summaryrefslogtreecommitdiffstats
path: root/src/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c')
-rwxr-xr-xsrc/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c2096
1 files changed, 0 insertions, 2096 deletions
diff --git a/src/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c b/src/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c
deleted file mode 100755
index 4ee59ba9..00000000
--- a/src/dpdk_lib18/librte_eal/linuxapp/kni/ethtool/igb/e1000_mac.c
+++ /dev/null
@@ -1,2096 +0,0 @@
-/*******************************************************************************
-
- Intel(R) Gigabit Ethernet Linux driver
- Copyright(c) 2007-2013 Intel Corporation.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms and conditions of the GNU General Public License,
- version 2, as published by the Free Software Foundation.
-
- This program is distributed in the hope it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc.,
- 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
-
- The full GNU General Public License is included in this distribution in
- the file called "COPYING".
-
- Contact Information:
- e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
-*******************************************************************************/
-
-#include "e1000_api.h"
-
-static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
-static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
-static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
-static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
-
-/**
- * e1000_init_mac_ops_generic - Initialize MAC function pointers
- * @hw: pointer to the HW structure
- *
- * Setups up the function pointers to no-op functions
- **/
-void e1000_init_mac_ops_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- DEBUGFUNC("e1000_init_mac_ops_generic");
-
- /* General Setup */
- mac->ops.init_params = e1000_null_ops_generic;
- mac->ops.init_hw = e1000_null_ops_generic;
- mac->ops.reset_hw = e1000_null_ops_generic;
- mac->ops.setup_physical_interface = e1000_null_ops_generic;
- mac->ops.get_bus_info = e1000_null_ops_generic;
- mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
- mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
- mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
- mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
- /* LED */
- mac->ops.cleanup_led = e1000_null_ops_generic;
- mac->ops.setup_led = e1000_null_ops_generic;
- mac->ops.blink_led = e1000_null_ops_generic;
- mac->ops.led_on = e1000_null_ops_generic;
- mac->ops.led_off = e1000_null_ops_generic;
- /* LINK */
- mac->ops.setup_link = e1000_null_ops_generic;
- mac->ops.get_link_up_info = e1000_null_link_info;
- mac->ops.check_for_link = e1000_null_ops_generic;
- /* Management */
- mac->ops.check_mng_mode = e1000_null_mng_mode;
- /* VLAN, MC, etc. */
- mac->ops.update_mc_addr_list = e1000_null_update_mc;
- mac->ops.clear_vfta = e1000_null_mac_generic;
- mac->ops.write_vfta = e1000_null_write_vfta;
- mac->ops.rar_set = e1000_rar_set_generic;
- mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
-}
-
-/**
- * e1000_null_ops_generic - No-op function, returns 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_ops_generic");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mac_generic - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_mac_generic");
- return;
-}
-
-/**
- * e1000_null_link_info - No-op function, return 0
- * @hw: pointer to the HW structure
- **/
-s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
-{
- DEBUGFUNC("e1000_null_link_info");
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_null_mng_mode - No-op function, return false
- * @hw: pointer to the HW structure
- **/
-bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_null_mng_mode");
- return false;
-}
-
-/**
- * e1000_null_update_mc - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
- DEBUGFUNC("e1000_null_update_mc");
- return;
-}
-
-/**
- * e1000_null_write_vfta - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
- u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
-{
- DEBUGFUNC("e1000_null_write_vfta");
- return;
-}
-
-/**
- * e1000_null_rar_set - No-op function, return void
- * @hw: pointer to the HW structure
- **/
-void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
- u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
-{
- DEBUGFUNC("e1000_null_rar_set");
- return;
-}
-
-/**
- * e1000_get_bus_info_pcie_generic - Get PCIe bus information
- * @hw: pointer to the HW structure
- *
- * Determines and stores the system bus information for a particular
- * network interface. The following bus information is determined and stored:
- * bus speed, bus width, type (PCIe), and PCIe function.
- **/
-s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- struct e1000_bus_info *bus = &hw->bus;
- s32 ret_val;
- u16 pcie_link_status;
-
- DEBUGFUNC("e1000_get_bus_info_pcie_generic");
-
- bus->type = e1000_bus_type_pci_express;
-
- ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
- &pcie_link_status);
- if (ret_val) {
- bus->width = e1000_bus_width_unknown;
- bus->speed = e1000_bus_speed_unknown;
- } else {
- switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
- case PCIE_LINK_SPEED_2500:
- bus->speed = e1000_bus_speed_2500;
- break;
- case PCIE_LINK_SPEED_5000:
- bus->speed = e1000_bus_speed_5000;
- break;
- default:
- bus->speed = e1000_bus_speed_unknown;
- break;
- }
-
- bus->width = (enum e1000_bus_width)((pcie_link_status &
- PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
- }
-
- mac->ops.set_lan_id(hw);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
- *
- * @hw: pointer to the HW structure
- *
- * Determines the LAN function id by reading memory-mapped registers
- * and swaps the port value if requested.
- **/
-static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
- u32 reg;
-
- /* The status register reports the correct function number
- * for the device regardless of function swap state.
- */
- reg = E1000_READ_REG(hw, E1000_STATUS);
- bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
-}
-
-/**
- * e1000_set_lan_id_single_port - Set LAN id for a single port device
- * @hw: pointer to the HW structure
- *
- * Sets the LAN function id to zero for a single port device.
- **/
-void e1000_set_lan_id_single_port(struct e1000_hw *hw)
-{
- struct e1000_bus_info *bus = &hw->bus;
-
- bus->func = 0;
-}
-
-/**
- * e1000_clear_vfta_generic - Clear VLAN filter table
- * @hw: pointer to the HW structure
- *
- * Clears the register array which contains the VLAN filter table by
- * setting all the values to 0.
- **/
-void e1000_clear_vfta_generic(struct e1000_hw *hw)
-{
- u32 offset;
-
- DEBUGFUNC("e1000_clear_vfta_generic");
-
- for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
- E1000_WRITE_FLUSH(hw);
- }
-}
-
-/**
- * e1000_write_vfta_generic - Write value to VLAN filter table
- * @hw: pointer to the HW structure
- * @offset: register offset in VLAN filter table
- * @value: register value written to VLAN filter table
- *
- * Writes value at the given offset in the register array which stores
- * the VLAN filter table.
