summaryrefslogtreecommitdiffstats
path: root/doc/trex_stateless.asciidoc
blob: 972a322a28d78ec68643eec2984504103abe40de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
TRex Stateless support
======================
:author: TRex team
:email: trex.tgen@gmail.com 
:revnumber: 2.01
:quotes.++:
:numbered:
:web_server_url: https://trex-tgn.cisco.com/trex
:local_web_server_url: csi-wiki-01:8181/trex
:github_stl_path: https://github.com/cisco-system-traffic-generator/trex-core/tree/master/scripts/stl
:github_stl_examples_path: https://github.com/cisco-system-traffic-generator/trex-core/tree/master/scripts/automation/trex_control_plane/stl/examples
:toclevels: 6

include::trex_ga.asciidoc[]

// PDF version - image width variable
ifdef::backend-docbook[]
:p_width: 450
:p_width_1: 200
:p_width_1a: 100
:p_width_1c: 150
:p_width_lge: 500
endif::backend-docbook[]

// HTML version - image width variable
ifdef::backend-xhtml11[]
:p_width: 800
:p_width_1: 400
:p_width_1a: 650
:p_width_1a: 400
:p_width_lge: 900
endif::backend-xhtml11[]



== Audience 

This document assumes basic knowledge of TRex, and assumes that TRex is installed and configured.
For information, see the link:trex_manual.html[manual], especially the material up to the link:trex_manual.html#_basic_usage[Basic Usage] section.

== Stateless support 

=== High level functionality
// maybe Feature overview

* Large scale - Supports about 10-22 million packets per second (mpps) per core, scalable with the number of cores 
* Support for 1, 10, 25, 40, and 100 Gb/sec interfaces
* Support for multiple traffic profiles per interface
* Profile can support multiple streams, scalable to 10K parallel streams 
* Supported for each stream:
** Packet template - ability to build any packet (including malformed) using link:https://en.wikipedia.org/wiki/Scapy[Scapy] (example: MPLS/IPv4/Ipv6/GRE/VXLAN/NSH) 
** Field engine program
*** Ability to change any field inside the packet (example: src_ip = 10.0.0.1-10.0.0.255)
*** Ability to change the packet size (example: random packet size 64-9K)
** Mode - Continuous/Burst/Multi-burst support
** Rate can be specified as:
*** Packets per second (example: 14MPPS)
*** L1 bandwidth (example: 500Mb/sec)
*** L2 bandwidth (example: 500Mb/sec)
*** Interface link percentage (example: 10%)
** Support for HLTAPI-like profile definition  
** Action - stream can trigger a stream 
* Interactive support - Fast Console,  GUI 
* Statistics per interface
* Statistics per stream done in hardware
* Latency and Jitter per stream
* Blazingly fast automation support 
** Python 2.7/3.0 Client API 
** Python HLTAPI Client API
* Multi-user support - multiple users can interact with the same TRex instance simultaneously


==== Traffic profile example

The following example shows three streams configured for Continuous, Burst, and Multi-burst traffic.

image::images/stl_streams_example_02.png[title="Example of multiple streams",align="left",width={p_width}, link="images/stl_streams_example_02.png"]


==== High level functionality - Roadmap for future development

* Add emulation support 
** RIP/BGP/ISIS/SPF


=== IXIA IXExplorer vs TRex 

TRex has limited functionality compared to IXIA, but has some advantages. The following table summarizes the differences:

.TRex vs IXExplorer
[cols="1^,3^,3^,5^", options="header"]
|=================
| Feature       |  IXExplorer  |TRex | Description 
| Line rate       | Yes | 10-24MPPS/core, depends on the use case |
| Multi stream    | 255 | [green]*Unlimited* |
| Packet build flexibility | Limited | [green]*Scapy - Unlimited* | Example: GRE/VXLAN/NSH is supported. Can be extended to future protocols
| Packet Field engine      | limited | [green]*Unlimited* |
| Tx Mode | Continuous/Burst/Multi-burst | Continuous/Burst/Multi-burst|
| ARP Emulation | Yes | Not yet - workaround |
| Automation  | TCL/Python wrapper to TCL | [green]*native Python/Scapy*  |
| Automation speed sec| 30 sec | [green]*1 msec* | Test of load/start/stop/get counters 
| HLTAPI | Full support. 2000 pages of documentation |  Limited. 20 pages of documentation|
| Per Stream statistics | 255  streams with 4 global masks | 128 rules for XL710/X710 hardware and software impl for 82599/I350/X550| Some packet type restrictions apply to XL710/X710.
| Latency Jitter |  Yes,Resolution of nsec (hardware) | Yes,Resolution of usec (software)  |
| Multi-user support | Yes | Yes |
| GUI  | very good | WIP, packet build is scapy-based. Not the same as IXIA. Done by Exalt |
| Cisco pyATS support | Yes | Yes - Python 2.7/Python 3.4 |    
| Emulation | Yes | Not yet |
| Port IDs  | Based on IXIA numebrs  | Depends on PCI enumeration  
|=================


=== RPC Architecture 

A JSON-RPC2 thread in the TRex control plane core provides support for interactive mode. 

// RPC = Remote Procedure Call, alternative to REST? --YES, no change

image::images/trex_architecture_01.png[title="RPC Server Components",align="left",width={p_width}, link="images/trex_architecture_01.png"]

// OBSOLETE: image::images/trex_2_stateless.png[title="RPC Server Components",align="left",width={p_width}, link="images/trex_2_stateless.png"]

// Is there a big picture that would help to make the next 11 bullet points flow with clear logic? --explanation of the figure

*Layers*::
* Control transport protocol: ZMQ working in REQ/RES mode. 
// change all ZMQ to "link:http://rfc.zeromq.org/spec:37[ZeroMQ] Message Transport Protocol (ZMTP)"? not sure what REQ/RES mode is
* RPC protocol on top of the control transport protocol: JSON-RPC2. 
* Asynchronous transport: ZMQ working in SUB/PUB mode (used for asynchronous events such as interface change mode, counters, and so on).

// TBD: rendering problem with bullet indentation
// Maybe Layers, Interfaces, and Control of Interfaces should each be level 4 headings instead of complex bulleted lists.



*Interfaces*::
* Automation API: Python is the first client to implement the Python automation API.
* User interface: The console uses the Python API to implement a user interface for TRex.
* GUI : The GUI works on top of the JSON-RPC2 layer.

*Control of TRex interfaces*::
* Numerous users can control a single TRex server together, from different interfaces. 
* Users acquire individual TRex interfaces exclusively. *Example*: Two users control a 4-port TRex server. User A acquires interfaces 0 and 1; User B acquires interfaces 3 and 4.
* Only one user interface (console or GUI) can have read/write control of a specific interface. This enables caching the TRex server interface information in the client core. *Example*: User A, with two acquired interfaces, can have only one read/write control session at a time. 
* A user can set up numerous read-only clients on a single interface - for example, for monitoring traffic statistics on the interface.
* A client in read-write mode can acquire a statistic in real time (with ASYNC ZMQ). This enables viewing statistics through numerous user interfaces (console and GUI) simultaneously.

*Synchronization*::
* A client syncs with the TRex server to get the state in connection time, and caches the server information locally after the state has changed. 
* If a client crashes or exits, it syncs again after reconnecting. 

image::images/trex_stateless_multi_user_02.png[title="Multiple users, per interface",align="left",width={p_width}, link="images/trex_stateless_multi_user_02.png"]

For details about the TRex RPC server, see the link:trex_rpc_server_spec.html[RPC specification].  

==== RPC architecture highlights

This Architecture provides the following advantages:

* Fast interaction with TRex server. Loading, starting, and stopping a profile for an interface is very fast - about 2000 cycles/sec.
* Leverages Python/Scapy for building a packet/field engine.
* HLTAPI compiler complexity is handled in Python.

=== TRex Objects 

// maybe call it "Objects" in title and figure caption

image::images/stateless_objects_02.png[title="TRex Objects",align="left",width={p_width_1}, link="images/stateless_objects_02.png"]

* *TRex*: Each TRex instance supports numerous interfaces. 
// "one or more"?
* *Interface*: Each interface supports one or more traffic profiles.
* *Traffic profile*: Each traffic profile supports one or more streams. 
* *Stream*: Each stream includes:
** *Packet*: Packet template up to 9 KB 
// ok to standardize to KB? 
** *Field Engine*: Which field to change, do we want to change packet size 
// unclear
** *Mode*: Specifies how to send packets: Continuous/Burst/Multi-burst 
** *Rx Stats*: Statistics to collect for each stream
** *Rate*: Rate (packets per second or bandwidth) 
** *Action*:  Specifies stream to follow when the current stream is complete (valid for Continuous or Burst modes).


=== Stateful vs Stateless 

TRex Stateless support enables basic L2/L3 testing, relevant mostly for a switch or router. Using Statelss mode, it is possible to define a stream with a *one* packet template, define a program to change any fields in the packet, and run the stream in continuous, burst, or multi-burst mode.
With Stateless, you *cannot* learn NAT translation; there is no context of flow/client/server. 

* In Stateful mode, the basic building block is a flow/application (composed of many packets). 
* Stateless mode is much more flexible, enabling you to define any type of packet, and build a simple program. 

.Stateful vs Stateless features 
[cols="1^,3^,3^", options="header"]
|=================
| Feature       |  Stateless  |Stateful 
| Flow base       | No | Yes
| NAT             | No | Yes
| Tunnel          | Yes | Some are supported 
| L7 App emulation | No | Yes
| Any type of packet | Yes | No 
| Latency Jitter | Per Stream | Global/Per flow
|=================

==== Using Stateless mode to mimic Stateful mode

Stateless mode can mimic some, but not all functionality of Stateful mode. 
For example, you can load a pcap with the number of packets as a link of streams:
a->b->c->d-> back to a
You can then create a program for each stream to change src_ip=10. 0.0.1-10.0.0.254. This creates traffic similar to that of Stateful mode, but with a completely different basis.

If you are confused you probably need Stateless. :-)

=== TRex package folders 

[cols="5,5", options="header",width="100%"]
|=============================
| Location        | Description   
| /               | t-rex-64/dpdk_set_ports/stl-sim 
| /stl            | Stateless native (py) profiles 
| /stl/yaml       | Stateless YAML profiles 
| /stl/hlt        | Stateless HLT profiles 
| /ko             | Kernel modules for DPDK
| /external_libs  | Python external libs used by server/clients
| /exp            | Golden pcap file for unit-tests
| /cfg            | Examples of config files
| /cap2           | Stateful profiles 
| /avl            | Stateful profiles - SFR profile
| /automation     | Python client/server code for both Stateful and Stateless
| /automation/regression     | Regression for Stateless and Stateful
| /automation/config     | Regression setups config files
| /automation/trex_control_plane/stl     | Stateless lib and Console 
| /automation/trex_control_plane/stl/trex_stl_lib     | Stateless lib
| /automation/trex_control_plane/stl/examples     | Stateless Examples
|=============================

=== Port Layer Mode Configuration

TRex ports can operate in two different mutual exclusive modes:

* *Layer 2 mode* - MAC level configuration
* *Layer 3 mode* - IPv4/IPv6 configuration

When configuring a port for L2 mode, it is only required to provide
the destination MAC address for the port (Legacy mode previous to v2.12 version).

When configuring a port for L3, it is required to provide both
source IPv4/IPv6 address and a IPv4/IPv6 destination address.

As an intergral part of configuring L3, the client will try to ARP resolve the
destination address and automatically configure the correct destination MAC.
(instead of sending ARP request when starting traffic)

[NOTE]
While in L3 mode, TRex server will generate *gratuitous ARP* packets to make sure
that no ARP timeout on the DUT/router will result in a faliure of the test.

.*Example of configuring L2 mode*
[source,bash]
----

trex>service 

trex>l2 --help
usage: port [-h] --port PORT --dst DST_MAC

Configures a port in L2 mode

optional arguments:
  -h, --help            show this help message and exit
  --port PORT, -p PORT  source port for the action
  --dst DST_MAC         Configure destination MAC address


trex(service)>l2 -p 0 --dst 6A:A7:B5:3A:4E:FF

Setting port 0 in L2 mode:                                   [SUCCESS]

trex>service --off

----


.*Example of configuring L2 mode- Python API*
[source,Python]
----
  client.set_service_mode(port = 0, enabled = True)

  client.set_l2_mode(port = 0, dst_mac = "6A:A7:B5:3A:4E:FF")

  client.set_service_mode(port = 0, enabled = False)

----


.*Example of configuring L3 mode- Console*
[source,bash]
----

trex>service 


trex(service)>l3 --help
usage: port [-h] --port PORT --src SRC_IPV4 --dst DST_IPV4

Configures a port in L3 mode

optional arguments:
  -h, --help            show this help message and exit
  --port PORT, -p PORT  source port for the action
  --src SRC_IPV4        Configure source IPv4 address
  --dst DST_IPV4        Configure destination IPv4 address

trex(service)>l3 -p 0 --src 1.1.1.2 --dst 1.1.1.1

Setting port 0 in L3 mode:                                   [SUCCESS]


ARP resolving address '1.1.1.1':                             [SUCCESS]

trex>service --off

----


.*Example of configuring L3 mode - Python API*
[source,python]
----

client.set_service_mode(port = 0, enabled = True)

client.set_l3_mode(port = 0, src_ipv4 = '1.1.1.2', dst_ipv4 = '1.1.1.1')

client.set_service_mode(port = 0, enabled = False)

----

=== Port Service Mode

In 'normal operation mode', to preserve high speed processing of packets,
TRex ignores most of the RX traffic, with the exception of counting/statistic and handling
latency flows.


In the following diagram it is illustrated how RX packets are handled.
Only a portion is forwarded to the RX handling module and none of forward back
to the Python client.

image::images/port_normal_mode.png[title="Port Under Normal Mode",align="left",width={p_width}, link="images/port_normal_mode.png"]



We provide another mode called 'service mode' in which a port will respond to ping, ARP requests
and also provide a capabality in this mode to forward packets to the Python control plane for
applying full duplex protocols (DCHP, IPv6 neighboring and etc.)

The following diagram illustrates of packets can be forwarded back to the Python client

image::images/port_service_mode.png[title="Port Under Service Mode",align="left",width={p_width}, link="images/port_service_mode.png"]

In this mode, it is possible to write python plugins for emulation (e.g. IPV6 ND/DHCP) to prepare the setup and then move to normal mode for high speed testing 


*Example Of Switcing Between 'Service' And 'Normal' Mode*
[source,bash]
----

trex(service)>service --help
usage: service [-h] [--port PORTS [PORTS ...] | -a] [--off]

Configures port for service mode. In service mode ports will reply to ARP,
PING and etc.

optional arguments:
  -h, --help            show this help message and exit
  --port PORTS [PORTS ...], -p PORTS [PORTS ...]
                        A list of ports on which to apply the command
  -a                    Set this flag to apply the command on all available
                        ports
  --off                 Deactivates services on port(s)


trex>service

Enabling service mode on port(s) [0, 1]:                     [SUCCESS]

trex(service)>service --off

Disabling service mode on port(s) [0, 1]:                    [SUCCESS]

----

.*Example Of Switcing Between 'Service' And 'Normal' Mode-API*
[source,Python]
----

  client.set_service_mode(ports = [0, 1], enabled = True)
  
  client.set_service_mode(ports = [0, 1], enabled = False)

----

==== ARP / ICMP response
[IMPORTANT]
Only while in service mode, ports will reply to ICMP echo requests and ARP requests.


=== Neighboring Protocols
As mentioned, in order to preserve high speed traffic generation,
TRex handles neighboring protocols in pre test phase.

A test that requires running a neighboring protocol should first move
to 'service mode', execute the required steps in Python, switch back to 'normal mode'
and start the actual test.

==== ARP
A basic neighboring protocol that is provided as part of TRex is ARP.

