rxq->port_id; - - rxm->hash.rss = rxd.wb.lower.hi_dword.rss; - hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); - /* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */ - rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan); - - pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss); - pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); - pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); - rxm->ol_flags = pkt_flags; - rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower. - lo_dword.hs_rss.pkt_info); - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = rxm; - } - rxq->rx_tail = rx_id; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -uint16_t -eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - struct igb_rx_queue *rxq; - volatile union e1000_adv_rx_desc *rx_ring; - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_entry *sw_ring; - struct igb_rx_entry *rxe; - struct rte_mbuf *first_seg; - struct rte_mbuf *last_seg; - struct rte_mbuf *rxm; - struct rte_mbuf *nmb; - union e1000_adv_rx_desc rxd; - uint64_t dma; /* Physical address of mbuf data buffer */ - uint32_t staterr; - uint32_t hlen_type_rss; - uint16_t rx_id; - uint16_t nb_rx; - uint16_t nb_hold; - uint16_t data_len; - uint64_t pkt_flags; - - nb_rx = 0; - nb_hold = 0; - rxq = rx_queue; - rx_id = rxq->rx_tail; - rx_ring = rxq->rx_ring; - sw_ring = rxq->sw_ring; - - /* - * Retrieve RX context of current packet, if any. - */ - first_seg = rxq->pkt_first_seg; - last_seg = rxq->pkt_last_seg; - - while (nb_rx < nb_pkts) { - next_desc: - /* - * The order of operations here is important as the DD status - * bit must not be read after any other descriptor fields. - * rx_ring and rxdp are pointing to volatile data so the order - * of accesses cannot be reordered by the compiler. If they were - * not volatile, they could be reordered which could lead to - * using invalid descriptor fields when read from rxd. - */ - rxdp = &rx_ring[rx_id]; - staterr = rxdp->wb.upper.status_error; - if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD))) - break; - rxd = *rxdp; - - /* - * Descriptor done. - * - * Allocate a new mbuf to replenish the RX ring descriptor. - * If the allocation fails: - * - arrange for that RX descriptor to be the first one - * being parsed the next time the receive function is - * invoked [on the same queue]. - * - * - Stop parsing the RX ring and return immediately. - * - * This policy does not drop the packet received in the RX - * descriptor for which the allocation of a new mbuf failed. - * Thus, it allows that packet to be later retrieved if - * mbuf have been freed in the mean time. - * As a side effect, holding RX descriptors instead of - * systematically giving them back to the NIC may lead to - * RX ring exhaustion situations. - * However, the NIC can gracefully prevent such situations - * to happen by sending specific "back-pressure" flow control - * frames to its peer(s). - */ - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " - "staterr=0x%x data_len=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) staterr, - (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length)); - - nmb = rte_rxmbuf_alloc(rxq->mb_pool); - if (nmb == NULL) { - PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " - "queue_id=%u", (unsigned) rxq->port_id, - (unsigned) rxq->queue_id); - rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++; - break; - } - - nb_hold++; - rxe = &sw_ring[rx_id]; - rx_id++; - if (rx_id == rxq->nb_rx_desc) - rx_id = 0; - - /* Prefetch next mbuf while processing current one. */ - rte_igb_prefetch(sw_ring[rx_id].mbuf); - - /* - * When next RX descriptor is on a cache-line boundary, - * prefetch the next 4 RX descriptors and the next 8 pointers - * to mbufs. - */ - if ((rx_id & 0x3) == 0) { - rte_igb_prefetch(&rx_ring[rx_id]); - rte_igb_prefetch(&sw_ring[rx_id]); - } - - /* - * Update RX descriptor with the physical address of the new - * data buffer of the new allocated mbuf. - */ - rxm = rxe->mbuf; - rxe->mbuf = nmb; - dma = rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb)); - rxdp->read.pkt_addr = dma; - rxdp->read.hdr_addr = 0; - - /* - * Set data length & data buffer address of mbuf. - */ - data_len = rte_le_to_cpu_16(rxd.wb.upper.length); - rxm->data_len = data_len; - rxm->data_off = RTE_PKTMBUF_HEADROOM; - - /* - * If this is the first buffer of the received packet, - * set the pointer to the first mbuf of the packet and - * initialize its context. - * Otherwise, update the total length and the number of segments - * of the current scattered packet, and update the pointer to - * the last mbuf of the current packet. - */ - if (first_seg == NULL) { - first_seg = rxm; - first_seg->pkt_len = data_len; - first_seg->nb_segs = 1; - } else { - first_seg->pkt_len += data_len; - first_seg->nb_segs++; - last_seg->next = rxm; - } - - /* - * If this is not the last buffer of the received packet, - * update the pointer to the last mbuf of the current scattered - * packet and continue to parse the RX ring. - */ - if (! (staterr & E1000_RXD_STAT_EOP)) { - last_seg = rxm; - goto next_desc; - } - - /* - * This is the last buffer of the received packet. - * If the CRC is not stripped by the hardware: - * - Subtract the CRC length from the total packet length. - * - If the last buffer only contains the whole CRC or a part - * of it, free the mbuf associated to the last buffer. - * If part of the CRC is also contained in the previous - * mbuf, subtract the length of