- **/
-void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
-{
- DEBUGFUNC("e1000_write_vfta_generic");
-
- E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_init_rx_addrs_generic - Initialize receive address's
- * @hw: pointer to the HW structure
- * @rar_count: receive address registers
- *
- * Setup the receive address registers by setting the base receive address
- * register to the devices MAC address and clearing all the other receive
- * address registers to 0.
- **/
-void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
-{
- u32 i;
- u8 mac_addr[ETH_ADDR_LEN] = {0};
-
- DEBUGFUNC("e1000_init_rx_addrs_generic");
-
- /* Setup the receive address */
- DEBUGOUT("Programming MAC Address into RAR[0]\n");
-
- hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
-
- /* Zero out the other (rar_entry_count - 1) receive addresses */
- DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++)
- hw->mac.ops.rar_set(hw, mac_addr, i);
-}
-
-/**
- * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
- * @hw: pointer to the HW structure
- *
- * Checks the nvm for an alternate MAC address. An alternate MAC address
- * can be setup by pre-boot software and must be treated like a permanent
- * address and must override the actual permanent MAC address. If an
- * alternate MAC address is found it is programmed into RAR0, replacing
- * the permanent address that was installed into RAR0 by the Si on reset.
- * This function will return SUCCESS unless it encounters an error while
- * reading the EEPROM.
- **/
-s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
-{
- u32 i;
- s32 ret_val;
- u16 offset, nvm_alt_mac_addr_offset, nvm_data;
- u8 alt_mac_addr[ETH_ADDR_LEN];
-
- DEBUGFUNC("e1000_check_alt_mac_addr_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
- if (ret_val)
- return ret_val;
-
-
- /* Alternate MAC address is handled by the option ROM for 82580
- * and newer. SW support not required.
- */
- if (hw->mac.type >= e1000_82580)
- return E1000_SUCCESS;
-
- ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &nvm_alt_mac_addr_offset);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
- (nvm_alt_mac_addr_offset == 0x0000))
- /* There is no Alternate MAC Address */
- return E1000_SUCCESS;
-
- if (hw->bus.func == E1000_FUNC_1)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
- if (hw->bus.func == E1000_FUNC_2)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
-
- if (hw->bus.func == E1000_FUNC_3)
- nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
- for (i = 0; i < ETH_ADDR_LEN; i += 2) {
- offset = nvm_alt_mac_addr_offset + (i >> 1);
- ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
- alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
- }
-
- /* if multicast bit is set, the alternate address will not be used */
- if (alt_mac_addr[0] & 0x01) {
- DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
- return E1000_SUCCESS;
- }
-
- /* We have a valid alternate MAC address, and we want to treat it the
- * same as the normal permanent MAC address stored by the HW into the
- * RAR. Do this by mapping this address into RAR0.
- */
- hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_rar_set_generic - Set receive address register
- * @hw: pointer to the HW structure
- * @addr: pointer to the receive address
- * @index: receive address array register
- *
- * Sets the receive address array register at index to the address passed
- * in by addr.
- **/
-static void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
-{
- u32 rar_low, rar_high;
-
- DEBUGFUNC("e1000_rar_set_generic");
-
- /* HW expects these in little endian so we reverse the byte order
- * from network order (big endian) to little endian
- */
- rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
- ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
-
- rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
-
- /* If MAC address zero, no need to set the AV bit */
- if (rar_low || rar_high)
- rar_high |= E1000_RAH_AV;
-
- /* Some bridges will combine consecutive 32-bit writes into
- * a single burst write, which will malfunction on some parts.
- * The flushes avoid this.
- */
- E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_hash_mc_addr_generic - Generate a multicast hash value
- * @hw: pointer to the HW structure
- * @mc_addr: pointer to a multicast address
- *
- * Generates a multicast address hash value which is used to determine
- * the multicast filter table array address and new table value.
- **/
-u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
-{
- u32 hash_value, hash_mask;
- u8 bit_shift = 0;
-
- DEBUGFUNC("e1000_hash_mc_addr_generic");
-
- /* Register count multiplied by bits per register */
- hash_mask = (hw->mac.mta_reg_count * 32) - 1;
-
- /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
- * where 0xFF would still fall within the hash mask.
- */
- while (hash_mask >> bit_shift != 0xFF)
- bit_shift++;
-
- /* The portion of the address that is used for the hash table
- * is determined by the mc_filter_type setting.
- * The algorithm is such that there is a total of 8 bits of shifting.
- * The bit_shift for a mc_filter_type of 0 represents the number of
- * left-shifts where the MSB of mc_addr[5] would still fall within
- * the hash_mask. Case 0 does this exactly. Since there are a total
- * of 8 bits of shifting, then mc_addr[4] will shift right the
- * remaining number of bits. Thus 8 - bit_shift. The rest of the
- * cases are a variation of this algorithm...essentially raising the
- * number of bits to shift mc_addr[5] left, while still keeping the
- * 8-bit shifting total.
- *
- * For example, given the following Destination MAC Address and an
- * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
- * we can see that the bit_shift for case 0 is 4. These are the hash
- * values resulting from each mc_filter_type...
- * [0] [1] [2] [3] [4] [5]
- * 01 AA 00 12 34 56
- * LSB MSB
- *
- * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
- * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
- * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
- * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
- */
- switch (hw->mac.mc_filter_type) {
- default:
- case 0:
- break;
- case 1:
- bit_shift += 1;
- break;
- case 2:
- bit_shift += 2;
- break;
- case 3:
- bit_shift += 4;
- break;
- }
-
- hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
- (((u16) mc_addr[5]) << bit_shift)));
-
- return hash_value;
-}
-
-/**
- * e1000_update_mc_addr_list_generic - Update Multicast addresses
- * @hw: pointer to the HW structure
- * @mc_addr_list: array of multicast addresses to program
- * @mc_addr_count: number of multicast addresses to program
- *
- * Updates entire Multicast Table Array.