For example, let's take a look at the following setup:

image::images/router_arp.png[title="Router ARP",align="left",width={p_width}, link="images/router_arp.png"]

[source,bash]
----

trex>service                                                                   #<1> 

Enabling service mode on port(s) [0, 1]:                     [SUCCESS]   

trex(service)>portattr  --port 0

             port       |          0           |  
        ------------------------------------------
        driver          |    rte_ixgbe_pmd     |  
        description     |  82599EB 10-Gigabit  |  
        link status     |          UP          |  
        link speed      |       10 Gb/s        |  
        port status     |         IDLE         |  
        promiscuous     |         off          |  
        flow ctrl       |         none         |  
        --              |                      |  
        src IPv4        |          -           |  
        src MAC         |  00:00:00:01:00:00   |  
        ---             |                      |  
        Destination     |  00:00:00:01:00:00   |  
        ARP Resolution  |          -           |  
        ----            |                      |  
        PCI Address     |     0000:03:00.0     |  
        NUMA Node       |          0           |  
        -----           |                      |  
        RX Filter Mode  |    hardware match    |  
        RX Queueing     |         off          |  
        RX sniffer      |         off          |  
        Grat ARP        |         off          |  


trex(service)>l3 -p -s 1.1.1.1 -d 1.1.1.2                         #<2> 

trex(service)>arp -p 0 1                                          #<3>

Resolving destination on port(s) [0, 1]:                     [SUCCESS]


Port 0 - Recieved ARP reply from: 1.1.1.1, hw: d0:d0:fd:a8:a1:01
Port 1 - Recieved ARP reply from: 1.1.2.1, hw: d0:d0:fd:a8:a1:02

trex(service)>service --off                                       #<4>

----
<1> Enable service mode 
<2> Set IPv4/default gateway. it will resolve the arp
<3> repeat ARP resolution
<4> exist from service mode 
 


to revert  back to MAC address mode (without ARP resolution) you do the following 

.Disable L3 mode
[source,bash]
----

trex>l2 -p 0 --dst 00:00:00:01:00:00       #<1>

trex>portattr  --port 0

             port       |          0           |  
        ------------------------------------------
        driver          |    rte_ixgbe_pmd     |  
        description     |  82599EB 10-Gigabit  |  
        link status     |          UP          |  
        link speed      |       10 Gb/s        |  
        port status     |         IDLE         |  
        promiscuous     |         off          |  
        flow ctrl       |         none         |  
        --              |                      |  
        src IPv4        |          -           |  
        src MAC         |  00:00:00:01:00:00   |  
        ---             |                      |  
        Destination     |  00:00:00:01:00:00   |  
        ARP Resolution  |          -           |  
        ----            |                      |  
        PCI Address     |     0000:03:00.0     |  
        NUMA Node       |          0           |  
        -----           |                      |  
        RX Filter Mode  |    hardware match    |  
        RX Queueing     |         off          |  
        RX sniffer      |         off          |  
        Grat ARP        |         off          |  
        
----
<1> disable service mode 



.Python API:
[source,python]
----

client.set_service_mode(ports = [0, 1], enabled = True)                  <1>

# configure port 0, 1 to Layer 3 mode
client.set_l3_mode(port = 0, src_ipv4 = '1.1.1.2', dst_ipv4 = '1.1.1.2') <2>
client.set_l3_mode(port = 1, src_ipv4 = '1.1.2.2', dst_ipv4 = '1.1.2.1') 
    
# ARP resolve ports 0, 1
c.resolve(ports = [0, 1])

client.set_service_mode(ports = [0, 1], enabled = False)                 <3>

----
<1> Enable service mode
<2> configure IPv4 and Default Gateway 
<3> Disable service mode

==== ICMP

Another basic protocol provided with TRex is ICMP.
It is possible, under service mode to ping the DUT or even a TRex port
from the console / API.

.TRex Console
[source,bash]
----

trex(service)>ping --help
usage: ping [-h] --port PORT -d PING_IPV4 [-s PKT_SIZE] [-n COUNT]

pings the server / specific IP

optional arguments:
  -h, --help            show this help message and exit
  --port PORT, -p PORT  source port for the action
  -d PING_IPV4          which IPv4 to ping
  -s PKT_SIZE           packet size to use
  -n COUNT, --count COUNT
                        How many times to ping [default is 5]

trex(service)>ping -p 0 -d 1.1.2.2

Pinging 1.1.2.2 from port 0 with 64 bytes of data:
Reply from 1.1.2.2: bytes=64, time=27.72ms, TTL=127
Reply from 1.1.2.2: bytes=64, time=1.40ms, TTL=127
Reply from 1.1.2.2: bytes=64, time=1.31ms, TTL=127
Reply from 1.1.2.2: bytes=64, time=1.78ms, TTL=127
Reply from 1.1.2.2: bytes=64, time=1.95ms, TTL=127

----



.Python API
[source,python]
----

# move to service mode
client.set_service_mode(ports = ports, enabled = True)
    
# configure port 0, 1 to Layer 3 mode
client.set_l3_mode(port = 0, src_ipv4 = '1.1.1.2', dst_ipv4 = '1.1.1.1')
client.set_l3_mode(port = 1, src_ipv4 = '1.1.2.2', dst_ipv4 = '1.1.2.1')

# ping port 1 from port 0 through the router
client.ping_ip(src_port = 0, dst_ipv4 = '1.1.2.2', pkt_size = 64)        <1>
    
# disable service mode
client.set_service_mode(enabled = False)

----
<1> Check connectivity


==== IPv6 ND/DHCP client

in progress 


=== Tutorials

The tutorials in this section demonstrate basic TRex *stateless* use cases. Examples include common and moderately advanced TRex concepts.

==== Tutorial: Simple IPv4/UDP packet - TRex 

*Goal*:: 

Send a simple UDP packet from all ports of a TRex server.

*Traffic profile*::  

The following profile defines one stream, with an IP/UDP packet template with 10 bytes of 'x'(0x78) of payload. For more examples of defining packets using Scapy see the  link:http://www.secdev.org/projects/scapy/doc/[Scapy documentation].

*File*:: 

link:{github_stl_path}/udp_1pkt_simple.py[stl/udp_1pkt_simple.py]

[source,python]
----
from trex_stl_lib.api import *                                  

class STLS1(object):

    def create_stream (self):

        return STLStream( 
            packet = 
                    STLPktBuilder(
                        pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/
                                UDP(dport=12,sport=1025)/(10*'x')                       <1>                
                    ),
             mode = STLTXCont())                                                        <2>


    def get_streams (self, direction = 0, **kwargs):                                              <3>
        # create 1 stream 
        return [ self.create_stream() ]


# dynamic load - used for TRex console or simulator
def register():                                                                         <4>        
    return STLS1()
----
<1> Defines the packet. In this case, the packet is IP/UDP with 10 bytes of 'x'. For more information, see the link:http://www.secdev.org/projects/scapy/doc/[Scapy documentation].
<2> Mode: Continuous. Rate: 1 PPS (default rate is 1 PPS)
<3> The `get_streams` function is mandatory 
<4> Each traffic profile module requires a `register` function. 

[NOTE] 
=====================================================================
The SRC/DST MAC addresses are taken from /etc/trex_cfg.yaml. To change them, add Ether(dst="00:00:dd:dd:00:01") with the desired destination.
=====================================================================


*Start TRex as a server*::   

[NOTE] 
=====================================================================
The TRex package includes all required packages. It is unnecessary to install any python packages (including Scapy). 
=====================================================================

[source,bash]
----
$sudo ./t-rex-64 -i
----

* Wait until the server is up and running. 
* (Optional) Use `-c` to add more cores.
* (Optional) Use `--cfg` to specify a different configuration file. The default is link:trex_manual.html#_create_minimum_configuration_file[/etc/trex_cfg.yaml].

// IGNORE: this line helps rendering of next line

*Connect with console*::

On the same machine, in a new terminal window (open a new window using `xterm`, or `ssh` again), connect to TRex using `trex-console`. 

[source,bash]
----
$trex-console                                                           #<1>

Connecting to RPC server on localhost:4501                   [SUCCESS]
connecting to publisher server on localhost:4500             [SUCCESS]
Acquiring ports [0, 1, 2, 3]:                                [SUCCESS]

125.69 [ms]

trex>start -f stl/udp_1pkt_simple.py -m 10mbps -a                      #<2>

Removing all streams from port(s) [0, 1, 2, 3]:              [SUCCESS]
Attaching 1 streams to port(s) [0, 1, 2, 3]:                 [SUCCESS]
Starting traffic on port(s) [0, 1, 2, 3]:                    [SUCCESS]

# pause  the traffic on all port
>pause -a                                                               #<3>

# resume  the traffic on all port
>resume -a                                                              #<4>

# stop traffic on all port      
>stop -a                                                                #<5>

# show dynamic statistic 
>tui
----
<1> Connects to the TRex server from the local machine.
<2> Start the traffic on all ports at 10 mbps. Can also specify as MPPS. Example: 14 MPPS (`-m 14mpps`).
<3> Pauses the traffic.
<4> Resumes.
<5> Stops traffic on all the ports.


[NOTE] 
=====================================================================
If you have a connection *error*, open the /etc/trex_cfg.yaml file and remove keywords such as `enable_zmq_pub : true` and `zmq_pub_port   : 4501`  from the file. 
=====================================================================

*Viewing streams*::

To display stream data for all ports, use `streams -a`. 

.Streams
[source,bash]
----
trex>streams -a
Port 0:

    ID |     packet type     |  length  |       mode       |  rate     | next stream 
  -----------------------------------------------------------------------------------
    1  | Ethernet:IP:UDP:Raw |       56 |    Continuous    |  1.00 pps |      -1     

Port 1:

    ID |     packet type     |  length  |       mode       |  rate     | next stream 
  -----------------------------------------------------------------------------------
    1  | Ethernet:IP:UDP:Raw |       56 |    Continuous    |  1.00 pps |      -1     

Port 2:

    ID |     packet type     |  length  |       mode       |  rate     | next stream 
  -----------------------------------------------------------------------------------
    1  | Ethernet:IP:UDP:Raw |       56 |    Continuous    |  1.00 pps |      -1     

Port 3:

    ID |     packet type     |  length  |       mode       |  rate     | next stream 
  -----------------------------------------------------------------------------------
    1  | Ethernet:IP:UDP:Raw |       56 |    Continuous    |  1.00 pps |      -1     
----


*Viewing command help*::


To view help for a command, use `<command> --help`.

*Viewing general statistics*::

To view general statistics, open a "textual user interface" with `tui`.

[source,bash]
----
TRex >tui
Global Statistics

Connection  : localhost, Port 4501 
Version     : v1.93, UUID: N/A     
Cpu Util    : 0.2%                 
            :                      
Total Tx L2 : 40.01 Mb/sec         
Total Tx L1 : 52.51 Mb/sec         
Total Rx    : 40.01 Mb/sec         
Total Pps   : 78.14 Kpkt/sec       
            :                      
Drop Rate   : 0.00 b/sec           
Queue Full  : 0 pkts               

Port Statistics

   port    |         0          |         1          |     
 --------------------------------------------------------
 owner      |             hhaim |             hhaim |    
 state      |            ACTIVE |            ACTIVE |    
 --         |                   |                   |    
 Tx bps L2  |        10.00 Mbps |        10.00 Mbps |    
 Tx bps L1  |        13.13 Mbps |        13.13 Mbps |    
 Tx pps     |        19.54 Kpps |        19.54 Kpps |    
 Line Util. |            0.13 % |            0.13 % |    
 ---        |                   |                   |    
 Rx bps     |        10.00 Mbps |        10.00 Mbps |    
 Rx pps     |        19.54 Kpps |        19.54 Kpps |    
 ----       |                   |                   |    
 opackets   |           1725794 |           1725794 |    
 ipackets   |           1725794 |           1725794 |    
 obytes     |         110450816 |         110450816 |    
 ibytes     |         110450816 |         110450816 |    
 tx-bytes   |         110.45 MB |         110.45 MB |    
 rx-bytes   |         110.45 MB |         110.45 MB |    
 tx-pkts    |        1.73 Mpkts |        1.73 Mpkts |    
 rx-pkts    |        1.73 Mpkts |        1.73 Mpkts |    
 -----      |                   |                   |    
 oerrors    |                 0 |                 0 |    
 ierrors    |                 0 |                 0 |    

 status:  /

 browse:     'q' - quit, 'g' - dashboard, '0-3' - port display
 dashboard:  'p' - pause, 'c' - clear, '-' - low 5%, '+' - up 5%, 
----


*Discussion*::

In this example TRex sends the *same* packet from all ports. If your setup is connected with loopback, you will see Tx packets from port 0 in Rx port 1 and vice versa.  If you have DUT with static route, you might see all the packets going to specific port.

.Static route
[source,bash]
----
interface TenGigabitEthernet0/0/0       
 mtu 9000 
 ip address 1.1.9.1 255.255.255.0
!         
interface TenGigabitEthernet0/1/0       
 mtu 9000 
 ip address 1.1.10.1 255.255.255.0
!         

ip route 16.0.0.0 255.0.0.0 1.1.9.2     
ip route 48.0.0.0 255.0.0.0 1.1.10.2    
----

// this is good info, but it isn't organized into specific tasks or explanations of specific goals. so comes across as useful but somewhat random. for example in the Static route example above, we should explain at the beginning that this will route all packets to one port, and that the next example will demonstrate how to route the packets to different ports.

In this example all the packets will be routed to `TenGigabitEthernet0/1/0` port. The following example uses the `direction` flag to change this.

*File*:: link:{github_stl_path}/udp_1pkt_simple_bdir.py[stl/udp_1pkt_simple_bdir.py]

[source,python]
----

 class STLS1(object):

    def create_stream (self):
        return STLStream( 
            packet = 
                    STLPktBuilder(
                        pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/
                                UDP(dport=12,sport=1025)/(10*'x')
                    ),
             mode = STLTXCont())

    def get_streams (self, direction = 0, **kwargs):
        # create 1 stream 
        if direction==0:                                                        <1>
            src_ip="16.0.0.1"
            dst_ip="48.0.0.1"
        else:
            src_ip="48.0.0.1"
            dst_ip="16.0.0.1"

        pkt   = STLPktBuilder(
                              pkt = Ether()/IP(src=src_ip,dst=dst_ip)/
                              UDP(dport=12,sport=1025)/(10*'x') )

        return [ STLStream( packet = pkt,mode = STLTXCont()) ]
----
<1> This use of the `direction` flag causes a different packet to be sent for each direction.


==== Tutorial: Connect from a remote server 

*Goal*:: Connect by console from remote machine to a TRex server

*Check that TRex server is operational*::

Ensure that the TRex server is running. If not, run TRex in interactive mode.
// again, this is a bit vague. the tutorial should provide simple steps for using interactive mode or not. too many conditions.

[source,bash]
----
$sudo ./t-rex-64 -i
----

*Connect with Console*::

From a remote machine, use `trex-console` to connect. Include the `-s` flag, as shown below, to specify the server.

[source,bash]
----
$trex-console -s csi-kiwi-02  #<1>
----
<1> TRex server is csi-kiwi-02.

The TRex client requires Python versions 2.7.x or 3.4.x. To change the Python version, set the *PYTHON* environment variable as follows:

.tcsh shell
[source,bash]
----
setenv PYTHON /bin/python     #tcsh
----

.bash shell
[source,bash]
----
extern PYTHON=/bin/mypython    #bash
----

[NOTE]
=====================================================================
The client machine should run Python 2.7.x or 3.4.x. Cisco CEL/ADS is supported. The TRex package includes the required link:cp_stl_docs/[client archive].
=====================================================================

==== Tutorial: Source and Destination MAC addresses

*Goal*:: Change the source/destination MAC address

Each TRex port has a source and destination MAC (DUT) configured in the /etc/trex_cfg.yaml configuration file. The source MAC is not necessarily the hardware MAC address configured in EEPROM. By default, the hardware-specified MAC addresses (source and destination) are used. If a source or destination MAC address is configured explicitly, that address takes precedence over the hardware-specified default.

.MAC address
[format="csv",cols="2^,2^,2^", options="header",width="100%"]
|=================
Scapy , Source MAC,Destination MAC
Ether() , trex_cfg (src),trex_cfg(dst)
Ether(src="00:bb:12:34:56:01"),"00:bb:12:34:56:01",trex_cfg(dst)
Ether(dst="00:bb:12:34:56:01"),trex_cfg(src),"00:bb:12:34:56:01"
|=================


*File*:: link:{github_stl_path}/udp_1pkt_1mac_override.py[stl/udp_1pkt_1mac_override.py]

[source,python]
----
    def create_stream (self):

        base_pkt =  Ether(src="00:bb:12:34:56:01")/      <1>
                    IP(src="16.0.0.1",dst="48.0.0.1")/
                    UDP(dport=12,sport=1025)  
----
<1> Specifying the source interface MAC replaces the default specified in the configuration YAML file.


[IMPORTANT]
=====================================
TRex port will receive a packet only if the packet's destination MAC matches the HW Src MAC defined for that port in the `/etc/trex_cfg.yaml` configuration file. Alternatively, a port can be put into link:https://en.wikipedia.org/wiki/Promiscuous_mode[promiscuous mode], allowing the port to receive all packets on the line. The port can be configured to promiscuous mode by API or by the following command at the console: `portattr -a --prom`.
=====================================

To set ports to link:https://en.wikipedia.org/wiki/Promiscuous_mode[promiscuous mode] and show the port status:

[source,bash]
----
trex>portattr -a --prom on                                          #<1> 
trex>stats --ps
Port Status

     port       |          0           |          1           |     
  ---------------------------------------------------------------
driver          |    rte_ixgbe_pmd     |    rte_ixgbe_pmd     |     
maximum         |       10 Gb/s        |       10 Gb/s        |     
status          |         IDLE         |         IDLE         |     
promiscuous     |         on           |         on           |     #<2>
  --            |                      |                      | 
HW src mac      |  90:e2:ba:36:33:c0   |  90:e2:ba:36:33:c1   | 
SW src mac      |  00:00:00:01:00:00   |  00:00:00:01:00:00   | 
SW dst mac      |  00:00:00:01:00:00   |  00:00:00:01:00:00   | 
  ---           |                      |                      |     
PCI Address     |     0000:03:00.0     |     0000:03:00.1     |     
NUMA Node       |          0           |          0           |   
----
<1> Configures all ports to promiscuous mode.
<2> Indicates port promiscuous mode status.