that CRC part from the - * data length of the previous mbuf. - */ - rxm->next = NULL; - if (unlikely(rxq->crc_len > 0)) { - first_seg->pkt_len -= ETHER_CRC_LEN; - if (data_len <= ETHER_CRC_LEN) { - rte_pktmbuf_free_seg(rxm); - first_seg->nb_segs--; - last_seg->data_len = (uint16_t) - (last_seg->data_len - - (ETHER_CRC_LEN - data_len)); - last_seg->next = NULL; - } else - rxm->data_len = - (uint16_t) (data_len - ETHER_CRC_LEN); - } - - /* - * Initialize the first mbuf of the returned packet: - * - RX port identifier, - * - hardware offload data, if any: - * - RSS flag & hash, - * - IP checksum flag, - * - VLAN TCI, if any, - * - error flags. - */ - first_seg->port = rxq->port_id; - first_seg->hash.rss = rxd.wb.lower.hi_dword.rss; - - /* - * The vlan_tci field is only valid when PKT_RX_VLAN_PKT is - * set in the pkt_flags field. - */ - first_seg->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan); - hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data); - pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss); - pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr); - pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr); - first_seg->ol_flags = pkt_flags; - first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb. - lower.lo_dword.hs_rss.pkt_info); - - /* Prefetch data of first segment, if configured to do so. */ - rte_packet_prefetch((char *)first_seg->buf_addr + - first_seg->data_off); - - /* - * Store the mbuf address into the next entry of the array - * of returned packets. - */ - rx_pkts[nb_rx++] = first_seg; - - /* - * Setup receipt context for a new packet. - */ - first_seg = NULL; - } - - /* - * Record index of the next RX descriptor to probe. - */ - rxq->rx_tail = rx_id; - - /* - * Save receive context. - */ - rxq->pkt_first_seg = first_seg; - rxq->pkt_last_seg = last_seg; - - /* - * If the number of free RX descriptors is greater than the RX free - * threshold of the queue, advance the Receive Descriptor Tail (RDT) - * register. - * Update the RDT with the value of the last processed RX descriptor - * minus 1, to guarantee that the RDT register is never equal to the - * RDH register, which creates a "full" ring situtation from the - * hardware point of view... - */ - nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold); - if (nb_hold > rxq->rx_free_thresh) { - PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " - "nb_hold=%u nb_rx=%u", - (unsigned) rxq->port_id, (unsigned) rxq->queue_id, - (unsigned) rx_id, (unsigned) nb_hold, - (unsigned) nb_rx); - rx_id = (uint16_t) ((rx_id == 0) ? - (rxq->nb_rx_desc - 1) : (rx_id - 1)); - E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id); - nb_hold = 0; - } - rxq->nb_rx_hold = nb_hold; - return (nb_rx); -} - -/* - * Maximum number of Ring Descriptors. - * - * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring - * desscriptors should meet the following condition: - * (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0 - */ - -static void -igb_tx_queue_release_mbufs(struct igb_tx_queue *txq) -{ - unsigned i; - - if (txq->sw_ring != NULL) { - for (i = 0; i < txq->nb_tx_desc; i++) { - if (txq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); - txq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -igb_tx_queue_release(struct igb_tx_queue *txq) -{ - if (txq != NULL) { - igb_tx_queue_release_mbufs(txq); - rte_free(txq->sw_ring); - rte_free(txq); - } -} - -void -eth_igb_tx_queue_release(void *txq) -{ - igb_tx_queue_release(txq); -} - -static void -igb_reset_tx_queue_stat(struct igb_tx_queue *txq) -{ - txq->tx_head = 0; - txq->tx_tail = 0; - txq->ctx_curr = 0; - memset((void*)&txq->ctx_cache, 0, - IGB_CTX_NUM * sizeof(struct igb_advctx_info)); -} - -static void -igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev) -{ - static const union e1000_adv_tx_desc zeroed_desc = {{0}}; - struct igb_tx_entry *txe = txq->sw_ring; - uint16_t i, prev; - struct e1000_hw *hw; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - /* Zero out HW ring memory */ - for (i = 0; i < txq->nb_tx_desc; i++) { - txq->tx_ring[i] = zeroed_desc; - } - - /* Initialize ring entries */ - prev = (uint16_t)(txq->nb_tx_desc - 1); - for (i = 0; i < txq->nb_tx_desc; i++) { - volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]); - - txd->wb.status = E1000_TXD_STAT_DD; - txe[i].mbuf = NULL; - txe[i].last_id = i; - txe[prev].next_id = i; - prev = i; - } - - txq->txd_type = E1000_ADVTXD_DTYP_DATA; - /* 82575 specific, each tx queue will use 2 hw contexts */ - if (hw->mac.type == e1000_82575) - txq->ctx_start = txq->queue_id * IGB_CTX_NUM; - - igb_reset_tx_queue_stat(txq); -} - -int -eth_igb_tx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_txconf *tx_conf) -{ - const struct rte_memzone *tz; - struct igb_tx_queue *txq; - struct e1000_hw *hw; - uint32_t size; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of transmit descriptors. - * It must not exceed hardware maximum, and must be multiple - * of E1000_ALIGN. - */ - if (nb_desc % IGB_TXD_ALIGN != 0 || - (nb_desc > E1000_MAX_RING_DESC) || - (nb_desc < E1000_MIN_RING_DESC)) { - return -EINVAL; - } - - /* - * The tx_free_thresh and tx_rs_thresh values are not used in the 1G - * driver. - */ - if (tx_conf->tx_free_thresh != 0) - PMD_INIT_LOG(WARNING, "The tx_free_thresh parameter is not " - "used for the 1G driver."); - if (tx_conf->tx_rs_thresh != 0) - PMD_INIT_LOG(WARNING, "The tx_rs_thresh parameter is not " - "used for the 1G driver."); - if (tx_conf->tx_thresh.wthresh == 0) - PMD_INIT_LOG(WARNING, "To improve 1G driver performance, " - "consider setting the TX WTHRESH value to 4, 8, " - "or 16."); - - /* Free memory prior to re-allocation if needed */ - if (dev->data->tx_queues[queue_idx] != NULL) { - igb_tx_queue_release(dev->data->tx_queues[queue_idx]); - dev->data->tx_queues[queue_idx] = NULL; - } - - /* First allocate the tx queue data structure */ - txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue), - RTE_CACHE_LINE_SIZE); - if (txq == NULL) - return (-ENOMEM); - - /* - * Allocate TX ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC; - tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size, - E1000_ALIGN, socket_id); - if (tz == NULL) { - igb_tx_queue_release(txq); - return (-ENOMEM); - } - - txq->nb_tx_desc = nb_desc; - txq->pthresh = tx_conf->tx_thresh.pthresh; - txq->hthresh = tx_conf->tx_thresh.hthresh; - txq->wthresh = tx_conf->tx_thresh.wthresh; - if (txq->wthresh > 0 && hw->mac.type == e1000_82576) - txq->wthresh = 1; - txq->queue_id = queue_idx; - txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? - queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); - txq->port_id = dev->data->port_id; - - txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx)); - txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr); - - txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr; - /* Allocate software ring */ - txq->sw_ring = rte_zmalloc("txq->sw_ring", - sizeof(struct igb_tx_entry) * nb_desc, - RTE_CACHE_LINE_SIZE); - if (txq->sw_ring == NULL) { - igb_tx_queue_release(txq); - return (-ENOMEM); - } - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); - - igb_reset_tx_queue(txq, dev); - dev->tx_pkt_burst = eth_igb_xmit_pkts; - dev->data->tx_queues[queue_idx] = txq; - - return (0); -} - -static void -igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq) -{ - unsigned i; - - if (rxq->sw_ring != NULL) { - for (i = 0; i < rxq->nb_rx_desc; i++) { - if (rxq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); - rxq->sw_ring[i].mbuf = NULL; - } - } - } -} - -static void -igb_rx_queue_release(struct igb_rx_queue *rxq) -{ - if (rxq != NULL) { - igb_rx_queue_release_mbufs(rxq); - rte_free(rxq->sw_ring); - rte_free(rxq); - } -} - -void -eth_igb_rx_queue_release(void *rxq) -{ - igb_rx_queue_release(rxq); -} - -static void -igb_reset_rx_queue(struct igb_rx_queue *rxq) -{ - static const union e1000_adv_rx_desc zeroed_desc = {{0}}; - unsigned i; - - /* Zero out HW ring memory */ - for (i = 0; i < rxq->nb_rx_desc; i++) { - rxq->rx_ring[i] = zeroed_desc; - } - - rxq->rx_tail = 0; - rxq->pkt_first_seg = NULL; - rxq->pkt_last_seg = NULL; -} - -int -eth_igb_rx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mp) -{ - const struct rte_memzone *rz; - struct igb_rx_queue *rxq; - struct e1000_hw *hw; - unsigned int size; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Validate number of receive descriptors. - * It must not exceed hardware maximum, and must be multiple - * of E1000_ALIGN. - */ - if (nb_desc % IGB_RXD_ALIGN != 0 || - (nb_desc > E1000_MAX_RING_DESC) || - (nb_desc < E1000_MIN_RING_DESC)) { - return (-EINVAL); - } - - /* Free memory prior to re-allocation if needed */ - if (dev->data->rx_queues[queue_idx] != NULL) { - igb_rx_queue_release(dev->data->rx_queues[queue_idx]); - dev->data->rx_queues[queue_idx] = NULL; - } - - /* First allocate the RX queue data structure. */ - rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue), - RTE_CACHE_LINE_SIZE); - if (rxq == NULL) - return (-ENOMEM); - rxq->mb_pool = mp; - rxq->nb_rx_desc = nb_desc; - rxq->pthresh = rx_conf->rx_thresh.pthresh; - rxq->hthresh = rx_conf->rx_thresh.hthresh; - rxq->wthresh = rx_conf->rx_thresh.wthresh; - if (rxq->wthresh > 0 && hw->mac.type == e1000_82576) - rxq->wthresh = 1; - rxq->drop_en = rx_conf->rx_drop_en; - rxq->rx_free_thresh = rx_conf->rx_free_thresh; - rxq->queue_id = queue_idx; - rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? - queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); - rxq->port_id = dev->data->port_id; - rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ? 0 : - ETHER_CRC_LEN); - - /* - * Allocate RX ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC; - rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size, - E1000_ALIGN, socket_id); - if (rz == NULL) { - igb_rx_queue_release(rxq); - return (-ENOMEM); - } - rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx)); - rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx)); - rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr); - rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr; - - /* Allocate software ring. */ - rxq->sw_ring = rte_zmalloc("rxq->sw_ring", - sizeof(struct igb_rx_entry) * nb_desc, - RTE_CACHE_LINE_SIZE); - if (rxq->sw_ring == NULL) { - igb_rx_queue_release(rxq); - return (-ENOMEM); - } - PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64, - rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr); - - dev->data->rx_queues[queue_idx] = rxq; - igb_reset_rx_queue(rxq); - - return 0; -} - -uint32_t -eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id) -{ -#define IGB_RXQ_SCAN_INTERVAL 4 - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_queue *rxq; - uint32_t desc = 0; - - if (rx_queue_id >= dev->data->nb_rx_queues) { - PMD_RX_LOG(ERR, "Invalid RX queue id=%d", rx_queue_id); - return 0; - } - - rxq = dev->data->rx_queues[rx_queue_id]; - rxdp = &(rxq->rx_ring[rxq->rx_tail]); - - while ((desc < rxq->nb_rx_desc) && - (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) { - desc += IGB_RXQ_SCAN_INTERVAL; - rxdp += IGB_RXQ_SCAN_INTERVAL; - if (rxq->rx_tail + desc >= rxq->nb_rx_desc) - rxdp = &(rxq->rx_ring[rxq->rx_tail + - desc - rxq->nb_rx_desc]); - } - - return 0; -} - -int -eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset) -{ - volatile union e1000_adv_rx_desc *rxdp; - struct igb_rx_queue *rxq = rx_queue; - uint32_t desc; - - if (unlikely(offset >= rxq->nb_rx_desc)) - return 0; - desc = rxq->rx_tail + offset; - if (desc >= rxq->nb_rx_desc) - desc -= rxq->nb_rx_desc; - - rxdp = &rxq->rx_ring[desc]; - return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD); -} - -void -igb_dev_clear_queues(struct rte_eth_dev *dev) -{ - uint16_t i; - struct igb_tx_queue *txq; - struct igb_rx_queue *rxq; - - for (i = 0; i < dev->data->nb_tx_queues; i++) { - txq = dev->data->tx_queues[i]; - if (txq != NULL) { - igb_tx_queue_release_mbufs(txq); - igb_reset_tx_queue(txq, dev); - } - } - - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - if (rxq != NULL) { - igb_rx_queue_release_mbufs(rxq); - igb_reset_rx_queue(rxq); - } - } -} - -void -igb_dev_free_queues(struct rte_eth_dev *dev) -{ - uint16_t i; - - for (i = 0; i < dev->data->nb_rx_queues; i++) { - eth_igb_rx_queue_release(dev->data->rx_queues[i]); - dev->data->rx_queues[i] = NULL; - } - dev->data->nb_rx_queues = 0; - - for (i = 0; i < dev->data->nb_tx_queues; i++) { - eth_igb_tx_queue_release(dev->data->tx_queues[i]); - dev->data->tx_queues[i] = NULL; - } - dev->data->nb_tx_queues = 0; -} - -/** - * Receive Side Scaling (RSS). - * See section 7.1.1.7 in the following document: - * "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009 - * - * Principles: - * The source and destination IP addresses of the IP header and the source and - * destination ports of TCP/UDP headers, if any, of received packets are hashed - * against a configurable random key to compute a 32-bit RSS hash result. - * The seven (7) LSBs of the 32-bit hash result are used as an index into a - * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit - * RSS output index which is used as the RX queue index where to store the - * received packets. - * The following output is supplied in the RX write-back descriptor: - * - 32-bit result of the Microsoft RSS hash function, - * - 4-bit RSS type field. - */ - -/* - * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet. - * Used as the default key. - */ -static uint8_t rss_intel_key[40] = { - 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, - 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, - 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, - 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, - 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA, -}; - -static void -igb_rss_disable(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - uint32_t mrqc; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - mrqc = E1000_READ_REG(hw, E1000_MRQC); - mrqc &= ~E1000_MRQC_ENABLE_MASK; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); -} - -static void -igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf) -{ - uint8_t *hash_key; - uint32_t rss_key; - uint32_t mrqc; - uint64_t rss_hf; - uint16_t i; - - hash_key = rss_conf->rss_key; - if (hash_key != NULL) { - /* Fill in RSS hash key */ - for (i = 0; i < 10; i++) { - rss_key = hash_key[(i * 4)]; - rss_key |= hash_key[(i * 4) + 1] << 8; - rss_key |= hash_key[(i * 4) + 2] << 16; - rss_key |= hash_key[(i * 4) + 3] << 24; - E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key); - } - } - - /* Set configured hashing protocols in MRQC register */ - rss_hf = rss_conf->rss_hf; - mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */ - if (rss_hf & ETH_RSS_IPV4) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4; - if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP; - if (rss_hf & ETH_RSS_IPV6) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6; - if (rss_hf & ETH_RSS_IPV6_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX; - if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP; - if (rss_hf & ETH_RSS_IPV6_TCP_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; - if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; - if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; - if (rss_hf & ETH_RSS_IPV6_UDP_EX) - mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); -} - -int -eth_igb_rss_hash_update(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf) -{ - struct e1000_hw *hw; - uint32_t mrqc; - uint64_t rss_hf; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* - * Before changing anything, first check that the update RSS operation - * does not attempt to disable RSS, if RSS was enabled at - * initialization time, or does not attempt to enable RSS, if RSS was - * disabled at initialization time. - */ - rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL; - mrqc = E1000_READ_REG(hw, E1000_MRQC); - if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */ - if (rss_hf != 0) /* Enable RSS */ - return -(EINVAL); - return 0; /* Nothing to do */ - } - /* RSS enabled */ - if (rss_hf == 0) /* Disable RSS */ - return -(EINVAL); - igb_hw_rss_hash_set(hw, rss_conf); - return 0; -} - -int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev, - struct rte_eth_rss_conf *rss_conf) -{ - struct e1000_hw *hw; - uint8_t *hash_key; - uint32_t rss_key; - uint32_t mrqc; - uint64_t rss_hf; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - hash_key = rss_conf->rss_key; - if (hash_key != NULL) { - /* Return RSS hash key */ - for (i = 0; i < 10; i++) { - rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i); - hash_key[(i * 4)] = rss_key & 0x000000FF; - hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF; - hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF; - hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF; - } - } - - /* Get RSS functions configured in MRQC register */ - mrqc = E1000_READ_REG(hw, E1000_MRQC); - if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */ - rss_conf->rss_hf = 0; - return 0; - } - rss_hf = 0; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4) - rss_hf |= ETH_RSS_IPV4; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP) - rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6) - rss_hf |= ETH_RSS_IPV6; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX) - rss_hf |= ETH_RSS_IPV6_EX; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP) - rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX) - rss_hf |= ETH_RSS_IPV6_TCP_EX; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP) - rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP) - rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP; - if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX) - rss_hf |= ETH_RSS_IPV6_UDP_EX; - rss_conf->rss_hf = rss_hf; - return 0; -} - -static void -igb_rss_configure(struct rte_eth_dev *dev) -{ - struct rte_eth_rss_conf rss_conf; - struct e1000_hw *hw; - uint32_t shift; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Fill in redirection table. */ - shift = (hw->mac.type == e1000_82575) ? 6 : 0; - for (i = 0; i < 128; i++) { - union e1000_reta { - uint32_t dword; - uint8_t bytes[4]; - } reta; - uint8_t q_idx; - - q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ? - i % dev->data->nb_rx_queues : 0); - reta.bytes[i & 3] = (uint8_t) (q_idx << shift); - if ((i & 3) == 3) - E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword); - } - - /* - * Configure the RSS key and the RSS protocols used to compute - * the RSS hash of input packets. - */ - rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf; - if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) { - igb_rss_disable(dev); - return; - } - if (rss_conf.rss_key == NULL) - rss_conf.rss_key = rss_intel_key; /* Default hash key */ - igb_hw_rss_hash_set(hw, &rss_conf); -} - -/* - * Check if the mac type support VMDq or not. - * Return 1 if it supports, otherwise, return 0. - */ -static int -igb_is_vmdq_supported(const struct rte_eth_dev *dev) -{ - const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - switch (hw->mac.type) { - case e1000_82576: - case e1000_82580: - case e1000_i350: - return 1; - case e1000_82540: - case e1000_82541: - case e1000_82542: - case e1000_82543: - case e1000_82544: - case e1000_82545: - case e1000_82546: - case e1000_82547: - case e1000_82571: - case e1000_82572: - case e1000_82573: - case e1000_82574: - case e1000_82583: - case e1000_i210: - case e1000_i211: - default: - PMD_INIT_LOG(ERR, "Cannot support VMDq feature"); - return 0; - } -} - -static int -igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev) -{ - struct rte_eth_vmdq_rx_conf *cfg; - struct e1000_hw *hw; - uint32_t mrqc, vt_ctl, vmolr, rctl; - int i; - - PMD_INIT_FUNC_TRACE(); - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf; - - /* Check if mac type can support VMDq, return value of 0 means NOT support */ - if (igb_is_vmdq_supported(dev) == 0) - return -1; - - igb_rss_disable(dev); - - /* RCTL: eanble VLAN filter */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - rctl |= E1000_RCTL_VFE; - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* MRQC: enable vmdq */ - mrqc = E1000_READ_REG(hw, E1000_MRQC); - mrqc |= E1000_MRQC_ENABLE_VMDQ; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); - - /* VTCTL: pool selection according to VLAN tag */ - vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL); - if (cfg->enable_default_pool) - vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT); - vt_ctl |= E1000_VT_CTL_IGNORE_MAC; - E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl); - - for (i = 0; i < E1000_VMOLR_SIZE; i++) { - vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); - vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE | - E1000_VMOLR_ROPE | E1000_VMOLR_BAM | - E1000_VMOLR_MPME); - - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG) - vmolr |= E1000_VMOLR_AUPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC) - vmolr |= E1000_VMOLR_ROMPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC) - vmolr |= E1000_VMOLR_ROPE; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST) - vmolr |= E1000_VMOLR_BAM; - if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST) - vmolr |= E1000_VMOLR_MPME; - - E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); - } - - /* - * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1 - * Both 82576 and 82580 support it - */ - if (hw->mac.type != e1000_i350) { - for (i = 0; i < E1000_VMOLR_SIZE; i++) { - vmolr = E1000_READ_REG(hw, E1000_VMOLR(i)); - vmolr |= E1000_VMOLR_STRVLAN; - E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr); - } - } - - /* VFTA - enable all vlan filters */ - for (i = 0; i < IGB_VFTA_SIZE; i++) - E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX); - - /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */ - if (hw->mac.type != e1000_82580) - E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK); - - /* - * RAH/RAL - allow pools to read specific mac addresses - * In this case, all pools should be able to read from mac addr 0 - */ - E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX)); - E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX); - - /* VLVF: set up filters for vlan tags as configured */ - for (i = 0; i < cfg->nb_pool_maps; i++) { - /* set vlan id in VF register and set the valid bit */ - E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \ - (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \ - ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \ - E1000_VLVF_POOLSEL_MASK))); - } - - E1000_WRITE_FLUSH(hw); - - return 0; -} - - -/********************************************************************* - * - * Enable receive unit. - * - **********************************************************************/ - -static int -igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq) -{ - struct igb_rx_entry *rxe = rxq->sw_ring; - uint64_t dma_addr; - unsigned i; - - /* Initialize software ring entries. */ - for (i = 0; i < rxq->nb_rx_desc; i++) { - volatile union e1000_adv_rx_desc *rxd; - struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mb_pool); - - if (mbuf == NULL) { - PMD_INIT_LOG(ERR, "RX mbuf alloc failed " - "queue_id=%hu", rxq->queue_id); - return (-ENOMEM); - } - dma_addr = - rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf)); - rxd = &rxq->rx_ring[i]; - rxd->read.hdr_addr = 0; - rxd->read.pkt_addr = dma_addr; - rxe[i].mbuf = mbuf; - } - - return 0; -} - -#define E1000_MRQC_DEF_Q_SHIFT (3) -static int -igb_dev_mq_rx_configure(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw = - E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - uint32_t mrqc; - - if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) { - /* - * SRIOV active scheme - * FIXME if support RSS together with VMDq & SRIOV - */ - mrqc = E1000_MRQC_ENABLE_VMDQ; - /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */ - mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT; - E1000_WRITE_REG(hw, E1000_MRQC, mrqc); - } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) { - /* - * SRIOV inactive scheme - */ - switch (dev->data->dev_conf.rxmode.mq_mode) { - case ETH_MQ_RX_RSS: - igb_rss_configure(dev); - break; - case ETH_MQ_RX_VMDQ_ONLY: - /*Configure general VMDQ only RX parameters*/ - igb_vmdq_rx_hw_configure(dev); - break; - case ETH_MQ_RX_NONE: - /* if mq_mode is none, disable rss mode.*/ - default: - igb_rss_disable(dev); - break; - } - } - - return 0; -} - -int -eth_igb_rx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_rx_queue *rxq; - uint32_t rctl; - uint32_t rxcsum; - uint32_t srrctl; - uint16_t buf_size; - uint16_t rctl_bsize; - uint16_t i; - int ret; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - srrctl = 0; - - /* - * Make sure receives are disabled while setting - * up the descriptor ring. - */ - rctl = E1000_READ_REG(hw, E1000_RCTL); - E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN); - - /* - * Configure support of jumbo frames, if any. - */ - if (dev->data->dev_conf.rxmode.jumbo_frame == 1) { - rctl |= E1000_RCTL_LPE; - - /* - * Set maximum packet length by default, and might be updated - * together with enabling/disabling dual VLAN. - */ - E1000_WRITE_REG(hw, E1000_RLPML, - dev->data->dev_conf.rxmode.max_rx_pkt_len + - VLAN_TAG_SIZE); - } else - rctl &= ~E1000_RCTL_LPE; - - /* Configure and enable each RX queue. */ - rctl_bsize = 0; - dev->rx_pkt_burst = eth_igb_recv_pkts; - for (i = 0; i < dev->data->nb_rx_queues; i++) { - uint64_t bus_addr; - uint32_t rxdctl; - - rxq = dev->data->rx_queues[i]; - - /* Allocate buffers for descriptor rings and set up queue */ - ret = igb_alloc_rx_queue_mbufs(rxq); - if (ret) - return ret; - - /* - * Reset crc_len in case it was changed after queue setup by a - * call to configure - */ - rxq->crc_len = - (uint8_t)(dev->data->dev_conf.rxmode.hw_strip_crc ? - 0 : ETHER_CRC_LEN); - - bus_addr = rxq->rx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx), - rxq->nb_rx_desc * - sizeof(union e1000_adv_rx_desc)); - E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr); - - srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; - - /* - * Configure RX buffer size. - */ - buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - - RTE_PKTMBUF_HEADROOM); - if (buf_size >= 1024) { - /* - * Configure the BSIZEPACKET field of the SRRCTL - * register of the queue. - * Value is in 1 KB resolution, from 1 KB to 127 KB. - * If this field is equal to 0b, then RCTL.BSIZE - * determines the RX packet buffer size. - */ - srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & - E1000_SRRCTL_BSIZEPKT_MASK); - buf_size = (uint16_t) ((srrctl & - E1000_SRRCTL_BSIZEPKT_MASK) << - E1000_SRRCTL_BSIZEPKT_SHIFT); - - /* It adds dual VLAN length for supporting dual VLAN */ - if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + - 2 * VLAN_TAG_SIZE) > buf_size){ - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, - "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - } else { - /* - * Use BSIZE field of the device RCTL register. - */ - if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) - rctl_bsize = buf_size; - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* Set if packets are dropped when no descriptors available */ - if (rxq->drop_en) - srrctl |= E1000_SRRCTL_DROP_EN; - - E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl); - - /* Enable this RX queue. */ - rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx)); - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - rxdctl &= 0xFFF00000; - rxdctl |= (rxq->pthresh & 0x1F); - rxdctl |= ((rxq->hthresh & 0x1F) << 8); - rxdctl |= ((rxq->wthresh & 0x1F) << 16); - E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl); - } - - if (dev->data->dev_conf.rxmode.enable_scatter) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* - * Setup BSIZE field of RCTL register, if needed. - * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL - * register, since the code above configures the SRRCTL register of - * the RX queue in such a case. - * All configurable sizes are: - * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX); - * 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX); - * 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX); - * 2048: rctl |= E1000_RCTL_SZ_2048; - * 1024: rctl |= E1000_RCTL_SZ_1024; - * 512: rctl |= E1000_RCTL_SZ_512; - * 256: rctl |= E1000_RCTL_SZ_256; - */ - if (rctl_bsize > 0) { - if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */ - rctl |= E1000_RCTL_SZ_512; - else /* 256 <= buf_size < 512 - use 256 */ - rctl |= E1000_RCTL_SZ_256; - } - - /* - * Configure RSS if device configured with multiple RX queues. - */ - igb_dev_mq_rx_configure(dev); - - /* Update the rctl since igb_dev_mq_rx_configure may change its value */ - rctl |= E1000_READ_REG(hw, E1000_RCTL); - - /* - * Setup the Checksum Register. - * Receive Full-Packet Checksum Offload is mutually exclusive with RSS. - */ - rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); - rxcsum |= E1000_RXCSUM_PCSD; - - /* Enable both L3/L4 rx checksum offload */ - if (dev->data->dev_conf.rxmode.hw_ip_checksum) - rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); - else - rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); - E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); - - /* Setup the Receive Control Register. */ - if (dev->data->dev_conf.rxmode.hw_strip_crc) { - rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */ - - /* set STRCRC bit in all queues */ - if (hw->mac.type == e1000_i350 || - hw->mac.type == e1000_i210 || - hw->mac.type == e1000_i211 || - hw->mac.type == e1000_i354) { - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - uint32_t dvmolr = E1000_READ_REG(hw, - E1000_DVMOLR(rxq->reg_idx)); - dvmolr |= E1000_DVMOLR_STRCRC; - E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); - } - } - } else { - rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */ - - /* clear STRCRC bit in all queues */ - if (hw->mac.type == e1000_i350 || - hw->mac.type == e1000_i210 || - hw->mac.type == e1000_i211 || - hw->mac.type == e1000_i354) { - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - uint32_t dvmolr = E1000_READ_REG(hw, - E1000_DVMOLR(rxq->reg_idx)); - dvmolr &= ~E1000_DVMOLR_STRCRC; - E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr); - } - } - } - - rctl &= ~(3 << E1000_RCTL_MO_SHIFT); - rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | - E1000_RCTL_RDMTS_HALF | - (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); - - /* Make sure VLAN Filters are off. */ - if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY) - rctl &= ~E1000_RCTL_VFE; - /* Don't store bad packets. */ - rctl &= ~E1000_RCTL_SBP; - - /* Enable Receives. */ - E1000_WRITE_REG(hw, E1000_RCTL, rctl); - - /* - * Setup the HW Rx Head and Tail Descriptor Pointers. - * This needs to be done after enable. - */ - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0); - E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1); - } - - return 0; -} - -/********************************************************************* - * - * Enable transmit unit. - * - **********************************************************************/ -void -eth_igb_tx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_tx_queue *txq; - uint32_t tctl; - uint32_t txdctl; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Setup the Base and Length of the Tx Descriptor Rings. */ - for (i = 0; i < dev->data->nb_tx_queues; i++) { - uint64_t bus_addr; - txq = dev->data->tx_queues[i]; - bus_addr = txq->tx_ring_phys_addr; - - E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx), - txq->nb_tx_desc * - sizeof(union e1000_adv_tx_desc)); - E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr); - - /* Setup the HW Tx Head and Tail descriptor pointers. */ - E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0); - E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0); - - /* Setup Transmit threshold registers. */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx)); - txdctl |= txq->pthresh & 0x1F; - txdctl |= ((txq->hthresh & 0x1F) << 8); - txdctl |= ((txq->wthresh & 0x1F) << 16); - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl); - } - - /* Program the Transmit Control Register. */ - tctl = E1000_READ_REG(hw, E1000_TCTL); - tctl &= ~E1000_TCTL_CT; - tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN | - (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT)); - - e1000_config_collision_dist(hw); - - /* This write will effectively turn on the transmit unit. */ - E1000_WRITE_REG(hw, E1000_TCTL, tctl); -} - -/********************************************************************* - * - * Enable VF receive unit. - * - **********************************************************************/ -int -eth_igbvf_rx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_rx_queue *rxq; - uint32_t srrctl; - uint16_t buf_size; - uint16_t rctl_bsize; - uint16_t