- * The caller must have a packed mc_addr_list of multicast addresses.
- **/
-void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count)
-{
- u32 hash_value, hash_bit, hash_reg;
- int i;
-
- DEBUGFUNC("e1000_update_mc_addr_list_generic");
-
- /* clear mta_shadow */
- memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
-
- /* update mta_shadow from mc_addr_list */
- for (i = 0; (u32) i < mc_addr_count; i++) {
- hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
-
- hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
- hash_bit = hash_value & 0x1F;
-
- hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
- mc_addr_list += (ETH_ADDR_LEN);
- }
-
- /* replace the entire MTA table */
- for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
- * @hw: pointer to the HW structure
- *
- * Clears the base hardware counters by reading the counter registers.
- **/
-void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
-
- E1000_READ_REG(hw, E1000_CRCERRS);
- E1000_READ_REG(hw, E1000_SYMERRS);
- E1000_READ_REG(hw, E1000_MPC);
- E1000_READ_REG(hw, E1000_SCC);
- E1000_READ_REG(hw, E1000_ECOL);
- E1000_READ_REG(hw, E1000_MCC);
- E1000_READ_REG(hw, E1000_LATECOL);
- E1000_READ_REG(hw, E1000_COLC);
- E1000_READ_REG(hw, E1000_DC);
- E1000_READ_REG(hw, E1000_SEC);
- E1000_READ_REG(hw, E1000_RLEC);
- E1000_READ_REG(hw, E1000_XONRXC);
- E1000_READ_REG(hw, E1000_XONTXC);
- E1000_READ_REG(hw, E1000_XOFFRXC);
- E1000_READ_REG(hw, E1000_XOFFTXC);
- E1000_READ_REG(hw, E1000_FCRUC);
- E1000_READ_REG(hw, E1000_GPRC);
- E1000_READ_REG(hw, E1000_BPRC);
- E1000_READ_REG(hw, E1000_MPRC);
- E1000_READ_REG(hw, E1000_GPTC);
- E1000_READ_REG(hw, E1000_GORCL);
- E1000_READ_REG(hw, E1000_GORCH);
- E1000_READ_REG(hw, E1000_GOTCL);
- E1000_READ_REG(hw, E1000_GOTCH);
- E1000_READ_REG(hw, E1000_RNBC);
- E1000_READ_REG(hw, E1000_RUC);
- E1000_READ_REG(hw, E1000_RFC);
- E1000_READ_REG(hw, E1000_ROC);
- E1000_READ_REG(hw, E1000_RJC);
- E1000_READ_REG(hw, E1000_TORL);
- E1000_READ_REG(hw, E1000_TORH);
- E1000_READ_REG(hw, E1000_TOTL);
- E1000_READ_REG(hw, E1000_TOTH);
- E1000_READ_REG(hw, E1000_TPR);
- E1000_READ_REG(hw, E1000_TPT);
- E1000_READ_REG(hw, E1000_MPTC);
- E1000_READ_REG(hw, E1000_BPTC);
-}
-
-/**
- * e1000_check_for_copper_link_generic - Check for link (Copper)
- * @hw: pointer to the HW structure
- *
- * Checks to see of the link status of the hardware has changed. If a
- * change in link status has been detected, then we read the PHY registers
- * to get the current speed/duplex if link exists.
- **/
-s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- bool link;
-
- DEBUGFUNC("e1000_check_for_copper_link");
-
- /* We only want to go out to the PHY registers to see if Auto-Neg
- * has completed and/or if our link status has changed. The
- * get_link_status flag is set upon receiving a Link Status
- * Change or Rx Sequence Error interrupt.
- */
- if (!mac->get_link_status)
- return E1000_SUCCESS;
-
- /* First we want to see if the MII Status Register reports
- * link. If so, then we want to get the current speed/duplex
- * of the PHY.
- */
- ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
- if (ret_val)
- return ret_val;
-
- if (!link)
- return E1000_SUCCESS; /* No link detected */
-
- mac->get_link_status = false;
-
- /* Check if there was DownShift, must be checked
- * immediately after link-up
- */
- e1000_check_downshift_generic(hw);
-
- /* If we are forcing speed/duplex, then we simply return since
- * we have already determined whether we have link or not.
- */
- if (!mac->autoneg)
- return -E1000_ERR_CONFIG;
-
- /* Auto-Neg is enabled. Auto Speed Detection takes care
- * of MAC speed/duplex configuration. So we only need to
- * configure Collision Distance in the MAC.
- */
- mac->ops.config_collision_dist(hw);
-
- /* Configure Flow Control now that Auto-Neg has completed.
- * First, we need to restore the desired flow control
- * settings because we may have had to re-autoneg with a
- * different link partner.
- */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val)
- DEBUGOUT("Error configuring flow control\n");
-
- return ret_val;
-}
-
-/**
- * e1000_check_for_fiber_link_generic - Check for link (Fiber)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_check_for_fiber_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), the cable is plugged in (we have signal),
- * and our link partner is not trying to auto-negotiate with us (we
- * are receiving idles or data), we need to force link up. We also
- * need to give auto-negotiation time to complete, in case the cable
- * was just plugged in. The autoneg_failed flag does this.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
- !(rxcw & E1000_RXCW_C)) {
- if (!mac->autoneg_failed) {
- mac->autoneg_failed = true;
- return E1000_SUCCESS;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_check_for_serdes_link_generic - Check for link (Serdes)
- * @hw: pointer to the HW structure
- *
- * Checks for link up on the hardware. If link is not up and we have
- * a signal, then we need to force link up.
- **/
-s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 rxcw;
- u32 ctrl;
- u32 status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_check_for_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- status = E1000_READ_REG(hw, E1000_STATUS);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
-
- /* If we don't have link (auto-negotiation failed or link partner
- * cannot auto-negotiate), and our link partner is not trying to
- * auto-negotiate with us (we are receiving idles or data),
- * we need to force link up. We also need to give auto-negotiation
- * time to complete.