To change ports to promiscuous mode by Python API:

.Python API to change ports to promiscuous mode
[source,python]
----
        c = STLClient(verbose_level = LoggerApi.VERBOSE_REGULAR)

        c.connect()

        my_ports=[0,1]

        # prepare our ports
        c.reset(ports = my_ports)

        # port info, mac-addr info, speed
        print c.get_port_info(my_ports)                         <1>
        
        c.set_port_attr(my_ports, promiscuous = True)           <2>
----
<1> Get port info for all ports.
<2> Change the port attribute to `promiscuous = True`.

For more information see the link:cp_stl_docs/api/client_code.html[Python Client API].


[NOTE] 
=====================================================================
An interface is not set to promiscuous mode by default. Typically, after changing the port to promiscuous mode for a specific test, it is advisable to change it back to non-promiscuous mode.
=====================================================================

==== Tutorial: Python automation 

*Goal*:: Simple automation test using Python from a local or remote machine 

*Directories*::

Python API examples: `automation/trex_control_plane/stl/examples`.

Python API library: `automation/trex_control_plane/stl/trex_stl_lib`.

The TRex console uses the Python API library to interact with the TRex server using the JSON-RPC2 protocol over ZMQ.

image::images/trex_architecture_01.png[title="RPC Server Components",align="left",width={p_width}, link="images/trex_architecture_01.png"]

// OBSOLETE: image::images/trex_2_stateless.png[title="RPC Server Components",align="left",width={p_width}, link="images/trex_2_stateless.png"]

*File*:: link:{github_stl_examples_path}/stl_bi_dir_flows.py[stl_bi_dir_flows.py]


[source,python]
----
import stl_path                                                            <1>
from trex_stl_lib.api import *                                             <2>               

import time
import json

# simple packet creation                                                   <3>
def create_pkt (size, direction):

    ip_range = {'src': {'start': "10.0.0.1", 'end': "10.0.0.254"},
                'dst': {'start': "8.0.0.1",  'end': "8.0.0.254"}}

    if (direction == 0):
        src = ip_range['src']
        dst = ip_range['dst']
    else:
        src = ip_range['dst']
        dst = ip_range['src']

    vm = [
        # src                                                               <4>
        STLVmFlowVar(name="src",
                     min_value=src['start'],
                     max_value=src['end'],
                     size=4,op="inc"),
        STLVmWrFlowVar(fv_name="src",pkt_offset= "IP.src"),

        # dst
        STLVmFlowVar(name="dst",
                     min_value=dst['start'],
                     max_value=dst['end'],
                     size=4,op="inc"),
        STLVmWrFlowVar(fv_name="dst",pkt_offset= "IP.dst"),

        # checksum
        STLVmFixIpv4(offset = "IP")
        ]


    base = Ether()/IP()/UDP()
    pad = max(0, len(base)) * 'x'

    return STLPktBuilder(pkt = base/pad,
                         vm  = vm)

                                                                            
def simple_burst ():
 
    # create client
    c = STLClient() 
                    # username/server can be changed those are the default
                    # username = common.get_current_user(),
                    # server = "localhost"
                    # STLClient(server = "my_server",username ="trex_client") for example 
    passed = True

    try:
        # turn this on for some information
        #c.set_verbose("high")

        # create two streams
        s1 = STLStream(packet = create_pkt(200, 0),
                       mode = STLTXCont(pps = 100))

        # second stream with a phase of 1ms (inter stream gap)
        s2 = STLStream(packet = create_pkt(200, 1),
                       isg = 1000,
                       mode = STLTXCont(pps = 100))


        # connect to server
        c.connect()                                                                <5>
                                                                                        
        # prepare our ports (my machine has 0 <--> 1 with static route)
        c.reset(ports = [0, 1]) #  Acquire port 0,1 for $USER                      <6>

        # add both streams to ports
        c.add_streams(s1, ports = [0])
        c.add_streams(s2, ports = [1])

        # clear the stats before injecting
        c.clear_stats()

        # choose rate and start traffic for 10 seconds on 5 mpps
        print "Running 5 Mpps on ports 0, 1 for 10 seconds..."
        c.start(ports = [0, 1], mult = "5mpps", duration = 10)                     <7>

        # block until done
        c.wait_on_traffic(ports = [0, 1])                                          <8>

        # read the stats after the test
        stats = c.get_stats()                                                      <9>

        print json.dumps(stats[0], indent = 4, separators=(',', ': '), sort_keys = True)
        print json.dumps(stats[1], indent = 4, separators=(',', ': '), sort_keys = True)

        lost_a = stats[0]["opackets"] - stats[1]["ipackets"]
        lost_b = stats[1]["opackets"] - stats[0]["ipackets"]                       

        print "\npackets lost from 0 --> 1:   {0} pkts".format(lost_a)
        print "packets lost from 1 --> 0:   {0} pkts".format(lost_b)

        if (lost_a == 0) and (lost_b == 0):
            passed = True
        else:
            passed = False

    except STLError as e:
        passed = False
        print e

    finally:
        c.disconnect()                                                             <10>    

    if passed:
        print "\nTest has passed :-)\n"
    else:
        print "\nTest has failed :-(\n"


# run the tests
simple_burst()
----
<1> Imports the stl_path. The path here is specific to this example. When configuring, provide the path to your stl_trex library.
<2> Imports TRex Stateless library. When configuring, provide the path to your TRex Stateless library.
<3> Creates packet per direction using Scapy.
<4> See the Field Engine section for information.
<5> Connects to the local TRex. Username and server can be added. 
<6> Acquires the ports. 
<7> Loads the traffic profile and start generating traffic.
<8> Waits for the traffic to be finished. There is a polling function so you can test do something while waiting.
<9> Get port statistics.
<10> Disconnects.

See link:cp_stl_docs/index.html[TRex Stateless Python API] for details about using the Python APIs. 


==== Tutorial: HLT Python API 

HLT Python API is a layer on top of the native layer. It supports the standard Cisco traffic generator API. For more information, see Cisco/IXIA/Spirent documentation.
TRex supports limited number of HLTAPI arguments and the recommendation is to use the native API due to the flexibility and simplicity.

Supported HLT Python API classes:

* Device Control
** connect
** cleanup_session
** device_info
** info
* Interface
** interface_config
** interface_stats
* Traffic
** traffic_config - not all arguments are supported  
** traffic_control
** traffic_stats

// IGNORE: This line simply ends the bulletted section so that the next line will be formatted correctly.

For details, see link:#_hlt_supported_arguments_a_id_altapi_support_a[Appendix]
// confirm link above

*File*:: link:{github_stl_examples_path}/hlt_udp_simple.py[hlt_udp_simple.py]


[source,python]
----

import sys
import argparse
import stl_path
from trex_stl_lib.api import *                                          <1>
from trex_stl_lib.trex_stl_hltapi import *                              <2>


if __name__ == "__main__":
    parser = argparse.ArgumentParser(usage=""" 
    Connect to TRex and send burst of packets

    examples

     hlt_udp_simple.py -s 9000 -d 30

     hlt_udp_simple.py -s 9000 -d 30 -rate_percent 10

     hlt_udp_simple.py -s 300 -d 30 -rate_pps 5000000

     hlt_udp_simple.py -s 800 -d 30 -rate_bps 500000000 --debug

     then run the simulator on the output 
       ./stl-sim -f example.yaml -o a.pcap  ==> a.pcap include the packet

    """,
    description="Example for TRex HLTAPI",
    epilog=" based on hhaim's stl_run_udp_simple example")

    parser.add_argument("--ip", 
                        dest="ip",
                        help='Remote trex ip',
                        default="127.0.0.1",
                        type = str)

    parser.add_argument("-s", "--frame-size", 
                        dest="frame_size",
                        help='L2 frame size in bytes without FCS',
                        default=60,
                        type = int,)

    parser.add_argument('-d','--duration', 
                        dest='duration',
                        help='duration in second ',
                        default=10,
                        type = int,)

    parser.add_argument('--rate-pps', 
                        dest='rate_pps',
                        help='speed in pps',
                        default="100")

    parser.add_argument('--src', 
                        dest='src_mac',
                        help='src MAC',
                        default='00:50:56:b9:de:75')

    parser.add_argument('--dst', 
                        dest='dst_mac',
                        help='dst MAC',
                        default='00:50:56:b9:34:f3')

    args = parser.parse_args()

    hltapi = CTRexHltApi()
    print 'Connecting to TRex'
    res = hltapi.connect(device = args.ip, port_list = [0, 1], reset = True, break_locks = True)
    check_res(res)
    ports = res['port_handle']
    if len(ports) < 2:
        error('Should have at least 2 ports for this test')
    print 'Connected, acquired ports: %s' % ports

    print 'Creating traffic'

    res = hltapi.traffic_config(mode = 'create', bidirectional = True,
                                port_handle = ports[0], port_handle2 = ports[1],
                                frame_size = args.frame_size,
                                mac_src = args.src_mac, mac_dst = args.dst_mac,
                                mac_src2 = args.dst_mac, mac_dst2 = args.src_mac,
                                l3_protocol = 'ipv4',
                                ip_src_addr = '10.0.0.1', ip_src_mode = 'increment', ip_src_count = 254,
                                ip_dst_addr = '8.0.0.1', ip_dst_mode = 'increment', ip_dst_count = 254,
                                l4_protocol = 'udp',
                                udp_dst_port = 12, udp_src_port = 1025,
                                stream_id = 1, # temporary workaround, add_stream does not return stream_id
                                rate_pps = args.rate_pps,
                                )
    check_res(res)

    print 'Starting traffic'
    res = hltapi.traffic_control(action = 'run', port_handle = ports[:2])
    check_res(res)
    wait_with_progress(args.duration)

    print 'Stopping traffic'
    res = hltapi.traffic_control(action = 'stop', port_handle = ports[:2])
    check_res(res)

    res = hltapi.traffic_stats(mode = 'aggregate', port_handle = ports[:2])
    check_res(res)
    print_brief_stats(res)
    
    res = hltapi.cleanup_session(port_handle = 'all')
    check_res(res)

    print 'Done' 
----
<1> Imports the native TRex API.
<2> Imports the HLT API.

                
==== Tutorial: Simple IPv4/UDP packet - Simulator 

*Goal*:: Use the TRex Stateless simulator.

Demonstrates the most basic use case using TRex simulator.

The TRex package includes a simulator tool, `stl-sim`. The simulator operates as a Python script that calls an executable. The platform requirements for the simulator tool are the same as for TRex.

The TRex simulator can:

* Test your traffic profiles before running them on TRex. 
* Generate an output pcap file.
* Simulate a number of threads.
* Convert from one type of profile to another.
* Convert any profile to JSON (API). For information, see: link:trex_rpc_server_spec.html#_add_stream[TRex stream specification]

Example traffic profile: 

*File*:: link:{github_stl_path}/udp_1pkt_simple.py[stl/udp_1pkt_simple.py]

[source,python]
----
from trex_stl_lib.api import *                                  

class STLS1(object):

    def create_stream (self):

        return STLStream( 
            packet = 
                    STLPktBuilder(
                        pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/
                                UDP(dport=12,sport=1025)/(10*'x')                       <1>                
                    ),
             mode = STLTXCont())                                                        <2>


    def get_streams (self, direction = 0, **kwargs):
        # create 1 stream 
        return [ self.create_stream() ]


# dynamic load - used for TRex console or simulator
def register():                                                                         <3>        
    return STLS1()
----
<1> Defines the packet - in this case, IP/UDP with 10 bytes of 'x'.
<2> Mode is Continuous, with a rate of 1 PPS. (Default rate: 1 PPS)
<3> Each traffic profile module requires a `register` function.

The following runs the traffic profile through the TRex simulator, limiting the number of packets to 10, and storing the output in a pcap file.

[source,bash]
----
$ ./stl-sim -f stl/udp_1pkt_simple.py -o b.pcap -l 10 
  executing command: 'bp-sim-64-debug --pcap --sl --cores 1 --limit 5000 -f /tmp/tmpq94Tfx -o b.pcap'

  General info:
  ------------

  image type:               debug
  I/O output:               b.pcap
  packet limit:             10
  core recording:           merge all
 
  Configuration info:
  -------------------

  ports:                    2
  cores:                    1
  
  Port Config:
  ------------
  
  stream count:             1
  max PPS    :              1.00  pps
  max BPS L1 :              672.00  bps
  max BPS L2 :              512.00  bps
  line util. :              0.00  %


  Starting simulation...


  Simulation summary:
  -------------------

  simulated 10 packets
  written 10 packets to 'b.pcap'
----

Contents of the output pcap file produced by the simulator in the previous step:

image::images/stl_tut_1.png[title="TRex simulator output stored in pcap file",align="left",width={p_width}, link="images/stl_tut_1.png"]

Adding `--json` displays the details of the JSON command for adding a stream:

[source,bash]
----
$./stl-sim -f stl/udp_1pkt_simple.py --json
[
    {
        "id": 1,
        "jsonrpc": "2.0",
        "method": "add_stream",
        "params": {
            "handler": 0,
            "port_id": 0,
            "stream": {
                "action_count": 0,
                "enabled": true,
                "flags": 0,
                "isg": 0.0,
                "mode": {
                    "rate": {
                        "type": "pps",
                        "value": 1.0
                    },
                    "type": "continuous"
                },
                "next_stream_id": -1,
                "packet": {
                    "binary": "AAAAAQAAAAAAAgAACABFAAAmAA",
                    "meta": ""
                },
                "rx_stats": {
                    "enabled": false
                },
                "self_start": true,
                "vm": {
                    "instructions": [],
                    "split_by_var": ""
                }
            },
            "stream_id": 1
        }
    },
    {
        "id": 1,
        "jsonrpc": "2.0",
        "method": "start_traffic",
        "params": {
            "duration": -1,
            "force": true,
            "handler": 0,
            "mul": {
                "op": "abs",
                "type": "raw",
                "value": 1.0
            },
            "port_id": 0
        }
    }
]
----

For more information about stream definition, see the link:trex_rpc_server_spec.html#_add_stream[RPC specification].

To convert the profile to YAML format:
[source,bash]
----
$./stl-sim -f stl/udp_1pkt_simple.py --yaml
- stream:
    action_count: 0
    enabled: true
    flags: 0
    isg: 0.0
    mode:
      pps: 1.0
      type: continuous
    packet:
      binary: AAAAAQAAAAAAAgAACABFAAAmAAEAAEARO
      meta: ''
    rx_stats:
      enabled: false
    self_start: true
    vm:
      instructions: []
      split_by_var: ''
----

To display packet details, use the `--pkt` option (using Scapy).

[source,bash]
----
$./stl-sim -f stl/udp_1pkt_simple.py --pkt
 =======================
 Stream 0
 =======================
###[ Ethernet ]###
  dst       = 00:00:00:01:00:00
  src       = 00:00:00:02:00:00
  type      = IPv4
###[ IP ]###
     version   = 4L
     ihl       = 5L
     tos       = 0x0
     len       = 38
     id        = 1
     flags     = 
     frag      = 0L
     ttl       = 64
     proto     = udp
     chksum    = 0x3ac5
     src       = 16.0.0.1
     dst       = 48.0.0.1
     \options   \
###[ UDP ]###
        sport     = blackjack
        dport     = 12
        len       = 18
        chksum    = 0x6161
###[ Raw ]###
           load      = 'xxxxxxxxxx'
0000   00 00 00 01 00 00 00 00  00 02 00 00 08 00 45 00   ..............E.
0010   00 26 00 01 00 00 40 11  3A C5 10 00 00 01 30 00   .&....@.:.....0.
0020   00 01 04 01 00 0C 00 12  61 61 78 78 78 78 78 78   ........aaxxxxxx
0030   78 78 78 78                                        xxxx
----

To convert any profile type to native again, use the `--native` option:

.Input YAML format
[source,python]
----
$more stl/yaml/imix_1pkt.yaml
- name: udp_64B
  stream:
    self_start: True
    packet:
      pcap: udp_64B_no_crc.pcap  # pcap should not include CRC
    mode:
      type: continuous
      pps: 100
----

To convert to native:

[source,bash]
----
$./stl-sim -f stl/yaml/imix_1pkt.yaml --native
----


.Output Native
[source,python]
----
# !!! Auto-generated code !!!
from trex_stl_lib.api import *

class STLS1(object):
    def get_streams(self):
        streams = []
        
        packet = (Ether(src='00:de:01:0a:01:00', dst='00:50:56:80:0d:28', type=2048) / 
                  IP(src='101.0.0.1', proto=17, dst='102.0.0.1', chksum=28605, len=46, flags=2L, ihl=5L, id=0) / 
                  UDP(dport=2001, sport=2001, len=26, chksum=1176) / 
                  Raw(load='\xde\xad\xbe\xef\x00\x01\x06\x07\x08\x09\x0a\x0b\x00\x9b\xe7\xdb\x82M'))
        vm = STLScVmRaw([], split_by_field = '')
        stream = STLStream(packet = CScapyTRexPktBuilder(pkt = packet, vm = vm),
                           name = 'udp_64B',
                           mac_src_override_by_pkt = 0,
                           mac_dst_override_mode = 0,
                           mode = STLTXCont(pps = 100))
        streams.append(stream)

        return streams

def register():
    return STLS1()
----

*Discussion*::

The following are the main traffic profile formats. Native is the preferred format. There is a separation between how the traffic is defined and how to control/activate it. The API/Console/GUI can load a traffic profile and start/stop/get a statistic. Due to this separation it is possible to share traffic profiles.