i; - int ret; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* setup MTU */ - e1000_rlpml_set_vf(hw, - (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len + - VLAN_TAG_SIZE)); - - /* Configure and enable each RX queue. */ - rctl_bsize = 0; - dev->rx_pkt_burst = eth_igb_recv_pkts; - for (i = 0; i < dev->data->nb_rx_queues; i++) { - uint64_t bus_addr; - uint32_t rxdctl; - - rxq = dev->data->rx_queues[i]; - - /* Allocate buffers for descriptor rings and set up queue */ - ret = igb_alloc_rx_queue_mbufs(rxq); - if (ret) - return ret; - - bus_addr = rxq->rx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_RDLEN(i), - rxq->nb_rx_desc * - sizeof(union e1000_adv_rx_desc)); - E1000_WRITE_REG(hw, E1000_RDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr); - - srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; - - /* - * Configure RX buffer size. - */ - buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - - RTE_PKTMBUF_HEADROOM); - if (buf_size >= 1024) { - /* - * Configure the BSIZEPACKET field of the SRRCTL - * register of the queue. - * Value is in 1 KB resolution, from 1 KB to 127 KB. - * If this field is equal to 0b, then RCTL.BSIZE - * determines the RX packet buffer size. - */ - srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) & - E1000_SRRCTL_BSIZEPKT_MASK); - buf_size = (uint16_t) ((srrctl & - E1000_SRRCTL_BSIZEPKT_MASK) << - E1000_SRRCTL_BSIZEPKT_SHIFT); - - /* It adds dual VLAN length for supporting dual VLAN */ - if ((dev->data->dev_conf.rxmode.max_rx_pkt_len + - 2 * VLAN_TAG_SIZE) > buf_size){ - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, - "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - } else { - /* - * Use BSIZE field of the device RCTL register. - */ - if ((rctl_bsize == 0) || (rctl_bsize > buf_size)) - rctl_bsize = buf_size; - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* Set if packets are dropped when no descriptors available */ - if (rxq->drop_en) - srrctl |= E1000_SRRCTL_DROP_EN; - - E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl); - - /* Enable this RX queue. */ - rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i)); - rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; - rxdctl &= 0xFFF00000; - rxdctl |= (rxq->pthresh & 0x1F); - rxdctl |= ((rxq->hthresh & 0x1F) << 8); - if (hw->mac.type == e1000_vfadapt) { - /* - * Workaround of 82576 VF Erratum - * force set WTHRESH to 1 - * to avoid Write-Back not triggered sometimes - */ - rxdctl |= 0x10000; - PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !"); - } - else - rxdctl |= ((rxq->wthresh & 0x1F) << 16); - E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl); - } - - if (dev->data->dev_conf.rxmode.enable_scatter) { - if (!dev->data->scattered_rx) - PMD_INIT_LOG(DEBUG, "forcing scatter mode"); - dev->rx_pkt_burst = eth_igb_recv_scattered_pkts; - dev->data->scattered_rx = 1; - } - - /* - * Setup the HW Rx Head and Tail Descriptor Pointers. - * This needs to be done after enable. - */ - for (i = 0; i < dev->data->nb_rx_queues; i++) { - rxq = dev->data->rx_queues[i]; - E1000_WRITE_REG(hw, E1000_RDH(i), 0); - E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1); - } - - return 0; -} - -/********************************************************************* - * - * Enable VF transmit unit. - * - **********************************************************************/ -void -eth_igbvf_tx_init(struct rte_eth_dev *dev) -{ - struct e1000_hw *hw; - struct igb_tx_queue *txq; - uint32_t txdctl; - uint16_t i; - - hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private); - - /* Setup the Base and Length of the Tx Descriptor Rings. */ - for (i = 0; i < dev->data->nb_tx_queues; i++) { - uint64_t bus_addr; - - txq = dev->data->tx_queues[i]; - bus_addr = txq->tx_ring_phys_addr; - E1000_WRITE_REG(hw, E1000_TDLEN(i), - txq->nb_tx_desc * - sizeof(union e1000_adv_tx_desc)); - E1000_WRITE_REG(hw, E1000_TDBAH(i), - (uint32_t)(bus_addr >> 32)); - E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr); - - /* Setup the HW Tx Head and Tail descriptor pointers. */ - E1000_WRITE_REG(hw, E1000_TDT(i), 0); - E1000_WRITE_REG(hw, E1000_TDH(i), 0); - - /* Setup Transmit threshold registers. */ - txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i)); - txdctl |= txq->pthresh & 0x1F; - txdctl |= ((txq->hthresh & 0x1F) << 8); - if (hw->mac.type == e1000_82576) { - /* - * Workaround of 82576 VF Erratum - * force set WTHRESH to 1 - * to avoid Write-Back not triggered sometimes - */ - txdctl |= 0x10000; - PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !"); - } - else - txdctl |= ((txq->wthresh & 0x1F) << 16); - txdctl |= E1000_TXDCTL_QUEUE_ENABLE; - E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl); - } - -} - -void -igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, - struct rte_eth_rxq_info *qinfo) -{ - struct igb_rx_queue *rxq; - - rxq = dev->data->rx_queues[queue_id]; - - qinfo->mp = rxq->mb_pool; - qinfo->scattered_rx = dev->data->scattered_rx; - qinfo->nb_desc = rxq->nb_rx_desc; - - qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; - qinfo->conf.rx_drop_en = rxq->drop_en; -} - -void -igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, - struct rte_eth_txq_info *qinfo) -{ - struct igb_tx_queue *txq; - - txq = dev->data->tx_queues[queue_id]; - - qinfo->nb_desc = txq->nb_tx_desc; - - qinfo->conf.tx_thresh.pthresh = txq->pthresh; - qinfo->conf.tx_thresh.hthresh = txq->hthresh; - qinfo->conf.tx_thresh.wthresh = txq->wthresh; -} |