diff options
Diffstat (limited to 'src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c')
-rwxr-xr-x | src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c | 2247 |
1 files changed, 0 insertions, 2247 deletions
diff --git a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c b/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c deleted file mode 100755 index c8ec049b..00000000 --- a/src/dpdk_lib18/librte_pmd_e1000/e1000/e1000_mac.c +++ /dev/null @@ -1,2247 +0,0 @@ -/******************************************************************************* - -Copyright (c) 2001-2014, Intel Corporation -All rights reserved. - -Redistribution and use in source and binary forms, with or without -modification, are permitted provided that the following conditions are met: - - 1. Redistributions of source code must retain the above copyright notice, - this list of conditions and the following disclaimer. - - 2. Redistributions in binary form must reproduce the above copyright - notice, this list of conditions and the following disclaimer in the - documentation and/or other materials provided with the distribution. - - 3. Neither the name of the Intel Corporation nor the names of its - contributors may be used to endorse or promote products derived from - this software without specific prior written permission. - -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -POSSIBILITY OF SUCH DAMAGE. - -***************************************************************************/ - -#include "e1000_api.h" - -STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw); -STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); -STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw); -STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index); - -/** - * e1000_init_mac_ops_generic - Initialize MAC function pointers - * @hw: pointer to the HW structure - * - * Setups up the function pointers to no-op functions - **/ -void e1000_init_mac_ops_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - DEBUGFUNC("e1000_init_mac_ops_generic"); - - /* General Setup */ - mac->ops.init_params = e1000_null_ops_generic; - mac->ops.init_hw = e1000_null_ops_generic; - mac->ops.reset_hw = e1000_null_ops_generic; - mac->ops.setup_physical_interface = e1000_null_ops_generic; - mac->ops.get_bus_info = e1000_null_ops_generic; - mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; - mac->ops.read_mac_addr = e1000_read_mac_addr_generic; - mac->ops.config_collision_dist = e1000_config_collision_dist_generic; - mac->ops.clear_hw_cntrs = e1000_null_mac_generic; - /* LED */ - mac->ops.cleanup_led = e1000_null_ops_generic; - mac->ops.setup_led = e1000_null_ops_generic; - mac->ops.blink_led = e1000_null_ops_generic; - mac->ops.led_on = e1000_null_ops_generic; - mac->ops.led_off = e1000_null_ops_generic; - /* LINK */ - mac->ops.setup_link = e1000_null_ops_generic; - mac->ops.get_link_up_info = e1000_null_link_info; - mac->ops.check_for_link = e1000_null_ops_generic; - /* Management */ - mac->ops.check_mng_mode = e1000_null_mng_mode; - /* VLAN, MC, etc. */ - mac->ops.update_mc_addr_list = e1000_null_update_mc; - mac->ops.clear_vfta = e1000_null_mac_generic; - mac->ops.write_vfta = e1000_null_write_vfta; - mac->ops.rar_set = e1000_rar_set_generic; - mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; -} - -/** - * e1000_null_ops_generic - No-op function, returns 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_ops_generic"); - UNREFERENCED_1PARAMETER(hw); - return E1000_SUCCESS; -} - -/** - * e1000_null_mac_generic - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mac_generic"); - UNREFERENCED_1PARAMETER(hw); - return; -} - -/** - * e1000_null_link_info - No-op function, return 0 - * @hw: pointer to the HW structure - **/ -s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw, - u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d) -{ - DEBUGFUNC("e1000_null_link_info"); - UNREFERENCED_3PARAMETER(hw, s, d); - return E1000_SUCCESS; -} - -/** - * e1000_null_mng_mode - No-op function, return false - * @hw: pointer to the HW structure - **/ -bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_null_mng_mode"); - UNREFERENCED_1PARAMETER(hw); - return false; -} - -/** - * e1000_null_update_mc - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_update_mc"); - UNREFERENCED_3PARAMETER(hw, h, a); - return; -} - -/** - * e1000_null_write_vfta - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw, - u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b) -{ - DEBUGFUNC("e1000_null_write_vfta"); - UNREFERENCED_3PARAMETER(hw, a, b); - return; -} - -/** - * e1000_null_rar_set - No-op function, return void - * @hw: pointer to the HW structure - **/ -void e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw, - u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a) -{ - DEBUGFUNC("e1000_null_rar_set"); - UNREFERENCED_3PARAMETER(hw, h, a); - return; -} - -/** - * e1000_get_bus_info_pci_generic - Get PCI(x) bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. - **/ -s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - u32 status = E1000_READ_REG(hw, E1000_STATUS); - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_get_bus_info_pci_generic"); - - /* PCI or PCI-X? */ - bus->type = (status & E1000_STATUS_PCIX_MODE) - ? e1000_bus_type_pcix - : e1000_bus_type_pci; - - /* Bus speed */ - if (bus->type == e1000_bus_type_pci) { - bus->speed = (status & E1000_STATUS_PCI66) - ? e1000_bus_speed_66 - : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - bus->speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - bus->speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - bus->speed = e1000_bus_speed_133; - break; - default: - bus->speed = e1000_bus_speed_reserved; - break; - } - } - - /* Bus width */ - bus->width = (status & E1000_STATUS_BUS64) - ? e1000_bus_width_64 - : e1000_bus_width_32; - - /* Which PCI(-X) function? */ - mac->ops.set_lan_id(hw); - - return ret_val; -} - -/** - * e1000_get_bus_info_pcie_generic - Get PCIe bus information - * @hw: pointer to the HW structure - * - * Determines and stores the system bus information for a particular - * network interface. The following bus information is determined and stored: - * bus speed, bus width, type (PCIe), and PCIe function. - **/ -s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - struct e1000_bus_info *bus = &hw->bus; - s32 ret_val; - u16 pcie_link_status; - - DEBUGFUNC("e1000_get_bus_info_pcie_generic"); - - bus->type = e1000_bus_type_pci_express; - - ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, - &pcie_link_status); - if (ret_val) { - bus->width = e1000_bus_width_unknown; - bus->speed = e1000_bus_speed_unknown; - } else { - switch (pcie_link_status & PCIE_LINK_SPEED_MASK) { - case PCIE_LINK_SPEED_2500: - bus->speed = e1000_bus_speed_2500; - break; - case PCIE_LINK_SPEED_5000: - bus->speed = e1000_bus_speed_5000; - break; - default: - bus->speed = e1000_bus_speed_unknown; - break; - } - - bus->width = (enum e1000_bus_width)((pcie_link_status & - PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); - } - - mac->ops.set_lan_id(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices - * - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading memory-mapped registers - * and swaps the port value if requested. - **/ -STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u32 reg; - - /* The status register reports the correct function number - * for the device regardless of function swap state. - */ - reg = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; -} - -/** - * e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices - * @hw: pointer to the HW structure - * - * Determines the LAN function id by reading PCI config space. - **/ -void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - u16 pci_header_type; - u32 status; - - e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); - if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { - status = E1000_READ_REG(hw, E1000_STATUS); - bus->func = (status & E1000_STATUS_FUNC_MASK) - >> E1000_STATUS_FUNC_SHIFT; - } else { - bus->func = 0; - } -} - -/** - * e1000_set_lan_id_single_port - Set LAN id for a single port device - * @hw: pointer to the HW structure - * - * Sets the LAN function id to zero for a single port device. - **/ -void e1000_set_lan_id_single_port(struct e1000_hw *hw) -{ - struct e1000_bus_info *bus = &hw->bus; - - bus->func = 0; -} - -/** - * e1000_clear_vfta_generic - Clear VLAN filter table - * @hw: pointer to the HW structure - * - * Clears the register array which contains the VLAN filter table by - * setting all the values to 0. - **/ -void e1000_clear_vfta_generic(struct e1000_hw *hw) -{ - u32 offset; - - DEBUGFUNC("e1000_clear_vfta_generic"); - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); - E1000_WRITE_FLUSH(hw); - } -} - -/** - * e1000_write_vfta_generic - Write value to VLAN filter table - * @hw: pointer to the HW structure - * @offset: register offset in VLAN filter table - * @value: register value written to VLAN filter table - * - * Writes value at the given offset in the register array which stores - * the VLAN filter table. - **/ -void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) -{ - DEBUGFUNC("e1000_write_vfta_generic"); - - E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_init_rx_addrs_generic - Initialize receive address's - * @hw: pointer to the HW structure - * @rar_count: receive address registers - * - * Setup the receive address registers by setting the base receive address - * register to the devices MAC address and clearing all the other receive - * address registers to 0. - **/ -void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count) -{ - u32 i; - u8 mac_addr[ETH_ADDR_LEN] = {0}; - - DEBUGFUNC("e1000_init_rx_addrs_generic"); - - /* Setup the receive address */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); - - hw->mac.ops.rar_set(hw, hw->mac.addr, 0); - - /* Zero out the other (rar_entry_count - 1) receive addresses */ - DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1); - for (i = 1; i < rar_count; i++) - hw->mac.ops.rar_set(hw, mac_addr, i); -} - -/** - * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr - * @hw: pointer to the HW structure - * - * Checks the nvm for an alternate MAC address. An alternate MAC address - * can be setup by pre-boot software and must be treated like a permanent - * address and must override the actual permanent MAC address. If an - * alternate MAC address is found it is programmed into RAR0, replacing - * the permanent address that was installed into RAR0 by the Si on reset. - * This function will return SUCCESS unless it encounters an error while - * reading the EEPROM. - **/ -s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) -{ - u32 i; - s32 ret_val; - u16 offset, nvm_alt_mac_addr_offset, nvm_data; - u8 alt_mac_addr[ETH_ADDR_LEN]; - - DEBUGFUNC("e1000_check_alt_mac_addr_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data); - if (ret_val) - return ret_val; - - /* not supported on older hardware or 82573 */ - if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573)) - return E1000_SUCCESS; - - /* Alternate MAC address is handled by the option ROM for 82580 - * and newer. SW support not required. - */ - if (hw->mac.type >= e1000_82580) - return E1000_SUCCESS; - - ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, - &nvm_alt_mac_addr_offset); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if ((nvm_alt_mac_addr_offset == 0xFFFF) || - (nvm_alt_mac_addr_offset == 0x0000)) - /* There is no Alternate MAC Address */ - return E1000_SUCCESS; - - if (hw->bus.func == E1000_FUNC_1) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; - if (hw->bus.func == E1000_FUNC_2) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; - - if (hw->bus.func == E1000_FUNC_3) - nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; - for (i = 0; i < ETH_ADDR_LEN; i += 2) { - offset = nvm_alt_mac_addr_offset + (i >> 1); - ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - alt_mac_addr[i] = (u8)(nvm_data & 0xFF); - alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); - } - - /* if multicast bit is set, the alternate address will not be used */ - if (alt_mac_addr[0] & 0x01) { - DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); - return E1000_SUCCESS; - } - - /* We have a valid alternate MAC address, and we want to treat it the - * same as the normal permanent MAC address stored by the HW into the - * RAR. Do this by mapping this address into RAR0. - */ - hw->mac.ops.rar_set(hw, alt_mac_addr, 0); - - return E1000_SUCCESS; -} - -/** - * e1000_rar_set_generic - Set receive address register - * @hw: pointer to the HW structure - * @addr: pointer to the receive address - * @index: receive address array register - * - * Sets the receive address array register at index to the address passed - * in by addr. - **/ -STATIC void e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) -{ - u32 rar_low, rar_high; - - DEBUGFUNC("e1000_rar_set_generic"); - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | - ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); - - rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); - - /* If MAC address zero, no need to set the AV bit */ - if (rar_low || rar_high) - rar_high |= E1000_RAH_AV; - - /* Some bridges will combine consecutive 32-bit writes into - * a single burst write, which will malfunction on some parts. - * The flushes avoid this. - */ - E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); - E1000_WRITE_FLUSH(hw); - E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_hash_mc_addr_generic - Generate a multicast hash value - * @hw: pointer to the HW structure - * @mc_addr: pointer to a multicast address - * - * Generates a multicast address hash value which is used to determine - * the multicast filter table array address and new table value. - **/ -u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr) -{ - u32 hash_value, hash_mask; - u8 bit_shift = 0; - - DEBUGFUNC("e1000_hash_mc_addr_generic"); - - /* Register count multiplied by bits per register */ - hash_mask = (hw->mac.mta_reg_count * 32) - 1; - - /* For a mc_filter_type of 0, bit_shift is the number of left-shifts - * where 0xFF would still fall within the hash mask. - */ - while (hash_mask >> bit_shift != 0xFF) - bit_shift++; - - /* The portion of the address that is used for the hash table - * is determined by the mc_filter_type setting. - * The algorithm is such that there is a total of 8 bits of shifting. - * The bit_shift for a mc_filter_type of 0 represents the number of - * left-shifts where the MSB of mc_addr[5] would still fall within - * the hash_mask. Case 0 does this exactly. Since there are a total - * of 8 bits of shifting, then mc_addr[4] will shift right the - * remaining number of bits. Thus 8 - bit_shift. The rest of the - * cases are a variation of this algorithm...essentially raising the - * number of bits to shift mc_addr[5] left, while still keeping the - * 8-bit shifting total. - * - * For example, given the following Destination MAC Address and an - * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), - * we can see that the bit_shift for case 0 is 4. These are the hash - * values resulting from each mc_filter_type... - * [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - * - * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 - * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 - * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 - * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 - */ - switch (hw->mac.mc_filter_type) { - default: - case 0: - break; - case 1: - bit_shift += 1; - break; - case 2: - bit_shift += 2; - break; - case 3: - bit_shift += 4; - break; - } - - hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | - (((u16) mc_addr[5]) << bit_shift))); - - return hash_value; -} - -/** - * e1000_update_mc_addr_list_generic - Update Multicast addresses - * @hw: pointer to the HW structure - * @mc_addr_list: array of multicast addresses to program - * @mc_addr_count: number of multicast addresses to program - * - * Updates entire Multicast Table Array. - * The caller must have a packed mc_addr_list of multicast addresses. - **/ -void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, - u8 *mc_addr_list, u32 mc_addr_count) -{ - u32 hash_value, hash_bit, hash_reg; - int i; - - DEBUGFUNC("e1000_update_mc_addr_list_generic"); - - /* clear mta_shadow */ - memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); - - /* update mta_shadow from mc_addr_list */ - for (i = 0; (u32) i < mc_addr_count; i++) { - hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); - - hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); - hash_bit = hash_value & 0x1F; - - hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); - mc_addr_list += (ETH_ADDR_LEN); - } - - /* replace the entire MTA table */ - for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) - E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value - * @hw: pointer to the HW structure - * - * In certain situations, a system BIOS may report that the PCIx maximum - * memory read byte count (MMRBC) value is higher than than the actual - * value. We check the PCIx command register with the current PCIx status - * register. - **/ -void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) -{ - u16 cmd_mmrbc; - u16 pcix_cmd; - u16 pcix_stat_hi_word; - u16 stat_mmrbc; - - DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic"); - - /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ - if (hw->bus.type != e1000_bus_type_pcix) - return; - - e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); - cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> - PCIX_COMMAND_MMRBC_SHIFT; - stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> - PCIX_STATUS_HI_MMRBC_SHIFT; - if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) - stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; - if (cmd_mmrbc > stat_mmrbc) { - pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; - pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; - e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); - } -} - -/** - * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters - * @hw: pointer to the HW structure - * - * Clears the base hardware counters by reading the counter registers. - **/ -void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_clear_hw_cntrs_base_generic"); - - E1000_READ_REG(hw, E1000_CRCERRS); - E1000_READ_REG(hw, E1000_SYMERRS); - E1000_READ_REG(hw, E1000_MPC); - E1000_READ_REG(hw, E1000_SCC); - E1000_READ_REG(hw, E1000_ECOL); - E1000_READ_REG(hw, E1000_MCC); - E1000_READ_REG(hw, E1000_LATECOL); - E1000_READ_REG(hw, E1000_COLC); - E1000_READ_REG(hw, E1000_DC); - E1000_READ_REG(hw, E1000_SEC); - E1000_READ_REG(hw, E1000_RLEC); - E1000_READ_REG(hw, E1000_XONRXC); - E1000_READ_REG(hw, E1000_XONTXC); - E1000_READ_REG(hw, E1000_XOFFRXC); - E1000_READ_REG(hw, E1000_XOFFTXC); - E1000_READ_REG(hw, E1000_FCRUC); - E1000_READ_REG(hw, E1000_GPRC); - E1000_READ_REG(hw, E1000_BPRC); - E1000_READ_REG(hw, E1000_MPRC); - E1000_READ_REG(hw, E1000_GPTC); - E1000_READ_REG(hw, E1000_GORCL); - E1000_READ_REG(hw, E1000_GORCH); - E1000_READ_REG(hw, E1000_GOTCL); - E1000_READ_REG(hw, E1000_GOTCH); - E1000_READ_REG(hw, E1000_RNBC); - E1000_READ_REG(hw, E1000_RUC); - E1000_READ_REG(hw, E1000_RFC); - E1000_READ_REG(hw, E1000_ROC); - E1000_READ_REG(hw, E1000_RJC); - E1000_READ_REG(hw, E1000_TORL); - E1000_READ_REG(hw, E1000_TORH); - E1000_READ_REG(hw, E1000_TOTL); - E1000_READ_REG(hw, E1000_TOTH); - E1000_READ_REG(hw, E1000_TPR); - E1000_READ_REG(hw, E1000_TPT); - E1000_READ_REG(hw, E1000_MPTC); - E1000_READ_REG(hw, E1000_BPTC); -} - -/** - * e1000_check_for_copper_link_generic - Check for link (Copper) - * @hw: pointer to the HW structure - * - * Checks to see of the link status of the hardware has changed. If a - * change in link status has been detected, then we read the PHY registers - * to get the current speed/duplex if link exists. - **/ -s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - bool link; - - DEBUGFUNC("e1000_check_for_copper_link"); - - /* We only want to go out to the PHY registers to see if Auto-Neg - * has completed and/or if our link status has changed. The - * get_link_status flag is set upon receiving a Link Status - * Change or Rx Sequence Error interrupt. - */ - if (!mac->get_link_status) - return E1000_SUCCESS; - - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - */ - ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); - if (ret_val) - return ret_val; - - if (!link) - return E1000_SUCCESS; /* No link detected */ - - mac->get_link_status = false; - - /* Check if there was DownShift, must be checked - * immediately after link-up - */ - e1000_check_downshift_generic(hw); - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!mac->autoneg) - return -E1000_ERR_CONFIG; - - /* Auto-Neg is enabled. Auto Speed Detection takes care - * of MAC speed/duplex configuration. So we only need to - * configure Collision Distance in the MAC. - */ - mac->ops.config_collision_dist(hw); - - /* Configure Flow Control now that Auto-Neg has completed. - * First, we need to restore the desired flow control - * settings because we may have had to re-autoneg with a - * different link partner. - */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) - DEBUGOUT("Error configuring flow control\n"); - - return ret_val; -} - -/** - * e1000_check_for_fiber_link_generic - Check for link (Fiber) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_fiber_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), the cable is plugged in (we have signal), - * and our link partner is not trying to auto-negotiate with us (we - * are receiving idles or data), we need to force link up. We also - * need to give auto-negotiation time to complete, in case the cable - * was just plugged in. The autoneg_failed flag does this. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && - !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } - - return E1000_SUCCESS; -} - -/** - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure - * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ -s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 rxcw; - u32 ctrl; - u32 status; - s32 ret_val; - - DEBUGFUNC("e1000_check_for_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - status = E1000_READ_REG(hw, E1000_STATUS); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - - /* If we don't have link (auto-negotiation failed or link partner - * cannot auto-negotiate), and our link partner is not trying to - * auto-negotiate with us (we are receiving idles or data), - * we need to force link up. We also need to give auto-negotiation - * time to complete. - */ - /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ - if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { - if (!mac->autoneg_failed) { - mac->autoneg_failed = true; - return E1000_SUCCESS; - } - DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); - - /* Disable auto-negotiation in the TXCW register */ - E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); - - /* Force link-up and also force full-duplex. */ - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - /* Configure Flow Control after forcing link up. */ - ret_val = e1000_config_fc_after_link_up_generic(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { - /* If we are forcing link and we are receiving /C/ ordered - * sets, re-enable auto-negotiation in the TXCW register - * and disable forced link in the Device Control register - * in an attempt to auto-negotiate with our link partner. - */ - DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); - E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); - E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); - - mac->serdes_has_link = true; - } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { - /* If we force link for non-auto-negotiation switch, check - * link status based on MAC synchronization for internal - * serdes media type. - */ - /* SYNCH bit and IV bit are sticky. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - forced.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - force failed.\n"); - } - } - - if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) { - /* SYNCH bit and IV bit are sticky, so reread rxcw. */ - usec_delay(10); - rxcw = E1000_READ_REG(hw, E1000_RXCW); - if (rxcw & E1000_RXCW_SYNCH) { - if (!(rxcw & E1000_RXCW_IV)) { - mac->serdes_has_link = true; - DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n"); - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - no sync.\n"); - } - } else { - mac->serdes_has_link = false; - DEBUGOUT("SERDES: Link down - autoneg failed\n"); - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_default_fc_generic - Set flow control default values - * @hw: pointer to the HW structure - * - * Read the EEPROM for the default values for flow control and store the - * values. - **/ -s32 e1000_set_default_fc_generic(struct e1000_hw *hw) -{ - s32 ret_val; - u16 nvm_data; - u16 nvm_offset = 0; - - DEBUGFUNC("e1000_set_default_fc_generic"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->mac.type == e1000_i350) { - nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); - ret_val = hw->nvm.ops.read(hw, - NVM_INIT_CONTROL2_REG + - nvm_offset, - 1, &nvm_data); - } else { - ret_val = hw->nvm.ops.read(hw, - NVM_INIT_CONTROL2_REG, - 1, &nvm_data); - } - - - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) - hw->fc.requested_mode = e1000_fc_none; - else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == - NVM_WORD0F_ASM_DIR) - hw->fc.requested_mode = e1000_fc_tx_pause; - else - hw->fc.requested_mode = e1000_fc_full; - - return E1000_SUCCESS; -} - -/** - * e1000_setup_link_generic - Setup flow control and link settings - * @hw: pointer to the HW structure - * - * Determines which flow control settings to use, then configures flow - * control. Calls the appropriate media-specific link configuration - * function. Assuming the adapter has a valid link partner, a valid link - * should be established. Assumes the hardware has previously been reset - * and the transmitter and receiver are not enabled. - **/ -s32 e1000_setup_link_generic(struct e1000_hw *hw) -{ - s32 ret_val; - - DEBUGFUNC("e1000_setup_link_generic"); - - /* In the case of the phy reset being blocked, we already have a link. - * We do not need to set it up again. - */ - if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) - return E1000_SUCCESS; - - /* If requested flow control is set to default, set flow control - * based on the EEPROM flow control settings. - */ - if (hw->fc.requested_mode == e1000_fc_default) { - ret_val = e1000_set_default_fc_generic(hw); - if (ret_val) - return ret_val; - } - - /* Save off the requested flow control mode for use later. Depending - * on the link partner's capabilities, we may or may not use this mode. - */ - hw->fc.current_mode = hw->fc.requested_mode; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", - hw->fc.current_mode); - - /* Call the necessary media_type subroutine to configure the link. */ - ret_val = hw->mac.ops.setup_physical_interface(hw); - if (ret_val) - return ret_val; - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); - E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); - E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); - - E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); - - return e1000_set_fc_watermarks_generic(hw); -} - -/** - * e1000_commit_fc_settings_generic - Configure flow control - * @hw: pointer to the HW structure - * - * Write the flow control settings to the Transmit Config Word Register (TXCW) - * base on the flow control settings in e1000_mac_info. - **/ -s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 txcw; - - DEBUGFUNC("e1000_commit_fc_settings_generic"); - - /* Check for a software override of the flow control settings, and - * setup the device accordingly. If auto-negotiation is enabled, then - * software will have to set the "PAUSE" bits to the correct value in - * the Transmit Config Word Register (TXCW) and re-start auto- - * negotiation. However, if auto-negotiation is disabled, then - * software will have to manually configure the two flow control enable - * bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we - * do not support receiving pause frames). - * 3: Both Rx and Tx flow control (symmetric) are enabled. - */ - switch (hw->fc.current_mode) { - case e1000_fc_none: - /* Flow control completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case e1000_fc_rx_pause: - /* Rx Flow control is enabled and Tx Flow control is disabled - * by a software over-ride. Since there really isn't a way to - * advertise that we are capable of Rx Pause ONLY, we will - * advertise that we support both symmetric and asymmetric Rx - * PAUSE. Later, we will disable the adapter's ability to send - * PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case e1000_fc_tx_pause: - /* Tx Flow control is enabled, and Rx Flow control is disabled, - * by a software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case e1000_fc_full: - /* Flow control (both Rx and Tx) is enabled by a software - * over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - E1000_WRITE_REG(hw, E1000_TXCW, txcw); - mac->txcw = txcw; - - return E1000_SUCCESS; -} - -/** - * e1000_poll_fiber_serdes_link_generic - Poll for link up - * @hw: pointer to the HW structure - * - * Polls for link up by reading the status register, if link fails to come - * up with auto-negotiation, then the link is forced if a signal is detected. - **/ -s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - u32 i, status; - s32 ret_val; - - DEBUGFUNC("e1000_poll_fiber_serdes_link_generic"); - - /* If we have a signal (the cable is plugged in, or assumed true for - * serdes media) then poll for a "Link-Up" indication in the Device - * Status Register. Time-out if a link isn't seen in 500 milliseconds - * seconds (Auto-negotiation should complete in less than 500 - * milliseconds even if the other end is doing it in SW). - */ - for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { - msec_delay(10); - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_LU) - break; - } - if (i == FIBER_LINK_UP_LIMIT) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - mac->autoneg_failed = true; - /* AutoNeg failed to achieve a link, so we'll call - * mac->check_for_link. This routine will force the - * link up if we detect a signal. This will allow us to - * communicate with non-autonegotiating link partners. - */ - ret_val = mac->ops.check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - mac->autoneg_failed = false; - } else { - mac->autoneg_failed = false; - DEBUGOUT("Valid Link Found\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes - * @hw: pointer to the HW structure - * - * Configures collision distance and flow control for fiber and serdes - * links. Upon successful setup, poll for link. - **/ -s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Take the link out of reset */ - ctrl &= ~E1000_CTRL_LRST; - - hw->mac.ops.config_collision_dist(hw); - - ret_val = e1000_commit_fc_settings_generic(hw); - if (ret_val) - return ret_val; - - /* Since auto-negotiation is enabled, take the link out of reset (the - * link will be in reset, because we previously reset the chip). This - * will restart auto-negotiation. If auto-negotiation is successful - * then the link-up status bit will be set and the flow control enable - * bits (RFCE and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - E1000_WRITE_FLUSH(hw); - msec_delay(1); - - /* For these adapters, the SW definable pin 1 is set when the optics - * detect a signal. If we have a signal, then poll for a "Link-Up" - * indication. - */ - if (hw->phy.media_type == e1000_media_type_internal_serdes || - (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { - ret_val = e1000_poll_fiber_serdes_link_generic(hw); - } else { - DEBUGOUT("No signal detected\n"); - } - - return ret_val; -} - -/** - * e1000_config_collision_dist_generic - Configure collision distance - * @hw: pointer to