.Traffic profile formats
[cols="1^,1^,10<", options="header",width="80%"]
|=================
| Profile Type       | Format | Description  
| Native             | Python | Most flexibile. Any format can be converted to native using the `stl-sim` command with the `--native` option.
| HLT                | Python | Uses HLT arguments.
| YAML               | YAML   | The common denominator traffic profile. Information is shared between console, GUI, and simulator in YAML format. This format is difficult to use for defining packets; primarily for machine use. YAML can be converted to native using the `stl-sim` command with the `--native` option. 
|=================


=== Traffic profile Tutorials

==== Tutorial: Simple Interleaving streams

*Goal*:: Demonstrate interleaving of multiple streams.

The following example demonstrates 3 streams with different rates (10, 20, 40 PPS) and different start times, based on an inter-stream gap (ISG) of 0, 25 msec, or 50 msec.

*File*:: link:{github_stl_path}/simple_3pkt.py[stl/simple_3pkt.py]

// inserted this comment to fix rendering problem - otherwise the next several lines are not rendered
// there's still a problem with the rendering. the image is not displayed.


.Interleaving multiple streams
[source,python]
----
    def create_stream (self):

        # create a base packet and pad it to size
        size = self.fsize - 4 # no FCS
        base_pkt =  Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)       <1>
        base_pkt1 =  Ether()/IP(src="16.0.0.2",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt2 =  Ether()/IP(src="16.0.0.3",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        pad = max(0, size - len(base_pkt)) * 'x'


        return STLProfile( [ STLStream( isg = 0.0, 
                                        packet = STLPktBuilder(pkt = base_pkt/pad),
                                        mode = STLTXCont( pps = 10),                         <2>
                                        ), 

                             STLStream( isg = 25000.0, #defined in usec, 25 msec
                                        packet  = STLPktBuilder(pkt = base_pkt1/pad),
                                        mode    = STLTXCont( pps = 20),                      <3>
                                        ),

                             STLStream(  isg = 50000.0,#defined in usec, 50 msec
                                         packet = STLPktBuilder(pkt = base_pkt2/pad),
                                         mode    = STLTXCont( pps = 40)                      <4>
                                         
                                        )
                            ]).get_streams()
----
<1> Defines template packets using Scapy.
<2> Defines streams with rate of 10 PPS.
<3> Defines streams with rate of 20 PPS.
<4> Defines streams with rate of 40 PPS.

*Output*::

The folowing figure presents the output.

image::images/stl_interleaving_01.png[title="Interleaving of streams",align="left",width={p_width}, link="images/stl_interleaving_01.png"]

*Discussion*:: 
* Stream #1
** Schedules a packet each 100 msec 
* Stream #2 
** Schedules a packet each 50 msec
** Starts 25 msec after stream #1
* Stream #3 
** Schedules a packet each 25 msec
** Starts 50 msec after stream #1

You can run the traffic profile in the TRex simulator and view the details in the pcap file containing the simulation output.

[source,bash]
----
$./stl-sim -f stl/simple_3pkt.py -o b.pcap -l 200
----

To run the traffic profile from console in TRex, use the following command.

[source,bash]
----
trex>start -f stl/simple_3pkt.py -m 10mbps -a 
----

==== Tutorial:  Multi burst streams - action next stream   

*Goal*:: Create a profile with a stream that trigger another stream 

The following example demonstrates: 

1. More than one stream 
2. Burst of 10 packets
3. One stream activating another stream (see `self_start=False` in the traffic profile)

*File*:: link:{github_stl_path}/burst_3pkt_60pkt.py[stl/burst_3pkt_60pkt.py]


[source,python]
----
    def create_stream (self):

        # create a base packet and pad it to size
        size = self.fsize - 4 # no FCS
        base_pkt =  Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt1 =  Ether()/IP(src="16.0.0.2",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt2 =  Ether()/IP(src="16.0.0.3",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        pad = max(0, size - len(base_pkt)) * 'x'


        return STLProfile( [ STLStream( isg = 10.0, # star in delay 
                                        name    ='S0',
                                        packet = STLPktBuilder(pkt = base_pkt/pad),
                                        mode = STLTXSingleBurst( pps = 10, total_pkts = 10),  <1>
                                        next = 'S1'), # point to next stream 

                             STLStream( self_start = False, # stream is  disabled enable trow S0  <2>
                                        name    ='S1',
                                        packet  = STLPktBuilder(pkt = base_pkt1/pad),
                                        mode    = STLTXSingleBurst( pps = 10, total_pkts = 20),
                                        next    = 'S2' ),                                         

                             STLStream(  self_start = False, # stream is  disabled enable trow S0 <3>
                                         name   ='S2',
                                         packet = STLPktBuilder(pkt = base_pkt2/pad),
                                         mode = STLTXSingleBurst( pps = 10, total_pkts = 30 )
                                        )
                            ]).get_streams()

----
<1> Stream S0 is configured to `self_start=True`, starts after 10 sec. 
<2> S1 is configured to `self_start=False`, activated by stream S0.
<3> S2 is activated by S1.

To run the simulation, use this command.

[source,bash]
----
$ ./stl-sim -f stl/stl/burst_3pkt_60pkt.py -o b.pcap 
----

The generated pcap file has 60 packets. The first 10 packets have src_ip=16.0.0.1. The next 20 packets has src_ip=16.0.0.2. The next 30 packets has src_ip=16.0.0.3.

This run the profile from console use this command.

[source,bash]
----
TRex>start -f stl/stl/burst_3pkt_60pkt.py --port 0
----

==== Tutorial: Multi-burst mode

*Goal* : Use Multi-burst transmit mode  

*File*:: link:{github_stl_path}/multi_burst_2st_1000pkt.py[stl/multi_burst_2st_1000pkt.py]

[source,python]
----

    def create_stream (self):

        # create a base packet and pad it to size
        size = self.fsize - 4 # no FCS
        base_pkt =  Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt1 =  Ether()/IP(src="16.0.0.2",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        pad = max(0, size - len(base_pkt)) * 'x'


        return STLProfile( [ STLStream( isg = 10.0, # start in delay                                  <1>
                                        name    ='S0',
                                        packet = STLPktBuilder(pkt = base_pkt/pad),
                                        mode = STLTXSingleBurst( pps = 10, total_pkts = 10),
                                        next = 'S1'), # point to next stream 

                             STLStream( self_start = False, # stream is disabled. Enabled by S0       <2>
                                        name    ='S1',
                                        packet  = STLPktBuilder(pkt = base_pkt1/pad),
                                        mode    = STLTXMultiBurst( pps = 1000,
                                                                   pkts_per_burst = 4,
                                                                   ibg = 1000000.0,                         
                                                                   count = 5)
                                        )

                            ]).get_streams()

----
<1> Stream S0 waits 10 usec (inter-stream gap, ISG) and then sends a burst of 10 packets at 10 PPS.
<2> Multi-burst of 5 bursts of 4 packets with an inter-burst gap of 1 second.
 

The following illustration does not fully match the Python example cited above. It has been simplified, such as using a 0.5 second ISG, for illustration purposes.

image::images/stl_multiple_streams_01.png[title="Example of multiple streams",align="left",width={p_width_lge}, link="images/stl_multiple_streams_01.png"]



==== Tutorial: Loops of streams

*Goal* : Demonstrate a limited loop of streams

*File*:: link:{github_stl_path}/burst_3st_loop_x_times.py[stl/burst_3st_loop_x_times.py]

[source,python]
----
    def create_stream (self):

        # create a base packet and pad it to size
        size = self.fsize - 4 # no FCS
        base_pkt =  Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt1 =  Ether()/IP(src="16.0.0.2",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        base_pkt2 =  Ether()/IP(src="16.0.0.3",dst="48.0.0.1")/UDP(dport=12,sport=1025)
        pad = max(0, size - len(base_pkt)) * 'x'


        return STLProfile( [ STLStream( isg = 10.0, # start in delay 
                                        name    ='S0',
                                        packet = STLPktBuilder(pkt = base_pkt/pad),
                                        mode = STLTXSingleBurst( pps = 10, total_pkts = 1),
                                        next = 'S1'), # point to next stream 

                             STLStream( self_start = False, # stream is disabled. Enabled by S0
                                        name    ='S1',
                                        packet  = STLPktBuilder(pkt = base_pkt1/pad),
                                        mode    = STLTXSingleBurst( pps = 10, total_pkts = 2),
                                        next    = 'S2' ),

                             STLStream(  self_start = False, # stream is disabled. Enabled by S1
                                         name   ='S2',
                                         packet = STLPktBuilder(pkt = base_pkt2/pad),
                                         mode = STLTXSingleBurst( pps = 10, total_pkts = 3 ),
                                         action_count = 2, # loop 2 times                       <1>
                                         next    = 'S0' # loop back to S0
                                        )
                            ]).get_streams()

----
<1> go back to S0 but limit it to 2 loops


==== Tutorial: IMIX with UDP packets, bi-directional 

*Goal* : Demonstrate how to create an IMIX traffic profile.

This profile defines 3 streams, with packets of different sizes. The rate is different for each stream/size. See the link:https://en.wikipedia.org/wiki/Internet_Mix[Wikipedia article on Internet Mix].

*File*:: link:{github_stl_path}/imix.py[stl/imix.py]

[source,python]
----
    def __init__ (self):
        # default IP range
        self.ip_range = {'src': {'start': "10.0.0.1", 'end': "10.0.0.254"},
                         'dst': {'start': "8.0.0.1",  'end': "8.0.0.254"}}

        # default IMIX properties
        self.imix_table = [ {'size': 60,   'pps': 28,  'isg':0 },
                            {'size': 590,  'pps': 16,  'isg':0.1 },
                            {'size': 1514, 'pps': 4,   'isg':0.2 } ]


    def create_stream (self, size, pps, isg, vm ):
        # create a base packet and pad it to size
        base_pkt = Ether()/IP()/UDP()
        pad = max(0, size - len(base_pkt)) * 'x'

        pkt = STLPktBuilder(pkt = base_pkt/pad,
                            vm = vm)

        return STLStream(isg = isg,
                         packet = pkt,
                         mode = STLTXCont(pps = pps))


    def get_streams (self, direction = 0, **kwargs):                            <1>

        if direction == 0:                                                      <2>
            src = self.ip_range['src']
            dst = self.ip_range['dst']
        else:
            src = self.ip_range['dst']
            dst = self.ip_range['src']

        # construct the base packet for the profile

        vm =[                                                                   <3>
            # src
            STLVmFlowVar(name="src",
                         min_value=src['start'],
                         max_value=src['end'],
                         size=4,op="inc"),
            STLVmWrFlowVar(fv_name="src",pkt_offset= "IP.src"),

            # dst
            STLVmFlowVar(name="dst",
                         min_value=dst['start'],
                         max_value=dst['end'],
                         size=4,
                         op="inc"),
            STLVmWrFlowVar(fv_name="dst",pkt_offset= "IP.dst"),

            # checksum
            STLVmFixIpv4(offset = "IP")

            ]

        # create imix streams
        return [self.create_stream(x['size'], x['pps'],x['isg'] , vm) for x in self.imix_table]
----
<1> Constructs a diffrent stream for each direction (replaces src and dest).
<2> Even port id has direction==0 and odd has direction==1.
// direction==1 not shown explicitly in the code?
<3> Field Engine program to change fields within the packets.
// we can link "Field Engine" to an appropriate location for for more info.

==== Tutorial: Field Engine, Syn attack  

The following example demonstrates changing packet fields. The Field Engine (FE) has a limited number of instructions/operation, which support most use cases. 

*The FE can*::
* Allocate stream variables in a stream context
* Write a stream variable to a packet offset
* Change packet size
* and more...
* There is a plan to add LuaJIT to be more flexible at the cost of performance.

*Examples:*::
* Change ipv4.tos value (1 to 10)
* Change packet size to a random value in the range 64 to 9K
* Create a range of flows (change src_ip, dest_ip, src_port, dest_port) 
* Update the IPv4 checksum 

For more information, see link:trex_rpc_server_spec.html#_object_type_em_vm_em_a_id_vm_obj_a[here]
// add link to Python API: http://trex-tgn.cisco.com/trex/doc/cp_stl_docs/api/field_engine.html

The following example demonstrates creating a SYN attack from many src addresses to one server.

*File*:: link:{github_stl_path}/syn_attack.py[stl/syn_attack.py]

[source,python]
----
    def create_stream (self):

        # TCP SYN
        base_pkt  = Ether()/IP(dst="48.0.0.1")/TCP(dport=80,flags="S")      <1>


        # vm
        vm = STLScVmRaw( [ STLVmFlowVar(name="ip_src", 
                                              min_value="16.0.0.0", 
                                              max_value="18.0.0.254", 
                                              size=4, op="random"),         <2>

                           STLVmFlowVar(name="src_port", 
                                              min_value=1025, 
                                              max_value=65000, 
                                              size=2, op="random"),         <3>

                           STLVmWrFlowVar(fv_name="ip_src", pkt_offset= "IP.src" ), <4>

                           STLVmFixIpv4(offset = "IP"), # fix checksum              <5>

                           STLVmWrFlowVar(fv_name="src_port",                       <6>
                                                pkt_offset= "TCP.sport") # U 

                          ]
                       )

        pkt = STLPktBuilder(pkt = base_pkt,
                            vm = vm)

        return STLStream(packet = pkt,
                         random_seed = 0x1234,# can be removed. will give the same random value any run
                         mode = STLTXCont())
----
<1> Creates SYN packet using Scapy .
<2> Defines a stream variable `name=ip_src`, size 4 bytes, for IPv4. 
<3> Defines a stream variable `name=src_port`, size 2 bytes, for port. 
<4> Writes `ip_src` stream var into `IP.src` packet offset. Scapy calculates the offset. Can specify `IP:1.src` for a second IP header in the packet.
<5> Fixes IPv4 checksum. Provides the header name `IP`. Can specify `IP:1` for a second IP.
<6> Writes `src_port` stream var into `TCP.sport` packet offset. TCP checksum is not updated here.

WARNING: Original Scapy cannot calculate offset for a header/field by name. This offset capability will not work for all cases. In some complex cases, Scapy may rebuild the header. In such cases, specify the offset as a number.

Output pcap file: 

.Output - pcap file 
[format="csv",cols="1^,2<,2<", options="header",width="40%"]
|=================
pkt,Client IPv4,Client Port
 1  , 17.152.71.218  , 5814
 2  , 17.7.6.30      , 26810
 3  , 17.3.32.200    , 1810 
 4  , 17.135.236.168 , 55810 
 5  , 17.46.240.12   , 1078  
 6  , 16.133.91.247  , 2323
|=================


==== Tutorial: Field Engine, Tuple Generator 

The following example creates multiple flows from the same packet template. The Tuple Generator instructions are used to create two stream variables for IP and port. See link:trex_rpc_server_spec.html#_object_type_em_vm_em_a_id_vm_obj_a[here]
// clarify link

*File*:: link:{github_stl_path}/udp_1pkt_tuple_gen.py[stl/udp_1pkt_tuple_gen.py]

[source,python]
----
        base_pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)        

        pad = max(0, size - len(base_pkt)) * 'x'
                             
        vm = STLScVmRaw( [   STLVmTupleGen ( ip_min="16.0.0.1",                              <1>
                                             ip_max="16.0.0.2", 
                                             port_min=1025, 
                                             port_max=65535,
                                             name="tuple"), # define tuple gen 

                             STLVmWrFlowVar (fv_name="tuple.ip", pkt_offset= "IP.src" ),     <2>
                             STLVmFixIpv4(offset = "IP"),                                
                             STLVmWrFlowVar (fv_name="tuple.port", pkt_offset= "UDP.sport" ) <3>
                                  ]
                              )

        pkt = STLPktBuilder(pkt = base_pkt/pad,
                            vm = vm)
----
<1> Defines a struct with two dependent variables: tuple.ip, tuple.port
<2> Writes the tuple.ip variable to `IPv4.src` field offset.
<3> Writes the tuple.port variable to `UDP.sport` field offset. Set `UDP.checksum` to 0.
// Hanoch: add how to set UDP.checksum to 0


.Output - pcap file 
[format="csv",cols="1^,2^,1^", options="header",width="40%"]
|=================
pkt,Client IPv4,Client Port
 1  , 16.0.0.1 , 1025
 2  , 16.0.0.2 , 1025
 3  , 16.0.0.1 , 1026
 4  , 16.0.0.2 , 1026
 5  , 16.0.0.1 , 1027
 6  , 16.0.0.2,  1027
|=================

* Number of clients: 2: 16.0.0.1 and 16.0.0.2
* Number of flows is limited to 129020: (2 * (65535-1025))
* The stream variable size should match the size of the FlowVarWr instruction.