- */
- /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
- if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
- if (!mac->autoneg_failed) {
- mac->autoneg_failed = true;
- return E1000_SUCCESS;
- }
- DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
-
- /* Disable auto-negotiation in the TXCW register */
- E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
-
- /* Force link-up and also force full-duplex. */
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- /* Configure Flow Control after forcing link up. */
- ret_val = e1000_config_fc_after_link_up_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error configuring flow control\n");
- return ret_val;
- }
- } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
- /* If we are forcing link and we are receiving /C/ ordered
- * sets, re-enable auto-negotiation in the TXCW register
- * and disable forced link in the Device Control register
- * in an attempt to auto-negotiate with our link partner.
- */
- DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
- E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
- E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
-
- mac->serdes_has_link = true;
- } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
- /* If we force link for non-auto-negotiation switch, check
- * link status based on MAC synchronization for internal
- * serdes media type.
- */
- /* SYNCH bit and IV bit are sticky. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- DEBUGOUT("SERDES: Link up - forced.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - force failed.\n");
- }
- }
-
- if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU) {
- /* SYNCH bit and IV bit are sticky, so reread rxcw. */
- usec_delay(10);
- rxcw = E1000_READ_REG(hw, E1000_RXCW);
- if (rxcw & E1000_RXCW_SYNCH) {
- if (!(rxcw & E1000_RXCW_IV)) {
- mac->serdes_has_link = true;
- DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - no sync.\n");
- }
- } else {
- mac->serdes_has_link = false;
- DEBUGOUT("SERDES: Link down - autoneg failed\n");
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_default_fc_generic - Set flow control default values
- * @hw: pointer to the HW structure
- *
- * Read the EEPROM for the default values for flow control and store the
- * values.
- **/
-static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
- u16 nvm_data;
-
- DEBUGFUNC("e1000_set_default_fc_generic");
-
- /* Read and store word 0x0F of the EEPROM. This word contains bits
- * that determine the hardware's default PAUSE (flow control) mode,
- * a bit that determines whether the HW defaults to enabling or
- * disabling auto-negotiation, and the direction of the
- * SW defined pins. If there is no SW over-ride of the flow
- * control setting, then the variable hw->fc will
- * be initialized based on a value in the EEPROM.
- */
- ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
-
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
- hw->fc.requested_mode = e1000_fc_none;
- else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
- NVM_WORD0F_ASM_DIR)
- hw->fc.requested_mode = e1000_fc_tx_pause;
- else
- hw->fc.requested_mode = e1000_fc_full;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_link_generic - Setup flow control and link settings
- * @hw: pointer to the HW structure
- *
- * Determines which flow control settings to use, then configures flow
- * control. Calls the appropriate media-specific link configuration
- * function. Assuming the adapter has a valid link partner, a valid link
- * should be established. Assumes the hardware has previously been reset
- * and the transmitter and receiver are not enabled.
- **/
-s32 e1000_setup_link_generic(struct e1000_hw *hw)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_link_generic");
-
- /* In the case of the phy reset being blocked, we already have a link.
- * We do not need to set it up again.
- */
- if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
- return E1000_SUCCESS;
-
- /* If requested flow control is set to default, set flow control
- * based on the EEPROM flow control settings.
- */
- if (hw->fc.requested_mode == e1000_fc_default) {
- ret_val = e1000_set_default_fc_generic(hw);
- if (ret_val)
- return ret_val;
- }
-
- /* Save off the requested flow control mode for use later. Depending
- * on the link partner's capabilities, we may or may not use this mode.
- */
- hw->fc.current_mode = hw->fc.requested_mode;
-
- DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
- hw->fc.current_mode);
-
- /* Call the necessary media_type subroutine to configure the link. */
- ret_val = hw->mac.ops.setup_physical_interface(hw);
- if (ret_val)
- return ret_val;
-
- /* Initialize the flow control address, type, and PAUSE timer
- * registers to their default values. This is done even if flow
- * control is disabled, because it does not hurt anything to
- * initialize these registers.
- */
- DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
- E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
- E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
- E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
-
- E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
-
- return e1000_set_fc_watermarks_generic(hw);
-}
-
-/**
- * e1000_commit_fc_settings_generic - Configure flow control
- * @hw: pointer to the HW structure
- *
- * Write the flow control settings to the Transmit Config Word Register (TXCW)
- * base on the flow control settings in e1000_mac_info.
- **/
-static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 txcw;
-
- DEBUGFUNC("e1000_commit_fc_settings_generic");
-
- /* Check for a software override of the flow control settings, and
- * setup the device accordingly. If auto-negotiation is enabled, then
- * software will have to set the "PAUSE" bits to the correct value in
- * the Transmit Config Word Register (TXCW) and re-start auto-
- * negotiation. However, if auto-negotiation is disabled, then
- * software will have to manually configure the two flow control enable
- * bits in the CTRL register.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause frames,
- * but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames but we
- * do not support receiving pause frames).
- * 3: Both Rx and Tx flow control (symmetric) are enabled.
- */
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- /* Flow control completely disabled by a software over-ride. */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
- break;
- case e1000_fc_rx_pause:
- /* Rx Flow control is enabled and Tx Flow control is disabled
- * by a software over-ride. Since there really isn't a way to
- * advertise that we are capable of Rx Pause ONLY, we will
- * advertise that we support both symmetric and asymmetric Rx
- * PAUSE. Later, we will disable the adapter's ability to send
- * PAUSE frames.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- case e1000_fc_tx_pause:
- /* Tx Flow control is enabled, and Rx Flow control is disabled,
- * by a software over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
- break;
- case e1000_fc_full:
- /* Flow control (both Rx and Tx) is enabled by a software
- * over-ride.
- */
- txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- break;
- }
-
- E1000_WRITE_REG(hw, E1000_TXCW, txcw);
- mac->txcw = txcw;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_poll_fiber_serdes_link_generic - Poll for link up
- * @hw: pointer to the HW structure
- *
- * Polls for link up by reading the status register, if link fails to come
- * up with auto-negotiation, then the link is forced if a signal is detected.