the HW structure - * - * Configures the collision distance to the default value and is used - * during link setup. - **/ -STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw) -{ - u32 tctl; - - DEBUGFUNC("e1000_config_collision_dist_generic"); - - tctl = E1000_READ_REG(hw, E1000_TCTL); - - tctl &= ~E1000_TCTL_COLD; - tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; - - E1000_WRITE_REG(hw, E1000_TCTL, tctl); - E1000_WRITE_FLUSH(hw); -} - -/** - * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks - * @hw: pointer to the HW structure - * - * Sets the flow control high/low threshold (watermark) registers. If - * flow control XON frame transmission is enabled, then set XON frame - * transmission as well. - **/ -s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw) -{ - u32 fcrtl = 0, fcrth = 0; - - DEBUGFUNC("e1000_set_fc_watermarks_generic"); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames is not enabled, then these - * registers will be set to 0. - */ - if (hw->fc.current_mode & e1000_fc_tx_pause) { - /* We need to set up the Receive Threshold high and low water - * marks as well as (optionally) enabling the transmission of - * XON frames. - */ - fcrtl = hw->fc.low_water; - if (hw->fc.send_xon) - fcrtl |= E1000_FCRTL_XONE; - - fcrth = hw->fc.high_water; - } - E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); - E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); - - return E1000_SUCCESS; -} - -/** - * e1000_force_mac_fc_generic - Force the MAC's flow control settings - * @hw: pointer to the HW structure - * - * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the - * device control register to reflect the adapter settings. TFCE and RFCE - * need to be explicitly set by software when a copper PHY is used because - * autonegotiation is managed by the PHY rather than the MAC. Software must - * also configure these bits when link is forced on a fiber connection. - **/ -s32 e1000_force_mac_fc_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_force_mac_fc_generic"); - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc.current_mode" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and Tx flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); - - switch (hw->fc.current_mode) { - case e1000_fc_none: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case e1000_fc_rx_pause: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case e1000_fc_tx_pause: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case e1000_fc_full: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - return E1000_SUCCESS; -} - -/** - * e1000_config_fc_after_link_up_generic - Configures flow control after link - * @hw: pointer to the HW structure - * - * Checks the status of auto-negotiation after link up to ensure that the - * speed and duplex were not forced. If the link needed to be forced, then - * flow control needs to be forced also. If auto-negotiation is enabled - * and did not fail, then we configure flow control based on our link - * partner. - **/ -s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val = E1000_SUCCESS; - u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; - u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; - u16 speed, duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up_generic"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (mac->autoneg_failed) { - if (hw->phy.media_type == e1000_media_type_fiber || - hw->phy.media_type == e1000_media_type_internal_serdes) - ret_val = e1000_force_mac_fc_generic(hw); - } else { - if (hw->phy.media_type == e1000_media_type_copper) - ret_val = e1000_force_mac_fc_generic(hw); - } - - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (Address 4) and the Auto_Negotiation Base - * Page Ability Register (Address 5) to determine how - * flow control was negotiated. - */ - ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_fc_full - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc.current_mode = e1000_fc_none; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have SerDes media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->phy.media_type == e1000_media_type_internal_serdes) && - mac->autoneg) { - /* Read the PCS_LSTS and check to see if AutoNeg - * has completed. - */ - pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT); - - if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { - DEBUGOUT("PCS Auto Neg has not completed.\n"); - return ret_val; - } - - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement - * Register (PCS_ANADV) and the Auto_Negotiation Base - * Page Ability Register (PCS_LPAB) to determine how - * flow control was negotiated. - */ - pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV); - pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB); - - /* Two bits in the Auto Negotiation Advertisement Register - * (PCS_ANADV) and two bits in the Auto Negotiation Base - * Page Ability Register (PCS_LPAB) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | e1000_fc_none - * 0 | 1 | 0 | DC | e1000_fc_none - * 0 | 1 | 1 | 0 | e1000_fc_none - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - * 1 | 0 | 0 | DC | e1000_fc_none - * 1 | DC | 1 | DC | e1000_fc_full - * 1 | 1 | 0 | 0 | e1000_fc_none - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - * - * Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | e1000_fc_full - * - */ - if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { - /* Now we need to check if the user selected Rx ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise Rx - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->fc.requested_mode == e1000_fc_full) { - hw->fc.current_mode = e1000_fc_full; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | e1000_fc_tx_pause - */ - else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_tx_pause; - DEBUGOUT("Flow Control = Tx PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | e1000_fc_rx_pause - */ - else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && - (pcs_adv_reg & E1000_TXCW_ASM_DIR) && - !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && - (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { - hw->fc.current_mode = e1000_fc_rx_pause; - DEBUGOUT("Flow Control = Rx PAUSE frames only.\n"); - } else { - /* Per the IEEE spec, at this point flow control - * should be disabled. - */ - hw->fc.current_mode = e1000_fc_none; - DEBUGOUT("Flow Control = NONE.