==== Tutorial: Field Engine, write to a bit-field packet  

The following example writes a stream variable to a bit field packet variable. In this example, an MPLS label field is changed.

.MPLS header 
[cols="32", halign="center",width="50%"] 
|==== 
20+<|Label 3+<|TC 1+<|S 8+<|TTL| 
0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|6|7|8|9|0|1|
|==== 

*File*:: link:{github_stl_path}/udp_1pkt_mpls_vm.py[stl/udp_1pkt_mpls_vm.py]

[source,python]
----

    def create_stream (self):
        # 2 MPLS label the internal with  s=1 (last one)
        pkt =  Ether()/
               MPLS(label=17,cos=1,s=0,ttl=255)/
               MPLS(label=0,cos=1,s=1,ttl=12)/
               IP(src="16.0.0.1",dst="48.0.0.1")/
               UDP(dport=12,sport=1025)/('x'*20)

        vm = STLScVmRaw( [ STLVmFlowVar(name="mlabel",                                 <1>
                                        min_value=1, 
                                        max_value=2000, 
                                        size=2, op="inc"), # 2 bytes var               <2>
                           STLVmWrMaskFlowVar(fv_name="mlabel",                      
                                              pkt_offset= "MPLS:1.label",              <3>
                                              pkt_cast_size=4, 
                                              mask=0xFFFFF000,shift=12) # write to 20bit MSB
                          ]
                       )

        # burst of 100 packets
        return STLStream(packet = STLPktBuilder(pkt = pkt ,vm = vm),
                         mode = STLTXSingleBurst( pps = 1, total_pkts = 100) )

----
<1> Defines a variable size of 2 bytes.
<2> Writes the stream variable label with a shift of 12 bits, with a 20-bit MSB mask. Cast the stream variables of 2 bytes to 4 bytes.
<3> Change the second MPLS header.


==== Tutorial: Field Engine, Random packet size 

The following example demonstrates varies the packet size randomly, as follows:

1. Defines the template packet with maximum size.
2. Trims the packet to the size you want.
3. Updates the packet fields according to the new size. 

*File*:: link:{github_stl_path}/udp_rand_len_9k.py[stl/udp_rand_len_9k.py]

[source,python]
----

    def create_stream (self):
        # pkt 
        p_l2  = Ether()
        p_l3  = IP(src="16.0.0.1",dst="48.0.0.1")
        p_l4  = UDP(dport=12,sport=1025)
        pyld_size = max(0, self.max_pkt_size_l3 - len(p_l3/p_l4))
        base_pkt = p_l2/p_l3/p_l4/('\x55'*(pyld_size))

        l3_len_fix =-(len(p_l2))
        l4_len_fix =-(len(p_l2/p_l3))


        # vm
        vm = STLScVmRaw( [ STLVmFlowVar(name="fv_rand",                            <1>
                                        min_value=64, 
                                        max_value=len(base_pkt), 
                                        size=2, 
                                        op="random"),

                           STLVmTrimPktSize("fv_rand"), # total packet size        <2>

                           STLVmWrFlowVar(fv_name="fv_rand",                       <3>
                                          pkt_offset= "IP.len", 
                                          add_val=l3_len_fix), # fix ip len 

                           STLVmFixIpv4(offset = "IP"),                               

                           STLVmWrFlowVar(fv_name="fv_rand",                       <4>
                                          pkt_offset= "UDP.len", 
                                          add_val=l4_len_fix) # fix udp len  
                          ]
                       )
----
<1> Defines a random stream variable with the maximum size of the packet.
<2> Trims the packet size to the `fv_rand` value.
<3> Fixes ip.len to reflect the packet size.
<4> Fixes udp.len to reflect the packet size.


==== Tutorial: Field Engine, Significantly improve performance 

anchor:trex_cache_mbuf[]

The following example demonstrates a way to significantly improve Field Engine performance in case it is needed. 

Field Engine has a cost of CPU instructions and CPU memory bandwidth. There is a way to significantly improve performance by caching the packets and run the Field Engine offline(before sending the packets). 
The limitation is that you can have only a limited number of packets that can be cached (order or 10K depends how much memory you have).
For example a program that change the src_ip to a random value can't be utilized this technique and still have random src_ip.  
Usually this is done with small packets (64bytes) where performance is an issue. This method can improve long packets senario with a complex Field Engine program.

*File*:: link:{github_stl_path}/udp_1pkt_src_ip_split.py[stl/udp_1pkt_src_ip_split.py]

[source,python]
----

    def create_stream (self):
        # create a base packet and pad it to size
        size = self.fsize - 4; # no FCS

        base_pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)

        pad = max(0, size - len(base_pkt)) * 'x'
                             
        vm = STLScVmRaw( [   STLVmFlowVar ( "ip_src",  
                                            min_value="10.0.0.1",
                                            max_value="10.0.0.255", 
                                            size=4, step=1,op="inc"),
                                            
                             STLVmWrFlowVar (fv_name="ip_src", 
                                             pkt_offset= "IP.src" ), 
                                             
                             STLVmFixIpv4(offset = "IP")                               
                         ],
                         split_by_field = "ip_src",  
                         cache_size =255 # the cache size             <1>
                        );

        pkt = STLPktBuilder(pkt = base_pkt/pad,
                            vm = vm)
                            
        stream = STLStream(packet = pkt,
                         mode = STLTXCont())
        return stream
        
----
<1> Cache 255 packets. The range is the same as `ip_src` stream variable 

This FE program will run *x2-5 faster* compared to native (without cache). 
In this specific example the output will be *exactly* the same.

Again the limitations of this method are:

1. The total number of cache packets for all the streams all the ports in limited by the memory pool (range of ~10-40K)
2. There could be cases that the cache options won't be exactly the same as the normal program, for example, in case of a program that step in prime numbers or with a random variable


==== Tutorial: New Scapy header  

The following example uses a header that is not supported by Scapy by default. The example demonstrates VXLAN support.

*File*:: link:{github_stl_path}/udp_1pkt_vxlan.py[stl/udp_1pkt_vxlan.py]

[source,python]
----

# Adding header that does not exists yet in Scapy
# This was taken from pull request of Scapy 
# 


# RFC 7348 - Virtual eXtensible Local Area Network (VXLAN):                                     <1>
# A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks
# http://tools.ietf.org/html/rfc7348
_VXLAN_FLAGS = ['R' for i in range(0, 24)] + ['R', 'R', 'R', 'I', 'R', 'R', 'R', 'R', 'R'] 

class VXLAN(Packet):
    name = "VXLAN"
    fields_desc = [FlagsField("flags", 0x08000000, 32, _VXLAN_FLAGS),
                   ThreeBytesField("vni", 0),
                   XByteField("reserved", 0x00)]

    def mysummary(self):
        return self.sprintf("VXLAN (vni=%VXLAN.vni%)")

bind_layers(UDP, VXLAN, dport=4789)
bind_layers(VXLAN, Ether)


class STLS1(object):

    def __init__ (self):
        pass

    def create_stream (self):
        pkt =  Ether()/IP()/UDP(sport=1337,dport=4789)/VXLAN(vni=42)/Ether()/IP()/('x'*20)    <2>
        #pkt.show2()
        #hexdump(pkt)

        # burst of 17 packets
        return STLStream(packet = STLPktBuilder(pkt = pkt ,vm = []),
                         mode = STLTXSingleBurst( pps = 1, total_pkts = 17) )


----
<1> Downloads and adds a Scapy header from the specified location. Alternatively, write a Scapy header.
<2> Apply the header. 

For more information how to define headers see link:http://www.secdev.org/projects/scapy/doc/build_dissect.html[Adding new protocols] in the Scapy documentation.


==== Tutorial: Field Engine, Multiple Clients 

The following example generates traffic from many clients with different IP/MAC addresses to one server.

// Please leave this comment - helping rendition of image below.

image::images/stl_multiple_clients_01b.png[title="Multiple clients to single server",align="left",width="80%", link="images/stl_multiple_clients_01b.png"]

// OBSOLETEimage::images/stl_tut_12.png[title="client->server",align="left",width={p_width}, link="images/stl_tut_12.png"]

1. Send a gratuitous ARP from B->D with server IP/MAC (58.55.1.1).
2. DUT learns the ARP of server IP/MAC (58.55.1.1).
3. Send traffic from A->C with many client IP/MAC addresses.

Example:

Base source IPv4 : 55.55.1.1
Destination IPv4:  58.55.1.1

Increment src ipt portion starting at 55.55.1.1 for 'n' number of clients (55.55.1.1, 55.55.1.2)
Src MAC: start with 0000.dddd.0001, increment mac in steps of 1
Dst MAC: Fixed  - 58.55.1.1 

The following sends a link:https://wiki.wireshark.org/Gratuitous_ARP[gratuitous ARP] from the TRex server port for this server (58.0.0.1).

[source,python]
----
    def create_stream (self):
        # create a base packet and pad it to size
        base_pkt =  Ether(src="00:00:dd:dd:01:01",
                          dst="ff:ff:ff:ff:ff:ff")/
                    ARP(psrc="58.55.1.1",
                        hwsrc="00:00:dd:dd:01:01", 
                        hwdst="00:00:dd:dd:01:01", 
                        pdst="58.55.1.1")
----

Then traffic can be sent from client side: A->C 

*File*:: link:{github_stl_path}/udp_1pkt_range_clients_split.py[stl/udp_1pkt_range_clients_split.py]

[source,python]
----
class STLS1(object):

    def __init__ (self):
        self.num_clients  =30000 # max is 16bit
        self.fsize        =64

    def create_stream (self):

        # create a base packet and pad it to size
        size = self.fsize - 4 # no FCS
        base_pkt =  Ether(src="00:00:dd:dd:00:01")/
                          IP(src="55.55.1.1",dst="58.55.1.1")/UDP(dport=12,sport=1025)
        pad = max(0, size - len(base_pkt)) * 'x'

        vm = STLScVmRaw( [ STLVmFlowVar(name="mac_src", 
                                        min_value=1, 
                                        max_value=self.num_clients, 
                                        size=2, op="inc"), # 1 byte varible, range 1-10
                                        
                           STLVmWrFlowVar(fv_name="mac_src", pkt_offset= 10),        <1>                 
                           STLVmWrFlowVar(fv_name="mac_src" ,
                                          pkt_offset="IP.src",
                                          offset_fixup=2),                           <2>
                           STLVmFixIpv4(offset = "IP")
                          ]
                         ,split_by_field = "mac_src"  # split 
                       )

        return STLStream(packet = STLPktBuilder(pkt = base_pkt/pad,vm = vm),
                         mode = STLTXCont( pps=10 ))
----
<1> Writes the stream variable `mac_src` with an offset of 10 (last 2 bytes of `src_mac` field). The offset is specified explicitly as 10 bytes from the beginning of the packet.
<2> Writes the stream variable `mac_src` with an offset determined by the offset of `IP.src` plus the `offset_fixup` of 2. 


==== Tutorial: Field Engine, many clients with ARP

In the following example, there are two Switchs SW1 and SW2. 
TRex port 0 is connected to SW1 and TRex port 1 is connected to SW2.
There are 253 hosts connected to SW1 and SW2 with two network ports. 

.Client side the network of the hosts
[cols="3<,3<", options="header",width="50%"]
|=================
| Name      |  Description   
| TRex port 0 MAC       | 00:00:01:00:00:01     
| TRex port 0 IPv4      | 16.0.0.1
| IPv4 host client side range     | 16.0.0.2-16.0.0.254
| MAC host client side range     | 00:00:01:00:00:02-00:00:01:00:00:FE 
|=================


.Server side the network of the hosts
[cols="3<,3<", options="header",width="50%"]
|=================
| Name      |  Description   
| TRex port 1 MAC       | 00:00:02:00:00:01     
| TRex port 1 IPv4      | 48.0.0.1
| IPv4 host server side range     | 48.0.0.2-48.0.0.254
| MAC host server side range     | 00:00:02:00:00:02-00:00:02:00:00:FE 
|=================

image::images/stl_arp.png[title="arp/nd",align="left",width={p_width}, link="images/stl_arp.png"]

In the following example, there are two Switchs SW1 and SW2. 
TRex port 0 is connected to SW1 and TRex port 1 is connected to SW2
In this example, because there are many hosts connected to the same network using SW1 and not as a next hope, we would like to teach SW1 the MAC addresses of the hosts and not to send the traffic directly to the hosts MAC (as it is unknown)
For that we would send an ARP to all the hosts (16.0.0.2-16.0.0.254) from TRex port 0 and gratuitous ARP from server side (48.0.0.1) TRex port 1 as the first stage of the test

So the step would be like that:

1. Send a gratuitous ARP from TRex port 1 with server IP/MAC (48.0.0.1) after this stage SW2 will know that 48.0.0.1 is located after this port of SW2.
2. Send ARP request for all hosts from port 0 with a range of 16.0.0.2-16.0.0.254 after this stage all switch ports will learn the PORT/MAC locations. Without this stage the first packets from TRex port 0 will be flooded to all Switch ports. 
3. send traffic from TRex0->clients, port 1->servers 


.ARP traffic profile 
[source,python]
----

 base_pkt =  Ether(dst="ff:ff:ff:ff:ff:ff")/
            ARP(psrc="16.0.0.1",hwsrc="00:00:01:00:00:01", pdst="16.0.0.2")                      <1>

 vm = STLScVmRaw( [ STLVmFlowVar(name="mac_src", min_value=2, max_value=254, size=2, op="inc"),  <2>
                    STLVmWrFlowVar(fv_name="mac_src" ,pkt_offset="ARP.pdst",offset_fixup=2),                
                  ]
                 ,split_by_field = "mac_src"  # split 
                )


----
<1> ARP packet with TRex port 0 MAC and IP and pdst as variable.
<2> Write it to `ARP.pdst`.


.Gratuitous ARP traffic profile 
[source,python]
----

        base_pkt =  Ether(src="00:00:02:00:00:01",dst="ff:ff:ff:ff:ff:ff")/
                    ARP(psrc="48.0.0.1",hwsrc="00:00:02:00:00:01", 
                        hwdst="00:00:02:00:00:01", pdst="48.0.0.1") <1>

----
<1> G ARP packet with TRex port 1 MAC and IP no need a VM.

[NOTE] 
=====================================================================
This principal can be done for IPv6 too. ARP could be replaced with Neighbor Solicitation IPv6 packet.
=====================================================================
 
==== Tutorial: Field Engine, split to core 

Post v2.08 version split to core directive was deprecated and was kept for backward compatibility.
The new implementation is always to split as if the profile was sent from one core. 
The user of TRex is oblivious to the number of cores. 


[source,python]
----
    def create_stream (self):

        # TCP SYN
        base_pkt  = Ether()/IP(dst="48.0.0.1")/TCP(dport=80,flags="S")     


        # vm
        vm = STLScVmRaw( [ STLVmFlowVar(name="ip_src", 
                                              min_value="16.0.0.0", 
                                              max_value="16.0.0.254", 
                                              size=4, op="inc"),                     


                           STLVmWrFlowVar(fv_name="ip_src", pkt_offset= "IP.src" ),  

                           STLVmFixIpv4(offset = "IP"), # fix checksum              
                          ]
                         ,split_by_field = "ip_src"                                 <1>  
                       )

----
<1> Deprecated split by field. not used any more (post v2.08)


*Some rules regarding split stream variables and burst/multi-burst*::

* When using burst/multi-burst, the number of packets are split to the defualt number of threads specified in the YAML cofiguraiton file, without any need to explicitly split the threads.
* When the number of packets in a burst is smaller than the number of threads, one thread handles the burst. 
* In the case of a stream with a burst of *1* packet, only the first DP thread handles the stream.

==== Tutorial: Field Engine, Null stream 

The following example creates a stream with no packets. The example uses the inter-stream gap (ISG) of the Null stream, and then starts a new stream. Essentially, this uses one property of the stream (ISG) without actually including packets in the stream.

This method can create loops like the following:

image::images/stl_null_stream_02.png[title="Null stream",align="left",width={p_width_1}, link="images/stl_null_stream_02.png"]
 
1. S1 - Sends a burst of packets, then proceed to stream NULL.
2. NULL - Waits the inter-stream gap (ISG) time, then proceed to S1. 

Null stream configuration:

1. Mode: Burst 
2. Number of packets: 0


==== Tutorial: Field Engine, Stream Barrier (Split)

*(Future Feature - not yet implemented)*

In some situations, it is necessary to split streams into threads in such a way that specific streams will continue only after all the threads have passed the same path. In the figure below, a barrier ensures that stream S3 starts only after all threads of S2 are complete. 

image::images/stl_barrier_03.png[title="Stream Barrier",align="left",width={p_width}, link="images/stl_barrier_03.png"]

==== Tutorial: PCAP file to one stream 

*Goal*:: Load a stream template packet from a pcap file instead of Scapy.

Assumption: The pcap file contains only one packet. If the pcap file contains more than one packet, this procedure loads only the first packet.