- **/
-static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- u32 i, status;
- s32 ret_val;
-
- DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
-
- /* If we have a signal (the cable is plugged in, or assumed true for
- * serdes media) then poll for a "Link-Up" indication in the Device
- * Status Register. Time-out if a link isn't seen in 500 milliseconds
- * seconds (Auto-negotiation should complete in less than 500
- * milliseconds even if the other end is doing it in SW).
- */
- for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
- msec_delay(10);
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_LU)
- break;
- }
- if (i == FIBER_LINK_UP_LIMIT) {
- DEBUGOUT("Never got a valid link from auto-neg!!!\n");
- mac->autoneg_failed = true;
- /* AutoNeg failed to achieve a link, so we'll call
- * mac->check_for_link. This routine will force the
- * link up if we detect a signal. This will allow us to
- * communicate with non-autonegotiating link partners.
- */
- ret_val = mac->ops.check_for_link(hw);
- if (ret_val) {
- DEBUGOUT("Error while checking for link\n");
- return ret_val;
- }
- mac->autoneg_failed = false;
- } else {
- mac->autoneg_failed = false;
- DEBUGOUT("Valid Link Found\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
- * @hw: pointer to the HW structure
- *
- * Configures collision distance and flow control for fiber and serdes
- * links. Upon successful setup, poll for link.
- **/
-s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 ret_val;
-
- DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Take the link out of reset */
- ctrl &= ~E1000_CTRL_LRST;
-
- hw->mac.ops.config_collision_dist(hw);
-
- ret_val = e1000_commit_fc_settings_generic(hw);
- if (ret_val)
- return ret_val;
-
- /* Since auto-negotiation is enabled, take the link out of reset (the
- * link will be in reset, because we previously reset the chip). This
- * will restart auto-negotiation. If auto-negotiation is successful
- * then the link-up status bit will be set and the flow control enable
- * bits (RFCE and TFCE) will be set according to their negotiated value.
- */
- DEBUGOUT("Auto-negotiation enabled\n");
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- E1000_WRITE_FLUSH(hw);
- msec_delay(1);
-
- /* For these adapters, the SW definable pin 1 is set when the optics
- * detect a signal. If we have a signal, then poll for a "Link-Up"
- * indication.
- */
- if (hw->phy.media_type == e1000_media_type_internal_serdes ||
- (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
- ret_val = e1000_poll_fiber_serdes_link_generic(hw);
- } else {
- DEBUGOUT("No signal detected\n");
- }
-
- return ret_val;
-}
-
-/**
- * e1000_config_collision_dist_generic - Configure collision distance
- * @hw: pointer to the HW structure
- *
- * Configures the collision distance to the default value and is used
- * during link setup.
- **/
-static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
-{
- u32 tctl;
-
- DEBUGFUNC("e1000_config_collision_dist_generic");
-
- tctl = E1000_READ_REG(hw, E1000_TCTL);
-
- tctl &= ~E1000_TCTL_COLD;
- tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
-
- E1000_WRITE_REG(hw, E1000_TCTL, tctl);
- E1000_WRITE_FLUSH(hw);
-}
-
-/**
- * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
- * @hw: pointer to the HW structure
- *
- * Sets the flow control high/low threshold (watermark) registers. If
- * flow control XON frame transmission is enabled, then set XON frame
- * transmission as well.
- **/
-s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
-{
- u32 fcrtl = 0, fcrth = 0;
-
- DEBUGFUNC("e1000_set_fc_watermarks_generic");
-
- /* Set the flow control receive threshold registers. Normally,
- * these registers will be set to a default threshold that may be
- * adjusted later by the driver's runtime code. However, if the
- * ability to transmit pause frames is not enabled, then these
- * registers will be set to 0.
- */
- if (hw->fc.current_mode & e1000_fc_tx_pause) {
- /* We need to set up the Receive Threshold high and low water
- * marks as well as (optionally) enabling the transmission of
- * XON frames.
- */
- fcrtl = hw->fc.low_water;
- if (hw->fc.send_xon)
- fcrtl |= E1000_FCRTL_XONE;
-
- fcrth = hw->fc.high_water;
- }
- E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
- E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_force_mac_fc_generic - Force the MAC's flow control settings
- * @hw: pointer to the HW structure
- *
- * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
- * device control register to reflect the adapter settings. TFCE and RFCE
- * need to be explicitly set by software when a copper PHY is used because
- * autonegotiation is managed by the PHY rather than the MAC. Software must
- * also configure these bits when link is forced on a fiber connection.
- **/
-s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_force_mac_fc_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
-
- /* Because we didn't get link via the internal auto-negotiation
- * mechanism (we either forced link or we got link via PHY
- * auto-neg), we have to manually enable/disable transmit an
- * receive flow control.
- *
- * The "Case" statement below enables/disable flow control
- * according to the "hw->fc.current_mode" parameter.
- *
- * The possible values of the "fc" parameter are:
- * 0: Flow control is completely disabled
- * 1: Rx flow control is enabled (we can receive pause
- * frames but not send pause frames).
- * 2: Tx flow control is enabled (we can send pause frames
- * frames but we do not receive pause frames).
- * 3: Both Rx and Tx flow control (symmetric) is enabled.
- * other: No other values should be possible at this point.
- */
- DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
-
- switch (hw->fc.current_mode) {
- case e1000_fc_none:
- ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
- break;
- case e1000_fc_rx_pause:
- ctrl &= (~E1000_CTRL_TFCE);
- ctrl |= E1000_CTRL_RFCE;
- break;
- case e1000_fc_tx_pause:
- ctrl &= (~E1000_CTRL_RFCE);
- ctrl |= E1000_CTRL_TFCE;
- break;
- case e1000_fc_full:
- ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
- break;
- default:
- DEBUGOUT("Flow control param set incorrectly\n");
- return -E1000_ERR_CONFIG;
- }
-
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_config_fc_after_link_up_generic - Configures flow control after link
- * @hw: pointer to the HW structure
- *
- * Checks the status of auto-negotiation after link up to ensure that the
- * speed and duplex were not forced. If the link needed to be forced, then
- * flow control needs to be forced also. If auto-negotiation is enabled
- * and did not fail, then we configure flow control based on our link
- * partner.