\n"); - } - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL); - pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; - E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg); - - ret_val = e1000_force_mac_fc_generic(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Read the status register for the current speed/duplex and store the current - * speed and duplex for copper connections. - **/ -s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed, - u16 *duplex) -{ - u32 status; - - DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic"); - - status = E1000_READ_REG(hw, E1000_STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - return E1000_SUCCESS; -} - -/** - * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex - * @hw: pointer to the HW structure - * @speed: stores the current speed - * @duplex: stores the current duplex - * - * Sets the speed and duplex to gigabit full duplex (the only possible option) - * for fiber/serdes links. - **/ -s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw, - u16 *speed, u16 *duplex) -{ - DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic"); - UNREFERENCED_1PARAMETER(hw); - - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - - return E1000_SUCCESS; -} - -/** - * e1000_get_hw_semaphore_generic - Acquire hardware semaphore - * @hw: pointer to the HW structure - * - * Acquire the HW semaphore to access the PHY or NVM - **/ -s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - s32 timeout = hw->nvm.word_size + 1; - s32 i = 0; - - DEBUGFUNC("e1000_get_hw_semaphore_generic"); - - /* Get the SW semaphore */ - while (i < timeout) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - if (!(swsm & E1000_SWSM_SMBI)) - break; - - usec_delay(50); - i++; - } - - if (i == timeout) { - DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); - return -E1000_ERR_NVM; - } - - /* Get the FW semaphore. */ - for (i = 0; i < timeout; i++) { - swsm = E1000_READ_REG(hw, E1000_SWSM); - E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); - - /* Semaphore acquired if bit latched */ - if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) - break; - - usec_delay(50); - } - - if (i == timeout) { - /* Release semaphores */ - e1000_put_hw_semaphore_generic(hw); - DEBUGOUT("Driver can't access the NVM\n"); - return -E1000_ERR_NVM; - } - - return E1000_SUCCESS; -} - -/** - * e1000_put_hw_semaphore_generic - Release hardware semaphore - * @hw: pointer to the HW structure - * - * Release hardware semaphore used to access the PHY or NVM - **/ -void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) -{ - u32 swsm; - - DEBUGFUNC("e1000_put_hw_semaphore_generic"); - - swsm = E1000_READ_REG(hw, E1000_SWSM); - - swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); - - E1000_WRITE_REG(hw, E1000_SWSM, swsm); -} - -/** - * e1000_get_auto_rd_done_generic - Check for auto read completion - * @hw: pointer to the HW structure - * - * Check EEPROM for Auto Read done bit. - **/ -s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw) -{ - s32 i = 0; - - DEBUGFUNC("e1000_get_auto_rd_done_generic"); - - while (i < AUTO_READ_DONE_TIMEOUT) { - if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) - break; - msec_delay(1); - i++; - } - - if (i == AUTO_READ_DONE_TIMEOUT) { - DEBUGOUT("Auto read by HW from NVM has not completed.\n"); - return -E1000_ERR_RESET; - } - - return E1000_SUCCESS; -} - -/** - * e1000_valid_led_default_generic - Verify a valid default LED config - * @hw: pointer to the HW structure - * @data: pointer to the NVM (EEPROM) - * - * Read the EEPROM for the current default LED configuration. If the - * LED configuration is not valid, set to a valid LED configuration. - **/ -s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data) -{ - s32 ret_val; - - DEBUGFUNC("e1000_valid_led_default_generic"); - - ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); - if (ret_val) { - DEBUGOUT("NVM Read Error\n"); - return ret_val; - } - - if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) - *data = ID_LED_DEFAULT; - - return E1000_SUCCESS; -} - -/** - * e1000_id_led_init_generic - - * @hw: pointer to the HW structure - * - **/ -s32 e1000_id_led_init_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - s32 ret_val; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init_generic"); - - ret_val = hw->nvm.ops.valid_led_default(hw, &data); - if (ret_val) - return ret_val; - - mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); - mac->ledctl_mode1 = mac->ledctl_default; - mac->ledctl_mode2 = mac->ledctl_default; - - for (i = 0; i < 4; i++) { - temp = (data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - mac->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - - return E1000_SUCCESS; -} - -/** - * e1000_setup_led_generic - Configures SW controllable LED - * @hw: pointer to the HW structure - * - * This prepares the SW controllable LED for use and saves the current state - * of the LED so it can be later restored. - **/ -s32 e1000_setup_led_generic(struct e1000_hw *hw) -{ - u32 ledctl; - - DEBUGFUNC("e1000_setup_led_generic"); - - if (hw->mac.ops.setup_led != e1000_setup_led_generic) - return -E1000_ERR_CONFIG; - - if (hw->phy.media_type == e1000_media_type_fiber) { - ledctl = E1000_READ_REG(hw, E1000_LEDCTL); - hw->mac.ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); - } else if (hw->phy.media_type == e1000_media_type_copper) { - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - } - - return E1000_SUCCESS; -} - -/** - * e1000_cleanup_led_generic - Set LED config to default operation - * @hw: pointer to the HW structure - * - * Remove the current LED configuration and set the LED configuration - * to the default value, saved from the EEPROM. - **/ -s32 e1000_cleanup_led_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_cleanup_led_generic"); - - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); - return E1000_SUCCESS; -} - -/** - * e1000_blink_led_generic - Blink LED - * @hw: pointer to the HW structure - * - * Blink the LEDs which are set to be on. - **/ -s32 e1000_blink_led_generic(struct e1000_hw *hw) -{ - u32 ledctl_blink = 0; - u32 i; - - DEBUGFUNC("e1000_blink_led_generic"); - - if (hw->phy.media_type == e1000_media_type_fiber) { - /* always blink LED0 for PCI-E fiber */ - ledctl_blink = E1000_LEDCTL_LED0_BLINK | - (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); - } else { - /* Set the blink bit for each LED that's "on" (0x0E) - * (or "off" if inverted) in ledctl_mode2. The blink - * logic in hardware only works when mode is set to "on" - * so it must be changed accordingly when the mode is - * "off" and inverted. - */ - ledctl_blink = hw->mac.ledctl_mode2; - for (i = 0; i < 32; i += 8) { - u32 mode = (hw->mac.ledctl_mode2 >> i) & - E1000_LEDCTL_LED0_MODE_MASK; - u32 led_default = hw->mac.ledctl_default >> i; - - if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_ON)) || - ((led_default & E1000_LEDCTL_LED0_IVRT) && - (mode == E1000_LEDCTL_MODE_LED_OFF))) { - ledctl_blink &= - ~(E1000_LEDCTL_LED0_MODE_MASK << i); - ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_MODE_LED_ON) << i; - } - } - } - - E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); - - return E1000_SUCCESS; -} - -/** - * e1000_led_on_generic - Turn LED on - * @hw: pointer to the HW structure - * - * Turn LED on. - **/ -s32 e1000_led_on_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_on_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_led_off_generic - Turn LED off - * @hw: pointer to the HW structure - * - * Turn LED off. - **/ -s32 e1000_led_off_generic(struct e1000_hw *hw) -{ - u32 ctrl; - - DEBUGFUNC("e1000_led_off_generic"); - - switch (hw->phy.media_type) { - case e1000_media_type_fiber: - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - break; - case e1000_media_type_copper: - E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); - break; - default: - break; - } - - return E1000_SUCCESS; -} - -/** - * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities - * @hw: pointer to the HW structure - * @no_snoop: bitmap of snoop events - * - * Set the PCI-express register to snoop for events enabled in 'no_snoop'. - **/ -void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop) -{ - u32 gcr; - - DEBUGFUNC("e1000_set_pcie_no_snoop_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return; - - if (no_snoop) { - gcr = E1000_READ_REG(hw, E1000_GCR); - gcr &= ~(PCIE_NO_SNOOP_ALL); - gcr |= no_snoop; - E1000_WRITE_REG(hw, E1000_GCR, gcr); - } -} - -/** - * e1000_disable_pcie_master_generic - Disables PCI-express master access - * @hw: pointer to the HW structure - * - * Returns E1000_SUCCESS if successful, else returns -10 - * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused - * the master requests to be disabled. - * - * Disables PCI-Express master access and verifies there are no pending - * requests. - **/ -s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw) -{ - u32 ctrl; - s32 timeout = MASTER_DISABLE_TIMEOUT; - - DEBUGFUNC("e1000_disable_pcie_master_generic"); - - if (hw->bus.type != e1000_bus_type_pci_express) - return E1000_SUCCESS; - - ctrl = E1000_READ_REG(hw, E1000_CTRL); - ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; - E1000_WRITE_REG(hw, E1000_CTRL, ctrl); - - while (timeout) { - if (!(E1000_READ_REG(hw, E1000_STATUS) & - E1000_STATUS_GIO_MASTER_ENABLE) || - E1000_REMOVED(hw->hw_addr)) - break; - usec_delay(100); - timeout--; - } - - if (!timeout) { - DEBUGOUT("Master requests are pending.\n"); - return -E1000_ERR_MASTER_REQUESTS_PENDING; - } - - return E1000_SUCCESS; -} - -/** - * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Reset the Adaptive Interframe Spacing throttle to default values. - **/ -void e1000_reset_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_reset_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - mac->current_ifs_val = 0; - mac->ifs_min_val = IFS_MIN; - mac->ifs_max_val = IFS_MAX; - mac->ifs_step_size = IFS_STEP; - mac->ifs_ratio = IFS_RATIO; - - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); -} - -/** - * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing - * @hw: pointer to the HW structure - * - * Update the Adaptive Interframe Spacing Throttle value based on the - * time between transmitted packets and time between collisions. - **/ -void e1000_update_adaptive_generic(struct e1000_hw *hw) -{ - struct e1000_mac_info *mac = &hw->mac; - - DEBUGFUNC("e1000_update_adaptive_generic"); - - if (!mac->adaptive_ifs) { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - return; - } - - if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { - if (mac->tx_packet_delta > MIN_NUM_XMITS) { - mac->in_ifs_mode = true; - if (mac->current_ifs_val < mac->ifs_max_val) { - if (!mac->current_ifs_val) - mac->current_ifs_val = mac->ifs_min_val; - else - mac->current_ifs_val += - mac->ifs_step_size; - E1000_WRITE_REG(hw, E1000_AIT, - mac->current_ifs_val); - } - } - } else { - if (mac->in_ifs_mode && - (mac->tx_packet_delta <= MIN_NUM_XMITS)) { - mac->current_ifs_val = 0; - mac->in_ifs_mode = false; - E1000_WRITE_REG(hw, E1000_AIT, 0); - } - } -} - -/** - * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Verify that when not using auto-negotiation that MDI/MDIx is correctly - * set, which is forced to MDI mode only. - **/ -STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_generic"); - - if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->phy.mdix = 1; - return -E1000_ERR_CONFIG; - } - - return E1000_SUCCESS; -} - -/** - * e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings - * @hw: pointer to the HW structure - * - * Validate the MDI/MDIx setting, allowing for auto-crossover during forced - * operation. - **/ -s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw) -{ - DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic"); - UNREFERENCED_1PARAMETER(hw); - - return E1000_SUCCESS; -} - -/** - * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register - * @hw: pointer to the HW structure - * @reg: 32bit register offset such as E1000_SCTL - * @offset: register offset to write to - * @data: data to write at register offset - * - * Writes an address/data control type register. There are several of these - * and they all have the format address << 8 | data and bit 31 is polled for - * completion. - **/ -s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg, - u32 offset, u8 data) -{ - u32 i, regvalue = 0; - - DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic"); - - /* Set up the address and data */ - regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); - E1000_WRITE_REG(hw, reg, regvalue); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { - usec_delay(5); - regvalue = E1000_READ_REG(hw, reg); - if (regvalue & E1000_GEN_CTL_READY) - break; - } - if (!(regvalue & E1000_GEN_CTL_READY)) { - DEBUGOUT1("Reg %08x did not indicate ready\n", reg); - return -E1000_ERR_PHY; - } - - return E1000_SUCCESS; -} |