*File*:: link:{github_stl_path}/udp_1pkt_pcap.py[stl/udp_1pkt_pcap.py]

[source,python]
----

    def get_streams (self, direction = 0, **kwargs):
        return [STLStream(packet = 
                          STLPktBuilder(pkt ="stl/yaml/udp_64B_no_crc.pcap"), # path relative to pwd   <1>
                           mode = STLTXCont(pps=10)) ] 

----
<1> Takes the packet from the pcap file, relative to the directory in which you are running the script.


*File*:: link:{github_stl_path}/udp_1pkt_pcap_relative_path.py[udp_1pkt_pcap_relative_path.py]


[source,python]
----

    def get_streams (self, direction = 0, **kwargs):
        return [STLStream(packet = STLPktBuilder(pkt ="yaml/udp_64B_no_crc.pcap",
                                                 path_relative_to_profile = True), <1>
                         mode = STLTXCont(pps=10)) ] 

----
<1> Takes the packet from the pcap file, relative to the directory of the *profile* file location.



==== Tutorial: Teredo tunnel (IPv6 over IPv4)

The following example demonstrates creating an IPv6 packet within an IPv4 packet, and creating a range of IP addresses.

*File*:: link:{github_stl_path}/udp_1pkt_ipv6_in_ipv4.py[stl/udp_1pkt_ipv6_in_ipv4.py]

[source,python]
----
    def create_stream (self):
        # Teredo Ipv6 over Ipv4 
        pkt =  Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/
              UDP(dport=3797,sport=3544)/
              IPv6(dst="2001:0:4137:9350:8000:f12a:b9c8:2815",
                   src="2001:4860:0:2001::68")/
              UDP(dport=12,sport=1025)/ICMPv6Unknown()

        vm = STLScVmRaw( [ 
                            # tuple gen for inner Ipv6 
                            STLVmTupleGen ( ip_min="16.0.0.1", ip_max="16.0.0.2", 
                                            port_min=1025, port_max=65535,
                                            name="tuple"),                      <1>

                             STLVmWrFlowVar (fv_name="tuple.ip", 
                                             pkt_offset= "IPv6.src",
                                             offset_fixup=12 ),                 <2>
                             STLVmWrFlowVar (fv_name="tuple.port", 
                                             pkt_offset= "UDP:1.sport" )        <3>
                          ]
                       )
----
<1> Defines a stream struct called tuple with the following variables: `tuple.ip`, `tuple.port`
<2> Writes a stream `tuple.ip` variable with an offset determined by the `IPv6.src` offset plus the `offset_fixup` of 12 bytes (only 4 LSB).
<3> Writes a stream `tuple.port` variable into the second UDP header. 


==== Tutorial: Mask instruction 

STLVmWrMaskFlowVar is single-instruction-multiple-data Field Engine instruction. The pseudocode is as follows:

.Pseudocode 
[source,bash]
----
        uint32_t val=(cast_to_size)rd_from_variable("name") # read flow-var
        val+=m_add_value                                    # add value

        if (m_shift>0) {                                    # shift 
            val=val<<m_shift
        }else{
            if (m_shift<0) {
                val=val>>(-m_shift)
            }
        }

        pkt_val=rd_from_pkt(pkt_offset)                     # RMW
        pkt_val = (pkt_val & ~m_mask) | (val & m_mask)
        wr_to_pkt(pkt_offset,pkt_val)
----


*Example 1*::

In this example, STLVmWrMaskFlowVar casts a stream variable with 2 bytes to be 1 byte.

[source,python]
----
        vm = STLScVmRaw( [ STLVmFlowVar(name="mac_src", 
                                        min_value=1, 
                                        max_value=30, 
                                        size=2, op="dec",step=1), 
                           STLVmWrMaskFlowVar(fv_name="mac_src", 
                                              pkt_offset= 11,
                                              pkt_cast_size=1, 
                                              mask=0xff) # mask command ->write it as one byte
                          ]
                       )

----


*Example 2*::

In this example, STLVmWrMaskFlowVar shifts a variable by 8, which effectively multiplies by 256.

[source,python]
----

        vm = STLScVmRaw( [ STLVmFlowVar(name="mac_src", 
                                        min_value=1, 
                                        max_value=30, 
                                        size=2, op="dec",step=1), 
                           STLVmWrMaskFlowVar(fv_name="mac_src", 
                                              pkt_offset= 10,
                                              pkt_cast_size=2, 
                                              mask=0xff00,
                                              shift=8) # take the var shift it 8 (x256) write only to LSB
                          ]
                       )
----


.Output 
[format="csv",cols="1^", options="header",width="20%"]
|=================
 value
 0x0100 
 0x0200 
 0x0300 
|=================

*Example 3*::

In this example, STLVmWrMaskFlowVar instruction to generate the values shown in the table below as offset values for `pkt_offset`.

[source,python]
----
        vm = STLScVmRaw( [ STLVmFlowVar(name="mac_src", 
                                        min_value=1, 
                                        max_value=30, 
                                        size=2, 
                                        op="dec",step=1), 
                           STLVmWrMaskFlowVar(fv_name="mac_src", 
                                              pkt_offset= 10,
                                              pkt_cast_size=1, 
                                              mask=0x1,
                                              shift=-1)         <1>
                          ]
                       )

----
<1> Divides the value of `mac_src` by 2, and writes the LSB. For every two packets, the value written is changed.

.Output 
[format="csv",cols="1^", options="header",width="20%"]
|=================
value
 0x00 
 0x00 
 0x01 
 0x01 
 0x00 
 0x00 
 0x01 
 0x01 
|=================

==== Tutorial: Advanced traffic profile

*Goal*::

* Define a different profile to operate in each traffic direction. 
* Define a different profile for each port.
* Tune a profile tune by the arguments of tunables.

Every traffic profile must define the following function:

[source,python]
----
def get_streams (self, direction = 0, **kwargs)
----

`direction` is a mandatory field, required for any profile being loaded.

A profile can be given any key-value pairs which can be used to customize this profile. These are called "tunables".

The profile defines which tunables can be input to customize output.

*Usage notes for defining parameters*::

* All parameters require default values. 
* A profile must be loadable with no parameters specified.
* **kwargs (see Python documentation for information about keyworded arguments) contain all of the automatically provided values which are not tunables.
* Every tuanble must be expressed as key-value pair with default value.


For example, for the profile below, 'pcap_with_vm.py':

* The profile receives 'direction' as a tunable and mandatory field.
* The profile defines 4 additional tunables.
* Automatic values such as 'port_id' which are not tunables will be provided on kwargs.


*File*:: link:{github_stl_path}/pcap_with_vm.py[stl/pcap_with_vm.py]

[source,python]
----
def get_streams (self,
                 direction = 0,
                 ipg_usec = 10.0,
                 loop_count = 5,
                 ip_src_range = None,
                 ip_dst_range = {'start' : '10.0.0.1', 'end': '10.0.0.254'},
                 **kwargs)
----

*Direction*::
`direction` is a tunable that is always provided by the API/console when loading a profile, but it can be overridden by the user. It is used to make the traffic profile more usable - for example, as a bi-directional profile. However, the profile can ignore this parameter.

By default, `direction` is equal to port_id % 2, so *even* numbered ports are provided with ''0'' and the *odd* numbered ports with ''1''.

[source,python]
----
def get_streams (self, direction = 0,**kwargs):
    if direction = 0:
        rate =100                                       <1>
    else:    
        rate =200
    return [STLHltStream(tcp_src_port_mode = 'decrement',
                         tcp_src_port_count = 10,
                         tcp_src_port = 1234,
                         tcp_dst_port_mode = 'increment',
                         tcp_dst_port_count = 10,
                         tcp_dst_port = 1234,
                         name = 'test_tcp_ranges',
                         direction = direction,
                         rate_pps = rate,
                         ),
           ]
----
<1> Specifies different rates (100 and 200) based on direction.

[source,bash]
----
$start -f ex1.py -a 
----
 
For 4 interfaces:
 
* Interfaces 0 and 2: direction 0 
* Interfaces 1 and 3: direction 1
 
The rate changes accordingly. 

*Customzing Profiles Using ''port_id''*::

Keyworded arguments (**kwargs) provide default values that are passed along to the profile.

In the following, 'port_id' (port ID for the profile) is a **kwarg. Using port_id, you can define a complex profile based on different ID of ports, providing a different profile for each port.


[source,python]
----
 
def create_streams (self, direction = 0, **args):

    port_id = args.get('port_id')

    if port_id == 0:
     return [STLHltStream(tcp_src_port_mode = 'decrement',
                         tcp_src_port_count = 10,
                         tcp_src_port = 1234,
                         tcp_dst_port_mode = 'increment',
                         tcp_dst_port_count = 10,
                         tcp_dst_port = 1234,
                         name = 'test_tcp_ranges',
                         direction = direction,
                         rate_pps = rate,
                         ),
           ]

   if port_id == 1:
        return STLHltStream(
                #enable_auto_detect_instrumentation = '1', # not supported yet
                ip_dst_addr = '192.168.1.3',
                ip_dst_count = '1',
                ip_dst_mode = 'increment',
                ip_dst_step = '0.0.0.1',
                ip_src_addr = '192.168.0.3',
                ip_src_count = '1',
                ip_src_mode = 'increment',
                ip_src_step = '0.0.0.1',
                l3_imix1_ratio = 7,
                l3_imix1_size = 70,
                l3_imix2_ratio = 4,
                l3_imix2_size = 570,
                l3_imix3_ratio = 1,
                l3_imix3_size = 1518,
                l3_protocol = 'ipv4',
                length_mode = 'imix',
                #mac_dst_mode = 'discovery', # not supported yet
                mac_src = '00.00.c0.a8.00.03',
                mac_src2 = '00.00.c0.a8.01.03',
                pkts_per_burst = '200000',
                rate_percent = '0.4',
                transmit_mode = 'continuous',
                vlan_id = '1',
                direction = direction,
                )
   
   if port_id = 3:
         ..
----
 
*Full example using the TRex Console*::

The following command displays information about tunables for the pcap_with_vm.py traffic profile.

[source,bash]
----
-=TRex Console v1.1=-

Type 'help' or '?' for supported actions

trex>profile -f stl/pcap_with_vm.py

Profile Information:


General Information:
Filename:         stl/pcap_with_vm.py
Stream count:          5

Specific Information:
Type:             Python Module
Tunables:         ['direction = 0', 'ip_src_range = None', 'loop_count = 5', 'ipg_usec = 10.0',
                   "ip_dst_range = {'start': '10.0.0.1', 'end': '10.0.0.254'}"]

trex>                                                                                                                                                        
----

One can provide tunables on all those fields. The following command changes some:

[source,bash]
----
trex>start -f stl/pcap_with_vm.py -t ipg_usec=15.0,loop_count=25

Removing all streams from port(s) [0, 1, 2, 3]:              [SUCCESS]


Attaching 5 streams to port(s) [0]:                          [SUCCESS]


Attaching 5 streams to port(s) [1]:                          [SUCCESS]


Attaching 5 streams to port(s) [2]:                          [SUCCESS]


Attaching 5 streams to port(s) [3]:                          [SUCCESS]


Starting traffic on port(s) [0, 1, 2, 3]:                    [SUCCESS]

61.10 [ms]

trex>
----


The following command customizes these to different ports:

[source,bash]
----

trex>start -f stl/pcap_with_vm.py --port 0 1 -t ipg_usec=15.0,loop_count=25#ipg_usec=100,loop_count=300

Removing all streams from port(s) [0, 1]:                    [SUCCESS]


Attaching 5 streams to port(s) [0]:                          [SUCCESS]


Attaching 5 streams to port(s) [1]:                          [SUCCESS]


Starting traffic on port(s) [0, 1]:                          [SUCCESS]

51.00 [ms]

trex>
----


==== Tutorial: Per stream statistics 

* Per stream statistics are implemented using hardware assist when possible (examples: Intel X710/XL710 NIC flow director rules).
* With other NICs (examples: Intel I350, 82599), per stream statistics are implemented in software.
* Implementation:
** User chooses 32-bit packet group ID (pg_id) for each stream that need statistic reporting. Same pg_id can be used for more than one stream. In this case, statistics for all streams with the same pg_id will be combined.
** The IPv4 identification  (or IPv6 flow label in case of IPv6 packet) field of the stream is changed to a value within the reserved range 0xff00 to 0xffff (0xff00 to 0xfffff in case of IPv6). Note that if a stream for which no statistics are needed has an IPv4 Id (or IPv6 flow label) in the reserved range, it is changed (the left bit becomes 0).
** Software implementation: Hardware rules are used to direct packets from relevant streams to rx thread, where they are counted. 
** Hardware implementation: Hardware rules are inserted to count packets from relevant streams.
* Summed up statistics (per stream, per port) is sent using a link:http://zguide.zeromq.org/[ZMQ] async channel to clients.

*Limitations*::

* The feature supports following packet types:
** IPv4 over Ethernet
** IPv4 with one VLAN tag (except 82599 which does not support this type of packet)
** IPv6 over Ethernet (except 82599 which does not support this type of packet)
** IPv6 with one VLAN tag (except 82599 which does not support this type of packet)

* Maximum number of concurrent streams (with different pg_id) on which statistics may be collected: 127

Two examples follow, one using the console and the other using the Python API.

*Console*::

The following simple traffic profile defines 2 streams and configures them with 2 different PG IDs.

*File*:: link:{github_stl_path}/flow_stats.py[stl/flow_stats.py]

[source,python]
----

class STLS1(object):

    def get_streams (self, direction = 0):
        return [STLStream(packet = STLPktBuilder(pkt ="stl/yaml/udp_64B_no_crc.pcap"),
                          mode = STLTXCont(pps = 1000),
                          flow_stats = STLFlowStats(pg_id = 7)), <1>

                STLStream(packet = STLPktBuilder(pkt ="stl/yaml/udp_594B_no_crc.pcap"),
                          mode = STLTXCont(pps = 5000),
                          flow_stats = STLFlowStats(pg_id = 12)) <2>
               ]


----
<1> Assigned to PG ID 7
<2> Assigned to PG ID 12

The following command injects this to the console and uses the textual user interface (TUI) to display the TRex activity:

[source,bash]
----
trex>start -f stl/flow_stats.py --port 0

Removing all streams from port(s) [0]:                       [SUCCESS]


Attaching 2 streams to port(s) [0]:                          [SUCCESS]


Starting traffic on port(s) [0]:                             [SUCCESS]

155.81 [ms]

trex>tui

Streams Statistics

   PG ID    |        12         |         7
 --------------------------------------------------
 Tx pps     |         5.00 Kpps |        999.29 pps   #<1>
 Tx bps L2  |        23.60 Mbps |       479.66 Kbps
 Tx bps L1  |        24.40 Mbps |       639.55 Kbps
 ---        |                   |
 Rx pps     |         5.00 Kpps |        999.29 pps   #<2>
 Rx bps     |               N/A |               N/A   #<3>
 ----       |                   |
 opackets   |            222496 |             44500
 ipackets   |            222496 |             44500
 obytes     |         131272640 |           2670000
 ibytes     |               N/A |               N/A   #<3>
 -----      |                   |
 tx_pkts    |      222.50 Kpkts |       44.50 Kpkts
 rx_pkts    |      222.50 Kpkts |       44.50 Kpkts
 tx_bytes   |         131.27 MB |           2.67 MB
 rx_bytes   |               N/A |               N/A   #<3>

----
<1> Tx bandwidth of the streams matches the configured values.
<2> Rx bandwidth (999.29 pps) matches the Tx bandwidth (999.29 pps), indicating that there were no drops.
<3> RX BPS is not supported on this platform (no hardware support for BPS), so TRex displays N/A.


*Flow Stats Using The Python API*::

The Python API example uses the following traffic profile:

[source,python]
----
def rx_example (tx_port, rx_port, burst_size):

    # create client
    c = STLClient()
    
    try:
        pkt = STLPktBuilder(pkt = Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/
                                  UDP(dport=12,sport=1025)/IP()/'a_payload_example')

        s1 = STLStream(name = 'rx',
                       packet = pkt,
                       flow_stats = STLFlowStats(pg_id = 5),    <1>
                       mode = STLTXSingleBurst(total_pkts = 5000,
                                               percentage = 80  
                                               ))

        # connect to server
        c.connect()

        # prepare our ports - TX/RX
        c.reset(ports = [tx_port, rx_port])

        # add the stream to the TX port
        c.add_streams([s1], ports = [tx_port])

        # start and wait for completion
        c.start(ports = [tx_port])
        c.wait_on_traffic(ports = [tx_port])

        # fetch stats for PG ID 5
        flow_stats = c.get_stats()['flow_stats'].get(5)    <2>

        tx_pkts  = flow_stats['tx_pkts'].get(tx_port, 0)   <2>
        tx_bytes = flow_stats['tx_bytes'].get(tx_port, 0)  <2>
        rx_pkts  = flow_stats['rx_pkts'].get(rx_port, 0)   <2>

----
<1> Configures the stream to use PG ID 5.
<2> The structure of the object ''flow_stats'' is described below.

==== Tutorial: flow_stats object structure

The flow_stats object is a dictionary whose keys are the configured PG IDs. The next level is a dictionary containing 'tx_pkts', 'tx_bytes', 'rx_pkts', and 'rx_bytes' (on supported HW). Each of these keys contains a dictionary of per port values.