- **/
-s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val = E1000_SUCCESS;
- u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
- u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
- u16 speed, duplex;
-
- DEBUGFUNC("e1000_config_fc_after_link_up_generic");
-
- /* Check for the case where we have fiber media and auto-neg failed
- * so we had to force link. In this case, we need to force the
- * configuration of the MAC to match the "fc" parameter.
- */
- if (mac->autoneg_failed) {
- if (hw->phy.media_type == e1000_media_type_fiber ||
- hw->phy.media_type == e1000_media_type_internal_serdes)
- ret_val = e1000_force_mac_fc_generic(hw);
- } else {
- if (hw->phy.media_type == e1000_media_type_copper)
- ret_val = e1000_force_mac_fc_generic(hw);
- }
-
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
-
- /* Check for the case where we have copper media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
- /* Read the MII Status Register and check to see if AutoNeg
- * has completed. We read this twice because this reg has
- * some "sticky" (latched) bits.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
- if (ret_val)
- return ret_val;
-
- if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
- DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
- return ret_val;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (Address 4) and the Auto_Negotiation Base
- * Page Ability Register (Address 5) to determine how
- * flow control was negotiated.
- */
- ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
- &mii_nway_adv_reg);
- if (ret_val)
- return ret_val;
- ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
- &mii_nway_lp_ability_reg);
- if (ret_val)
- return ret_val;
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (Address 4) and two bits in the Auto Negotiation Base
- * Page Ability Register (Address 5) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | E1000_fc_full
- *
- */
- if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
- /* Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- } else {
- /* Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\n");
- }
-
- /* Now we need to do one last check... If we auto-
- * negotiated to HALF DUPLEX, flow control should not be
- * enabled per IEEE 802.3 spec.
- */
- ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
- if (ret_val) {
- DEBUGOUT("Error getting link speed and duplex\n");
- return ret_val;
- }
-
- if (duplex == HALF_DUPLEX)
- hw->fc.current_mode = e1000_fc_none;
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- ret_val = e1000_force_mac_fc_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- /* Check for the case where we have SerDes media and auto-neg is
- * enabled. In this case, we need to check and see if Auto-Neg
- * has completed, and if so, how the PHY and link partner has
- * flow control configured.
- */
- if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
- mac->autoneg) {
- /* Read the PCS_LSTS and check to see if AutoNeg
- * has completed.
- */
- pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
-
- if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
- DEBUGOUT("PCS Auto Neg has not completed.\n");
- return ret_val;
- }
-
- /* The AutoNeg process has completed, so we now need to
- * read both the Auto Negotiation Advertisement
- * Register (PCS_ANADV) and the Auto_Negotiation Base
- * Page Ability Register (PCS_LPAB) to determine how
- * flow control was negotiated.
- */
- pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
- pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
-
- /* Two bits in the Auto Negotiation Advertisement Register
- * (PCS_ANADV) and two bits in the Auto Negotiation Base
- * Page Ability Register (PCS_LPAB) determine flow control
- * for both the PHY and the link partner. The following
- * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
- * 1999, describes these PAUSE resolution bits and how flow
- * control is determined based upon these settings.
- * NOTE: DC = Don't Care
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
- *-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- *
- * Are both PAUSE bits set to 1? If so, this implies
- * Symmetric Flow Control is enabled at both ends. The
- * ASM_DIR bits are irrelevant per the spec.
- *
- * For Symmetric Flow Control:
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | e1000_fc_full
- *
- */
- if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
- /* Now we need to check if the user selected Rx ONLY
- * of pause frames. In this case, we had to advertise
- * FULL flow control because we could not advertise Rx
- * ONLY. Hence, we must now check to see if we need to
- * turn OFF the TRANSMISSION of PAUSE frames.
- */
- if (hw->fc.requested_mode == e1000_fc_full) {
- hw->fc.current_mode = e1000_fc_full;
- DEBUGOUT("Flow Control = FULL.\n");
- } else {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- }
- }
- /* For receiving PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- */
- else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_tx_pause;
- DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
- }
- /* For transmitting PAUSE frames ONLY.
- *
- * LOCAL DEVICE | LINK PARTNER
- * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
- *-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
- */
- else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
- (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
- !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
- (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
- hw->fc.current_mode = e1000_fc_rx_pause;
- DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
- } else {
- /* Per the IEEE spec, at this point flow control
- * should be disabled.
- */
- hw->fc.current_mode = e1000_fc_none;
- DEBUGOUT("Flow Control = NONE.\n");
- }
-
- /* Now we call a subroutine to actually force the MAC
- * controller to use the correct flow control settings.
- */
- pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
- pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
- E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
-
- ret_val = e1000_force_mac_fc_generic(hw);
- if (ret_val) {
- DEBUGOUT("Error forcing flow control settings\n");
- return ret_val;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Read the status register for the current speed/duplex and store the current
- * speed and duplex for copper connections.
- **/
-s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
- u16 *duplex)
-{
- u32 status;
-
- DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
-
- status = E1000_READ_REG(hw, E1000_STATUS);
- if (status & E1000_STATUS_SPEED_1000) {
- *speed = SPEED_1000;
- DEBUGOUT("1000 Mbs, ");
- } else if (status & E1000_STATUS_SPEED_100) {
- *speed = SPEED_100;
- DEBUGOUT("100 Mbs, ");
- } else {
- *speed = SPEED_10;
- DEBUGOUT("10 Mbs, ");
- }
-
- if (status & E1000_STATUS_FD) {
- *duplex = FULL_DUPLEX;
- DEBUGOUT("Full Duplex\n");
- } else {
- *duplex = HALF_DUPLEX;
- DEBUGOUT("Half Duplex\n");
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
- * @hw: pointer to the HW structure
- * @speed: stores the current speed
- * @duplex: stores the current duplex
- *
- * Sets the speed and duplex to gigabit full duplex (the only possible option)
- * for fiber/serdes links.
- **/
-s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
- u16 *speed, u16 *duplex)
-{
- DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
-
- *speed = SPEED_1000;
- *duplex = FULL_DUPLEX;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Acquire the HW semaphore to access the PHY or NVM
- **/
-s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
- s32 timeout = hw->nvm.word_size + 1;
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_hw_semaphore_generic");
-
- /* Get the SW semaphore */
- while (i < timeout) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- if (!(swsm & E1000_SWSM_SMBI))
- break;
-
- usec_delay(50);
- i++;
- }
-
- if (i == timeout) {
- DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
- return -E1000_ERR_NVM;
- }
-
- /* Get the FW semaphore. */
- for (i = 0; i < timeout; i++) {
- swsm = E1000_READ_REG(hw, E1000_SWSM);
- E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
-
- /* Semaphore acquired if bit latched */
- if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
- break;
-
- usec_delay(50);
- }
-
- if (i == timeout) {
- /* Release semaphores */
- e1000_put_hw_semaphore_generic(hw);
- DEBUGOUT("Driver can't access the NVM\n");
- return -E1000_ERR_NVM;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_put_hw_semaphore_generic - Release hardware semaphore
- * @hw: pointer to the HW structure
- *
- * Release hardware semaphore used to access the PHY or NVM
- **/
-void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
-{
- u32 swsm;
-
- DEBUGFUNC("e1000_put_hw_semaphore_generic");
-
- swsm = E1000_READ_REG(hw, E1000_SWSM);
-
- swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
-
- E1000_WRITE_REG(hw, E1000_SWSM, swsm);
-}
-
-/**
- * e1000_get_auto_rd_done_generic - Check for auto read completion
- * @hw: pointer to the HW structure
- *
- * Check EEPROM for Auto Read done bit.
- **/
-s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
-{
- s32 i = 0;
-
- DEBUGFUNC("e1000_get_auto_rd_done_generic");
-
- while (i < AUTO_READ_DONE_TIMEOUT) {
- if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
- break;
- msec_delay(1);
- i++;
- }
-
- if (i == AUTO_READ_DONE_TIMEOUT) {
- DEBUGOUT("Auto read by HW from NVM has not completed.\n");
- return -E1000_ERR_RESET;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_valid_led_default_generic - Verify a valid default LED config
- * @hw: pointer to the HW structure
- * @data: pointer to the NVM (EEPROM)
- *
- * Read the EEPROM for the current default LED configuration. If the
- * LED configuration is not valid, set to a valid LED configuration.
- **/
-s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
-{
- s32 ret_val;
-
- DEBUGFUNC("e1000_valid_led_default_generic");
-
- ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
- if (ret_val) {
- DEBUGOUT("NVM Read Error\n");
- return ret_val;
- }
-
- if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
- *data = ID_LED_DEFAULT;
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_id_led_init_generic -
- * @hw: pointer to the HW structure
- *
- **/
-s32 e1000_id_led_init_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
- s32 ret_val;
- const u32 ledctl_mask = 0x000000FF;
- const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
- const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
- u16 data, i, temp;
- const u16 led_mask = 0x0F;
-
- DEBUGFUNC("e1000_id_led_init_generic");
-
- ret_val = hw->nvm.ops.valid_led_default(hw, &data);
- if (ret_val)
- return ret_val;
-
- mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
- mac->ledctl_mode1 = mac->ledctl_default;
- mac->ledctl_mode2 = mac->ledctl_default;
-
- for (i = 0; i < 4; i++) {
- temp = (data >> (i << 2)) & led_mask;
- switch (temp) {
- case ID_LED_ON1_DEF2:
- case ID_LED_ON1_ON2:
- case ID_LED_ON1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_on << (i << 3);
- break;
- case ID_LED_OFF1_DEF2:
- case ID_LED_OFF1_ON2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode1 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- switch (temp) {
- case ID_LED_DEF1_ON2:
- case ID_LED_ON1_ON2:
- case ID_LED_OFF1_ON2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_on << (i << 3);
- break;
- case ID_LED_DEF1_OFF2:
- case ID_LED_ON1_OFF2:
- case ID_LED_OFF1_OFF2:
- mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
- mac->ledctl_mode2 |= ledctl_off << (i << 3);
- break;
- default:
- /* Do nothing */
- break;
- }
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_setup_led_generic - Configures SW controllable LED
- * @hw: pointer to the HW structure
- *
- * This prepares the SW controllable LED for use and saves the current state
- * of the LED so it can be later restored.
- **/
-s32 e1000_setup_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl;
-
- DEBUGFUNC("e1000_setup_led_generic");
-
- if (hw->mac.ops.setup_led != e1000_setup_led_generic)
- return -E1000_ERR_CONFIG;
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
- hw->mac.ledctl_default = ledctl;
- /* Turn off LED0 */
- ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_LED0_MODE_MASK);
- ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
- E1000_LEDCTL_LED0_MODE_SHIFT);
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
- } else if (hw->phy.media_type == e1000_media_type_copper) {
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_cleanup_led_generic - Set LED config to default operation
- * @hw: pointer to the HW structure
- *
- * Remove the current LED configuration and set the LED configuration
- * to the default value, saved from the EEPROM.
- **/
-s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_cleanup_led_generic");
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_blink_led_generic - Blink LED
- * @hw: pointer to the HW structure
- *
- * Blink the LEDs which are set to be on.
- **/
-s32 e1000_blink_led_generic(struct e1000_hw *hw)
-{
- u32 ledctl_blink = 0;
- u32 i;
-
- DEBUGFUNC("e1000_blink_led_generic");
-
- if (hw->phy.media_type == e1000_media_type_fiber) {
- /* always blink LED0 for PCI-E fiber */
- ledctl_blink = E1000_LEDCTL_LED0_BLINK |
- (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
- } else {
- /* Set the blink bit for each LED that's "on" (0x0E)
- * (or "off" if inverted) in ledctl_mode2. The blink
- * logic in hardware only works when mode is set to "on"
- * so it must be changed accordingly when the mode is
- * "off" and inverted.