The following shows a flow_stats object for 3 PG IDs after a specific run:

[source,bash]
----
{
 5: {'rx_pkts'  : {0: 0, 1: 0, 2: 500000, 3: 0, 'total': 500000},
     'tx_bytes' : {0: 0, 1: 39500000, 2: 0, 3: 0, 'total': 39500000},
     'tx_pkts'  : {0: 0, 1: 500000, 2: 0, 3: 0, 'total': 500000}},

 7: {'rx_pkts'  : {0: 0, 1: 0, 2: 0, 3: 288, 'total': 288},
     'tx_bytes' : {0: 17280, 1: 0, 2: 0, 3: 0, 'total': 17280},
     'tx_pkts'  : {0: 288, 1: 0, 2: 0, 3: 0, 'total': 288}},

 12: {'rx_pkts' : {0: 0, 1: 0, 2: 0, 3: 1439, 'total': 1439},
      'tx_bytes': {0: 849600, 1: 0, 2: 0, 3: 0, 'total': 849600},
      'tx_pkts' : {0: 1440, 1: 0, 2: 0, 3: 0, 'total': 1440}}
}
----


==== Tutorial: Per stream latency/jitter/packet errors

* Per stream latency/jitter is implemented by software. This is an extension of the per stream statistics. Meaning, whenever you choose to get latency info for a stream, the statistics described
in the "Per stream statistics" section is also available.
* Implementation:
** User chooses 32-bit packet group ID (pg_id) for each stream that need latency reporting. pg_id should be unique per stream.
** The IPv4 identification field (or IPv6 flow label in case of IPv6 packet) of the stream is changed to some defined constant value (in the reserved range described in the "per stream statistics" section), in order to signal the hardware to pass the stream to software.
** Last 16 bytes of the packet payload is used to pass needed information. Information contains ID of the stream, packet sequence number (per stream), timestamp of packet transmission.

* Gathered info (per stream) is sent using a link:http://zguide.zeromq.org/[ZMQ] async channel to clients.

*Limitations*::

* The feature supports following packet types:
** IPv4 over Ethernet
** IPv4 with one VLAN tag (except 82599 which does not support this type of packet)
** IPv6 over Ethernet (except 82599 which does not support this type of packet)
** IPv6 with one VLAN tag (except 82599 which does not support this type of packet)
* Packets must contain at least 16 bytes of payload.
* Each stream must have unique pg_id number. This also means that a given "latency collecting" stream can't be transmitted from two interfaces in parallel (internally it means that there are two streams). 
* Maximum number of concurrent streams (with different pg_id) on which latency info may be collected: 128 (This is in addition to the streams which collect per stream statistics).
* Global multiplier does not apply to this type of stream. The reason is that latency streams are processed by software, so multiplying them might accidently overwhelm the RX core.
  This means that if you have profile with 1 latency stream, and 1 non latency stream, and you change the traffic multipler, latency stream keeps the same rate. If you want to change
  the rate of a latency stream, you need to manually edit your profile file. Usually this is not necessary, since normally you stress the system using non latency stream, and (in parallel) measure latency 
  using constant rate latency stream.

[IMPORTANT]
=====================================
Latency streams are not supported in full line rate like normal streams. Both from, transmit and receive point of view. This is a design consideration to keep the latency measurement accurate and preserve CPU resource. One of the reason for doing so that in most cases it is enough to have a latency stream not in full rate. For example, if the required latency resolution is 10usec there is no need to send a latency stream in speed higher than 100KPPS- usually queues are built over time, so it is not possible that one packet will have a latency and another packet in the same path will not have the same latency. The none latency stream could be in full line rate (e.g. 100MPPS) to load the DUT while the low speed latency stream will measure this path latency. 
Don't expect the total latency streams rate to be higher than 1-5MPPS 
=====================================

Two examples follow. One using the console and the other using the Python API.

*Console*::

The following simple traffic profile defines 2 streams and configures them with 2 different PG IDs.

*File*:: link:{github_stl_path}/flow_stats_latency.py[stl/flow_stats_latency.py]

[source,python]
----

class STLS1(object):

    def get_streams (self, direction = 0):
        return [STLStream(packet = STLPktBuilder(pkt ="stl/yaml/udp_64B_no_crc.pcap"),
                          mode = STLTXCont(pps = 1000),
                          flow_stats = STLFlowLatencyStats(pg_id = 7)), <1>

                STLStream(packet = STLPktBuilder(pkt ="stl/yaml/udp_594B_no_crc.pcap"),
                          mode = STLTXCont(pps = 5000),
                          flow_stats = STLFlowLatencyStats(pg_id = 12)) <2>
               ]


----
<1> Assigned to PG ID 7 , PPS would be *1000* regardless of the multplier 
<2> Assigned to PG ID 12, PPS would be *5000* regardless of the multplier 

The following command injects this to the console and uses the textual user interface (TUI) to display the TRex activity:

[source,bash]
----
trex>start -f stl/flow_stats.py --port 0

trex>tui

Latency Statistics (usec)

   PG ID     |       7       |       12
 ----------------------------------------------
 Max latency  |              0 |              0 #<1>
 Avg latency  |              5 |              5 #<2>
 -- Window -- |                |
 Last (max)   |              3 |              4 #<3>
 Last-1       |              3 |              3
 Last-2       |              4 |              4
 Last-3       |              4 |              3
 Last-4       |              4 |              4
 Last-5       |              3 |              4
 Last-6       |              4 |              3
 Last-7       |              4 |              3
 Last-8       |              4 |              4
 Last-9       |              4 |              3
 ---          |                |
 Jitter       |              0 |              0 #<4>
 ----         |                |
 Errors       |              0 |              0 #<5>

----
<1> Maximum latency measured over the stream lifetime (in usec).
<2> Average latency over the stream lifetime (usec).
<3> Maximum latency measured between last two data reads from server (We currently read every 0.5 second).
    Numbers below are maximum latency for previous measuring periods, so we get latency history for last few seconds.
<4> Jitter of latency measurements.
<5> Indication of number of errors (it is the sum of seq_too_high and seq_too_low. You can see description in Python API doc below). In the future it will be possible to 'zoom in', to see specific counters.
    For now, if you need to see specific counters, you can use the Python API.
   

An example of API usage is as follows

*Example File*:: link:{github_stl_examples_path}/stl_flow_latency_stats.py[stl_flow_latency_stats.py]

[source,python]
----

    stats = c.get_stats()

    flow_stats = stats['flow_stats'].get(5)
    lat_stats = stats['latency'].get(5)                 <1>


    tx_pkts  = flow_stats['tx_pkts'].get(tx_port, 0)
    tx_bytes = flow_stats['tx_bytes'].get(tx_port, 0)
    rx_pkts  = flow_stats['rx_pkts'].get(rx_port, 0)
    drops = lat_stats['err_cntrs']['dropped']
    ooo = lat_stats['err_cntrs']['out_of_order']
    dup = lat_stats['err_cntrs']['dup']
    sth = lat_stats['err_cntrs']['seq_too_high']
    stl = lat_stats['err_cntrs']['seq_too_low']
    lat = lat_stats['latency']
    jitter = lat['jitter']
    avg = lat['average']
    tot_max = lat['total_max']
    last_max = lat['last_max']
    hist = lat ['histogram']
    
    # lat_stats will be in this format   

    latency_stats ==  {  
         'err_cntrs':{                  # error counters <2>
            u'dup':0,                   # Same sequence number was received twice in a row
            u'out_of_order':0,          # Packets received with sequence number too low (We assume it is reorder)
            u'dropped':0                # Estimate of number of packets that were dropped (using seq number)
            u'seq_too_high':0,          # seq number too high events
            u'seq_too_low':0,           # seq number too low events
         },
         'latency':{  
            'jitter':0,                 # in usec
            'average':15.2,             # average latency (usec)
            'last_max':0,               # last 0.5 sec window maximum latency (usec)
            'total_max':44,             # maximum latency (usec)
            'histogram':[               # histogram of latency
               {  
                  u'key':20,            # bucket counting packets with latency in the range 20 to 30 usec
                  u'val':489342         # number of samples that hit this bucket's range
               },
               {  
                  u'key':30,
                  u'val':10512
               },
               {  
                  u'key':40,
                  u'val':143
               },
               {  
                  'key':0,              # bucket counting packets with latency in the range 0 to 10 usec
                  'val':3
               }
            ]
         }
      },

   
----
<1> Get the Latency dictionary
<2> For calculating packet error events, we add sequence number to each packet's payload. We decide what went wrong only according to sequence number
    of last packet received and that of the previous packet. 'seq_too_low' and 'seq_too_high' count events we see. 'dup', 'out_of_order' and 'dropped'
    are heuristics we apply to try and understand what happened. They will be accurate in common error scenarios.
    We describe few scenarios below to help understand this. + 

*Error counters scenarios*::
Scenario 1: Received packet with seq num 10, and another one with seq num 10. We increment 'dup' and 'seq_too_low' by 1. + 
Scenario 2: Received pacekt with seq num 10 and then packet with seq num 15. We assume 4 packets were dropped, and increment 'dropped' by 4, and 'seq_too_high' by 1.
  We expect next packet to arrive with sequence number 16. + 
Scenario 2 continue: Received packet with seq num 11. We increment 'seq_too_low' by 1. We increment 'out_of_order' by 1. We *decrement* 'dropped' by 1.
  (We assume here that one of the packets we considered as dropped before, actually arrived out of order).

==== Tutorial: HLT traffic profile 

The traffic_config API has set of arguments for specifying streams - in particular, the packet template, which field, and how to send it.
// clarify "which field"
It is possible to define a traffic profile using HTTAPI arguments.
// clarify names: "HLT traffic profile", "traffic_config API", "HTTAP"
The API creates native Scapy/Field Engine instructions.
For limitations see xref:altapi-support[here].

*File*:: link:{github_stl_path}/hlt/hlt_udp_inc_dec_len_9k.py[stl/hlt/hlt_udp_inc_dec_len_9k.py]

[source,python]
----

class STLS1(object):
    '''
    Create 2 Eth/IP/UDP streams with different packet size:
    First stream will start from 64 bytes (default) and will increase until max_size (9,216)
    Seconds stream will decrease the packet size in reverse way
    '''

    def create_streams (self):
        max_size = 9*1024
        return [STLHltStream(length_mode = 'increment',
                             frame_size_max = max_size,
                             l3_protocol = 'ipv4',
                             ip_src_addr = '16.0.0.1',
                             ip_dst_addr = '48.0.0.1',
                             l4_protocol = 'udp',
                             udp_src_port = 1025,
                             udp_dst_port = 12,
                             rate_pps = 1,
                             ),
                STLHltStream(length_mode = 'decrement',
                             frame_size_max = max_size,
                             l3_protocol = 'ipv4',
                             ip_src_addr = '16.0.0.1',
                             ip_dst_addr = '48.0.0.1',
                             l4_protocol = 'udp',
                             udp_src_port = 1025,
                             udp_dst_port = 12,
                             rate_pps = 1,
                             )
               ]

    def get_streams (self, direction = 0, **kwargs):
        return self.create_streams()
----

The following command, within a bash window, runs the traffic profile with the simulator to generate pcap file.

[source,bash]
----
$ ./stl-sim -f stl/hlt/hlt_udp_inc_dec_len_9k.py -o b.pcap -l 10 
----

The following commands, within a bash window, convert to native JSON or YAML.

[source,bash]
----
$ ./stl-sim -f stl/hlt/hlt_udp_inc_dec_len_9k.py --json
----

[source,bash]
----
$ ./stl-sim -f stl/hlt/hlt_udp_inc_dec_len_9k.py --yaml
----

Alternatively, use the following command to convert to a native Python profile.

[source,bash]
----
$ ./stl-sim -f stl/hlt/hlt_udp_inc_dec_len_9k.py --native 
----

.Auto-generated code
[source,python]
----
# !!! Auto-generated code !!!
from trex_stl_lib.api import *

class STLS1(object):
    def get_streams(self):
        streams = []
        
        packet = (Ether(src='00:00:01:00:00:01', dst='00:00:00:00:00:00', type=2048) / 
                  IP(proto=17, chksum=5882, len=9202, ihl=5L, id=0) / 
                  UDP(dport=12, sport=1025, len=9182, chksum=55174) / 
                  Raw(load='!' * 9174))
        vm = STLScVmRaw([CTRexVmDescFlowVar(name='pkt_len', size=2, op='inc', 
                          init_value=64, min_value=64, max_value=9216, step=1),
                         CTRexVmDescTrimPktSize(fv_name='pkt_len'),
                         CTRexVmDescWrFlowVar(fv_name='pkt_len', 
                         pkt_offset=16, add_val=-14, is_big=True),
                         CTRexVmDescWrFlowVar(fv_name='pkt_len', 
                         pkt_offset=38, add_val=-34, is_big=True),
                         CTRexVmDescFixIpv4(offset=14)], split_by_field = 'pkt_len')
        stream = STLStream(packet = CScapyTRexPktBuilder(pkt = packet, vm = vm),
                           mode = STLTXCont(pps = 1.0))
        streams.append(stream)
        
        packet = (Ether(src='00:00:01:00:00:01', dst='00:00:00:00:00:00', type=2048) / 
                  IP(proto=17, chksum=5882, len=9202, ihl=5L, id=0) / 
                  UDP(dport=12, sport=1025, len=9182, chksum=55174) / 
                  Raw(load='!' * 9174))
        vm = STLScVmRaw([CTRexVmDescFlowVar(name='pkt_len', size=2, op='dec', 
                         init_value=9216, min_value=64, 
                         max_value=9216, step=1),
                         CTRexVmDescTrimPktSize(fv_name='pkt_len'),
                         CTRexVmDescWrFlowVar(fv_name='pkt_len', pkt_offset=16, 
                         add_val=-14, is_big=True),
                         CTRexVmDescWrFlowVar(fv_name='pkt_len', 
                         pkt_offset=38, add_val=-34, is_big=True),
                         CTRexVmDescFixIpv4(offset=14)], split_by_field = 'pkt_len')
        stream = STLStream(packet = CScapyTRexPktBuilder(pkt = packet, vm = vm),
                           mode = STLTXCont(pps = 1.0))
        streams.append(stream)

        return streams

def register():
    return STLS1()
----    

Use the following command within the TRex console to run the profile.

[source,bash]
----
TRex>start -f stl/hlt/hlt_udp_inc_dec_len_9k.py -m 10mbps -a     
----


=== PCAP Based Traffic Tutorials

==== PCAP Based Traffic

TRex provides a method of using a pre-recorded traffic as a profile template.

There are two main distinct ways of creating a profile or a test based on a PCAP.

* Local PCAP push 
* Server based push

===== Local PCAP push

On this mode, the PCAP file is loaded locally by the Python client,
transformed to a list of streams which each one contains a single packet
and points to the next one.

This allows of a very flexible structure which can basically provide every
functionality that a regular list of streams allow.

However, due to the overhead of processing and 
sending a list of streams this method is limited to a file size (on default 1MB)


*Pros:*

* supports most CAP file formats
* supports field engine
* provides a way of locally manipulating packets as streams
* supports same rate as regular streams

*Cons:*

* limited in file size
* high configuration time due to transmitting the CAP file as streams


===== Server based push

To provide also a way of injecting a much larger PCAP files, TRex also provides
a server based push.

The mechansim is much different and it simply providing a server a PCAP file which
in turn is loaded to the server and injected packet after packet.

This method provides an unlimited file size to be injected, and the overhead of
setting up the server with the required configuration is much lower.


*Pros:*

* no limitation of PCAP file size
* no overhead in sending any size of PCAP to the server

*Cons:*

* does not support field engine
* support only PCAP and ERF formats
* requires the file path to be accessible from the server
* rate of transmition is usually limited by I/O performance and buffering (HDD)


==== Tutorial: Simple PCAP file - Profile

*Goal*:: Load a pcap file with a *number* of packets, creating a stream with a burst value of 1 for each packet. The inter-stream gap (ISG) for each stream is equal to the inter-packet gap (IPG).

*File*:: link:{github_stl_path}/pcap.py[pcap.py]

[source,python]
----
    def get_streams (self,
                     ipg_usec = 10.0,                           <1>
                     loop_count = 1):                           <2>

        profile = STLProfile.load_pcap(self.pcap_file,          <3>
                                       ipg_usec = ipg_usec, 
                                       loop_count = loop_count)
----
<1> The inter-stream gap in microseconds.
<2> Loop count.
<3> Input pcap file. 

// Please leave this comment - helping rendition.

image::images/stl_loop_count_01b.png[title="Example of multiple streams",align="left",width="80%", link="images/stl_loop_count_01b.png"]

// OBSOLETE: image::images/stl_loop_count_01b.png[title="Streams, loop_count",align="left",width={p_width_1a}, link="images/stl_loop_count_01b.png"]

The figure shows the streams for a pcap file with 3 packets, with a loop configured.