- */
- ledctl_blink = hw->mac.ledctl_mode2;
- for (i = 0; i < 32; i += 8) {
- u32 mode = (hw->mac.ledctl_mode2 >> i) &
- E1000_LEDCTL_LED0_MODE_MASK;
- u32 led_default = hw->mac.ledctl_default >> i;
-
- if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_ON)) ||
- ((led_default & E1000_LEDCTL_LED0_IVRT) &&
- (mode == E1000_LEDCTL_MODE_LED_OFF))) {
- ledctl_blink &=
- ~(E1000_LEDCTL_LED0_MODE_MASK << i);
- ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
- E1000_LEDCTL_MODE_LED_ON) << i;
- }
- }
- }
-
- E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_on_generic - Turn LED on
- * @hw: pointer to the HW structure
- *
- * Turn LED on.
- **/
-s32 e1000_led_on_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_on_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl &= ~E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_led_off_generic - Turn LED off
- * @hw: pointer to the HW structure
- *
- * Turn LED off.
- **/
-s32 e1000_led_off_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
-
- DEBUGFUNC("e1000_led_off_generic");
-
- switch (hw->phy.media_type) {
- case e1000_media_type_fiber:
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_SWDPIN0;
- ctrl |= E1000_CTRL_SWDPIO0;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
- break;
- case e1000_media_type_copper:
- E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
- break;
- default:
- break;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
- * @hw: pointer to the HW structure
- * @no_snoop: bitmap of snoop events
- *
- * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
- **/
-void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
-{
- u32 gcr;
-
- DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
-
- if (no_snoop) {
- gcr = E1000_READ_REG(hw, E1000_GCR);
- gcr &= ~(PCIE_NO_SNOOP_ALL);
- gcr |= no_snoop;
- E1000_WRITE_REG(hw, E1000_GCR, gcr);
- }
-}
-
-/**
- * e1000_disable_pcie_master_generic - Disables PCI-express master access
- * @hw: pointer to the HW structure
- *
- * Returns E1000_SUCCESS if successful, else returns -10
- * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
- * the master requests to be disabled.
- *
- * Disables PCI-Express master access and verifies there are no pending
- * requests.
- **/
-s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
-{
- u32 ctrl;
- s32 timeout = MASTER_DISABLE_TIMEOUT;
-
- DEBUGFUNC("e1000_disable_pcie_master_generic");
-
- ctrl = E1000_READ_REG(hw, E1000_CTRL);
- ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
-
- while (timeout) {
- if (!(E1000_READ_REG(hw, E1000_STATUS) &
- E1000_STATUS_GIO_MASTER_ENABLE))
- break;
- usec_delay(100);
- timeout--;
- }
-
- if (!timeout) {
- DEBUGOUT("Master requests are pending.\n");
- return -E1000_ERR_MASTER_REQUESTS_PENDING;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Reset the Adaptive Interframe Spacing throttle to default values.
- **/
-void e1000_reset_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_reset_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- return;
- }
-
- mac->current_ifs_val = 0;
- mac->ifs_min_val = IFS_MIN;
- mac->ifs_max_val = IFS_MAX;
- mac->ifs_step_size = IFS_STEP;
- mac->ifs_ratio = IFS_RATIO;
-
- mac->in_ifs_mode = false;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
-}
-
-/**
- * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
- * @hw: pointer to the HW structure
- *
- * Update the Adaptive Interframe Spacing Throttle value based on the
- * time between transmitted packets and time between collisions.
- **/
-void e1000_update_adaptive_generic(struct e1000_hw *hw)
-{
- struct e1000_mac_info *mac = &hw->mac;
-
- DEBUGFUNC("e1000_update_adaptive_generic");
-
- if (!mac->adaptive_ifs) {
- DEBUGOUT("Not in Adaptive IFS mode!\n");
- return;
- }
-
- if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
- if (mac->tx_packet_delta > MIN_NUM_XMITS) {
- mac->in_ifs_mode = true;
- if (mac->current_ifs_val < mac->ifs_max_val) {
- if (!mac->current_ifs_val)
- mac->current_ifs_val = mac->ifs_min_val;
- else
- mac->current_ifs_val +=
- mac->ifs_step_size;
- E1000_WRITE_REG(hw, E1000_AIT,
- mac->current_ifs_val);
- }
- }
- } else {
- if (mac->in_ifs_mode &&
- (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
- mac->current_ifs_val = 0;
- mac->in_ifs_mode = false;
- E1000_WRITE_REG(hw, E1000_AIT, 0);
- }
- }
-}
-
-/**
- * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Verify that when not using auto-negotiation that MDI/MDIx is correctly
- * set, which is forced to MDI mode only.
- **/
-static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
-{
- DEBUGFUNC("e1000_validate_mdi_setting_generic");
-
- if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
- DEBUGOUT("Invalid MDI setting detected\n");
- hw->phy.mdix = 1;
- return -E1000_ERR_CONFIG;
- }
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
- * @hw: pointer to the HW structure
- *
- * Validate the MDI/MDIx setting, allowing for auto-crossover during forced
- * operation.
- **/
-s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
-{
- DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
-
- return E1000_SUCCESS;
-}
-
-/**
- * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
- * @hw: pointer to the HW structure
- * @reg: 32bit register offset such as E1000_SCTL
- * @offset: register offset to write to
- * @data: data to write at register offset
- *
- * Writes an address/data control type register. There are several of these
- * and they all have the format address << 8 | data and bit 31 is polled for
- * completion.
- **/
-s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
- u32 offset, u8 data)
-{
- u32 i, regvalue = 0;
-
- DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
-
- /* Set up the address and data */
- regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
- E1000_WRITE_REG(hw, reg, regvalue);
-
- /* Poll the ready bit to see if the MDI read completed */
- for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
- usec_delay(5);
- regvalue = E1000_READ_REG(hw, reg);
- if (regvalue & E1000_GEN_CTL_READY)
- break;
- }
- if (!(regvalue & E1000_GEN_CTL_READY)) {
- DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
- return -E1000_ERR_PHY;
- }
-
- return E1000_SUCCESS;
-}