* Each stream is configured to Burst mode with 1 packet.
* Each stream triggers the next stream. 
* The last stream triggers the first with `action_loop=loop_count` if `loop_count` > 1.

The profile runs on one DP thread because it has a burst with 1 packet. (Split cannot work in this case).

To run this example, enter:

[source,bash]
----
./stl-sim -f stl/pcap.py --yaml
----

The following output appears:

[source,python]
----
$./stl-sim -f stl/pcap.py --yaml
- name: 1
  next: 2                      <1> 
  stream:
    action_count: 0
    enabled: true
    flags: 0
    isg: 10.0
    mode:
      percentage: 100
      total_pkts: 1
      type: single_burst
    packet:
      meta: ''
    rx_stats:
      enabled: false
    self_start: true
    vm:
      instructions: []
      split_by_var: ''
- name: 2
  next: 3
  stream:
    action_count: 0
    enabled: true
    flags: 0
    isg: 10.0
    mode:
      percentage: 100
      total_pkts: 1
      type: single_burst
    packet:
      meta: ''
    rx_stats:
      enabled: false
    self_start: false
    vm:
      instructions: []
      split_by_var: ''
- name: 3
  next: 4
  stream:
    action_count: 0
    enabled: true
    flags: 0
    isg: 10.0
    mode:
      percentage: 100
      total_pkts: 1
      type: single_burst
    packet:
      meta: ''
    rx_stats:
      enabled: false
    self_start: false
    vm:
      instructions: []
      split_by_var: ''
- name: 4
  next: 5
  stream:
    action_count: 0
    enabled: true
    flags: 0
    isg: 10.0
    mode:
      percentage: 100
      total_pkts: 1
      type: single_burst
    packet:
      meta: ''
    rx_stats:
      enabled: false
    self_start: false
    vm:
      instructions: []
      split_by_var: ''
- name: 5
  next: 1                   <2>
  stream:
    action_count: 1         <3>
    enabled: true
    flags: 0
    isg: 10.0
    mode:
      percentage: 100
      total_pkts: 1
      type: single_burst
    packet:
      meta: ''
    rx_stats:
      enabled: false
    self_start: false       <4>    
    vm:
      instructions: []
      split_by_var: ''
----
<1> Each stream triggers the next stream.
<2> The last stream triggers the first. 
<3> The current loop count is given in: `action_count: 1`
<4> `Self_start` is enabled for the first stream, disabled for all other streams.


==== Tutorial: Simple PCAP file - API

For this case we can use the local push:

[source,bash]
----
c = STLClient(server = "localhost")

try:

    c.connect()
    c.reset(ports = [0])

    d = c.push_pcap(pcap_file = "my_file.pcap",             # our local PCAP file
		    ports = 0,                              # use port 0
                    ipg_usec = 100,                         # IPG
                    count = 1)                              # inject only once

    c.wait_on_traffic()


    stats = c.get_stats()
    opackets = stats[port]['opackets']
    print("{0} packets were Tx on port {1}\n".format(opackets, port))

  except STLError as e:
      print(e)
      sys.exit(1)

  finally:
      c.disconnect()

----

==== Tutorial: PCAP file iterating over dest IP 

For this case we can use the local push:

[source,bash]
----
c = STLClient(server = "localhost")

try:

    c.connect()
    port = 0
    c.reset(ports = [port])

    vm = STLIPRange(dst = {'start': '10.0.0.1', 'end': '10.0.0.254', 'step' : 1})

    c.push_pcap(pcap_file = "my_file.pcap",             # our local PCAP file
                ports = port,                           # use 'port'
                ipg_usec = 100,                         # IPG
                count = 1,                              # inject only once
		vm = vm                                 # provide VM object
		)

    c.wait_on_traffic()

    stats = c.get_stats()
    opackets = stats[port]['opackets']
    print("{0} packets were Tx on port {1}\n".format(opackets, port))

  except STLError as e:
      print(e)
      sys.exit(1)

  finally:
      c.disconnect()

----

==== Tutorial: PCAP file with VLAN 

This is a more intresting case where we can provide the push API a function hook.
The hook will be called for each packet that is loaded from the PCAP file.

[source,bash]
----
# generate a packet hook function with a VLAN ID
def packet_hook_generator (vlan_id):

    # this function will be called for each packet and will expect
    # the new packet as a return value
    def packet_hook (packet):
        packet = Ether(packet)

        if vlan_id >= 0 and vlan_id <= 4096:
            packet_l3 = packet.payload
            packet = Ether() / Dot1Q(vlan = vlan_id) / packet_l3

        return str(packet)

    return packet_hook

c = STLClient(server = "localhost")

try:

    c.connect()
    port = 0
    c.reset(ports = [port])

    vm = STLIPRange(dst = {'start': '10.0.0.1', 'end': '10.0.0.254', 'step' : 1})

    d = c.push_pcap(pcap_file = "my_file.pcap",
		    ports = port,         
                    ipg_usec = 100,
                    count = 1,
                    packet_hook = packet_hook_generator(vlan_id = 1)
		    )

    c.wait_on_traffic()

    stats = c.get_stats()
    opackets = stats[port]['opackets']
    print("{0} packets were Tx on port {1}\n".format(opackets, port))

  except STLError as e:
      print(e)
      sys.exit(1)

  finally:
      c.disconnect()

----

==== Tutorial: PCAP file and Field Engine - Profile

The following example loads a pcap file to many streams, and attaches Field Engine program to each stream. For example, the Field Engine can change the `IP.src` of all the streams to a random IP address.
 
*File*:: link:{github_stl_path}/pcap_with_vm.py[stl/pcap_with_vm.py]

[source,python]
----

    def create_vm (self, ip_src_range, ip_dst_range):
        if not ip_src_range and not ip_dst_range:
            return None

        # until the feature of offsets will be fixed for PCAP use hard coded offsets

        vm = []

        if ip_src_range:
            vm += [STLVmFlowVar(name="src", 
                                min_value = ip_src_range['start'], 
                                max_value = ip_src_range['end'], 
                                size = 4, op = "inc"),
                   #STLVmWrFlowVar(fv_name="src",pkt_offset= "IP.src")
                   STLVmWrFlowVar(fv_name="src",pkt_offset = 26)
                  ]

        if ip_dst_range:
            vm += [STLVmFlowVar(name="dst", 
                                min_value = ip_dst_range['start'], 
                                max_value = ip_dst_range['end'], 
                                size = 4, op = "inc"),
                   
                   #STLVmWrFlowVar(fv_name="dst",pkt_offset= "IP.dst")
                   STLVmWrFlowVar(fv_name="dst",pkt_offset = 30)
                   ]

        vm += [#STLVmFixIpv4(offset = "IP")
              STLVmFixIpv4(offset = 14)
              ]

        return vm


    def get_streams (self,
                     ipg_usec = 10.0,
                     loop_count = 5,
                     ip_src_range = None,
                     ip_dst_range = {'start' : '10.0.0.1', 
                                        'end': '10.0.0.254'}):

        vm = self.create_vm(ip_src_range, ip_dst_range)                 <1> 
        profile = STLProfile.load_pcap(self.pcap_file, 
                                      ipg_usec = ipg_usec, 
                                      loop_count = loop_count, 
                                      vm = vm)                          <2> 

        return profile.get_streams()
----
<1> Creates Field Engine program.
<2> Applies the Field Engine to all packets -> converts to streams. 

.Output 
[format="csv",cols="1^,2^,1^", options="header",width="40%"]
|=================
pkt, IPv4 , flow 
 1  , 10.0.0.1, 1 
 2  , 10.0.0.1, 1 
 3  , 10.0.0.1, 1 
 4  , 10.0.0.1, 1 
 5  , 10.0.0.1, 1 
 6  , 10.0.0.1, 1
 7  , 10.0.0.2, 2
 8  , 10.0.0.2, 2 
 9  , 10.0.0.2, 2 
 10  , 10.0.0.2,2  
 11  , 10.0.0.2,2  
 12  , 10.0.0.2,2 
|=================


==== Tutorial: Huge server side PCAP file

Now we would like to use the remote push API.
This will require the file path to be visible to the server.

[source,bash]
----
c = STLClient(server = "localhost")

try:

    c.connect()
    c.reset(ports = [0])

    # use an absolute path so the server can reach this
    pcap_file = os.path.abspath(pcap_file)

    c.push_remote(pcap_file = pcap_file,                  
		  ports = 0,                              
                  ipg_usec = 100,                         
                  count = 1)                              

    c.wait_on_traffic()


    stats = c.get_stats()
    opackets = stats[port]['opackets']
    print("{0} packets were Tx on port {1}\n".format(opackets, port))

  except STLError as e:
      print(e)
      sys.exit(1)

  finally:
      c.disconnect()

----

==== Tutorial: A long list of PCAP files of varied sizes

This is also a good candidate for the remote push API.
The total overhead for sending the PCAP files will be high if the list is long,
so we would prefer to inject them with remote API and to save the transmition of the packets.

[source,bash]
----
c = STLClient(server = "localhost")

try:

    c.connect()
    c.reset(ports = [0])

    # iterate over the list and send each file to the server
    for pcap_file in pcap_file_list:
	pcap_file = os.path.abspath(pcap_file)

	c.push_remote(pcap_file = pcap_file,                  
	   	      ports = 0,                              
                      ipg_usec = 100,                         
                      count = 1)                              

        c.wait_on_traffic()


        stats = c.get_stats()
        opackets = stats[port]['opackets']
        print("{0} packets were Tx on port {1}\n".format(opackets, port))

  except STLError as e:
      print(e)
      sys.exit(1)

  finally:
      c.disconnect()

----

=== Performance Tweaking
In this section we provide some advanced features to help get the most of TRex performance.
The reason that those features are not active out of the box because they might have
some impact on other areas and in general, might sacrafice one or more properties
that requires the user to explicitly give up on those.

==== Caching MBUFs


see xref:trex_cache_mbuf[here]


==== Core masking per interface
By default, TRex will regard any TX command with a **greedy approach**:
All the DP cores associated with this port will be assigned in order to produce the maximum
throughput.

image::images/core_mask_split.png[title="Greedy Approach - Splitting",align="left",width={p_width}, link="images/core_mask_split.png"]

However, in some cases it might be beneficial to provide a port with a subset of the cores to use.


For example, when injecting traffic on two ports and the following conditions are met:

* the two ports are adjacent
* the profile is symmetric

Due to TRex architecture, adjacent ports (e.g. port 0 & port 1) shares the same cores,
and using the greedy approach will cause all the cores to transmit on both port 0 and port 1.

When the profile is *symmetric* it will be wiser to pin half the cores to port 0 and half
the cores to port 1 and thus avoid cache trashing and bouncing.
If the profile is not symmetric, the static pinning may deny CPU cycles from the more congested port.

image::images/core_mask_pin.png[title="Pinning Cores To Ports",align="left",width={p_width}, link="images/core_mask_pin.png"]

TRex provides this in two ways:


==== Predefind modes

As said above, the default mode is 'split' mode, but you can provide a predefined mode called 'pin'.
This can be done by both API and from the console:

[source,bash]
----

trex>start -f stl/syn_attack.py -m 40mpps --total -p 0 1 --pin        <-- provide '--pin' to the command

Removing all streams from port(s) [0, 1]:                    [SUCCESS]


Attaching 1 streams to port(s) [0]:                          [SUCCESS]


Attaching 1 streams to port(s) [1]:                          [SUCCESS]


Starting traffic on port(s) [0, 1]:                          [SUCCESS]

60.20 [ms]

trex>

----


.API example to PIN cores 
[source,python]
----
 c.start(ports = [port_a, port_b], mult = rate,core_mask=STLClient.CORE_MASK_PIN) <1>      
----       
<1> core_mask = STLClient.CORE_MASK_PIN 

.API example to MASK cores 
[source,python]
----
 c.start(ports = [port_a, port_b], mult = rate, core_mask=[0x1,0x2])<1>
----       
<1> DP Core 0 (mask==1) is assign to port 1 and DP core 1 (mask==2) is for port 2


[source,bash]
----

We can see in the CPU util. available from the TUI window,
that each core was reserverd for an interface:

Global Stats:

Total Tx L2  : 20.49 Gb/sec
Total Tx L1  : 26.89 Gb/sec
Total Rx     : 20.49 Gb/sec
Total Pps    : 40.01 Mpkt/sec       <-- performance meets the requested rate
Drop Rate    : 0.00 b/sec
Queue Full   : 0 pkts


Cpu Util(%)

  Thread   | Avg | Latest | -1  | -2  | -3  | -4  | -5  | -6  | -7  | -8 

 0   (0)   |  92 |     92 |  92 |  91 |  91 |  92 |  91 |  92 |  93 |  94
 1 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 2   (1)   |  96 |     95 |  95 |  96 |  96 |  96 |  96 |  95 |  94 |  95
 3 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 4   (0)   |  92 |     93 |  93 |  91 |  91 |  93 |  93 |  93 |  93 |  93
 5 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 6   (1)   |  88 |     88 |  88 |  88 |  88 |  88 |  88 |  88 |  87 |  87
 7 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0

----


If we had used the *default mode*, the table should have looked like this, and yield
much worse performance:

[source,bash]
----

Global Stats:

Total Tx L2  : 12.34 Gb/sec
Total Tx L1  : 16.19 Gb/sec
Total Rx     : 12.34 Gb/sec
Total Pps    : 24.09 Mpkt/sec       <-- performance is quite low than requested
Drop Rate    : 0.00 b/sec
Queue Full   : 0 pkts

Cpu Util(%)

  Thread   | Avg | Latest | -1  | -2  | -3  | -4  | -5  | -6  | -7  | -8  

 0  (0,1)  | 100 |    100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 
 1 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 
 2  (0,1)  | 100 |    100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 
 3 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 
 4  (0,1)  | 100 |    100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 
 5 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 
 6  (0,1)  | 100 |    100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 
 7 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 

----

This feature is also available from the Python API by providing:
*CORE_MASK_SPLIT* or *CORE_MASK_PIN* to the start API.


==== Manual mask
Sometimes for debug purposes or for a more advanced core scheduling you might want
to provide a manual masking that will guide the server on which cores to use.

For example, let's assume we have a profile that utilize 95% of the traffic on one side,
and in the other direction it provides 5% of the traffic.
Let's assume also we have 8 cores assigned to the two interfaces.

We want to assign 3 cores to interface 0 and 1 core only to interface 1.

We can provide this line to the console (or for the API by providing a list of masks to the start
command):

[source,bash]
----
trex>start -f stl/syn_attack.py -m 10mpps --total -p 0 1 --core_mask 0xE 0x1

Removing all streams from port(s) [0, 1]:                    [SUCCESS]


Attaching 1 streams to port(s) [0]:                          [SUCCESS]


Attaching 1 streams to port(s) [1]:                          [SUCCESS]


Starting traffic on port(s) [0, 1]:                          [SUCCESS]

37.19 [ms]

trex>                   
----

[source,python]
----
 c.start(ports = [port_a, port_b], mult = rate,core_mask=[0x0xe,0x1]) <1>
----       
<1> mask of cores per port



The following output is received on the TUI CPU util window:

[source,bash]
----

Total Tx L2  : 5.12 Gb/sec
Total Tx L1  : 6.72 Gb/sec
Total Rx     : 5.12 Gb/sec
Total Pps    : 10.00 Mpkt/sec
Drop Rate    : 0.00 b/sec
Queue Full   : 0 pkts

Cpu Util(%)

  Thread   | Avg | Latest | -1  | -2  | -3  | -4  | -5  | -6  | -7  | -8 

 0   (1)   |  45 |     45 |  45 |  45 |  45 |  45 |  46 |  45 |  46 |  45
 1 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 2   (0)   |  15 |     15 |  14 |  15 |  15 |  14 |  14 |  14 |  14 |  14
 3 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 4   (0)   |  14 |     14 |  14 |  14 |  14 |  14 |  14 |  14 |  15 |  14
 5 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0
 6   (0)   |  15 |     15 |  15 |  15 |  15 |  15 |  15 |  15 |  15 |  15
 7 (IDLE)  |   0 |      0 |   0 |   0 |   0 |   0 |   0 |   0 |   0 |   0

----

=== Reference

Additional profiles and examples are available in the `stl/hlt` folder.

For information about the Python client API, see the link:cp_stl_docs/index.html[Python Client API documentation].

=== Console commands 

==== Overview 

The console uses TRex client API to control TRex.

*Important information about console usage*::

// it seems that all of these provide background info, not guidelines for use. the use of "should" is unclear.

* The console does not save its own state. It caches the server state. It is assumed that there is only one console with R/W permission at any given time, so once connected as R/W console (per user/interface), it can read the server state and then cache all operations. 
* Many read-only clients can exist for the same user interface. 
* The console syncs with the server to get the state during connection stage, and caches the server information locally.
* In case of crash or exit of the console, it will sync again at startup.
* Command line parameters order is not important.
* The console can display TRex stats in real time. You can open two consoles simultaneously - one for commands (R/W) and one for displaying statistics (read only).

==== Ports State

[options="header",cols="^1,3a"]
|=================
| state   |    meaning
| IDLE    | No streams
| STREAMS | Has streams. Not transmitting (did not start transmission, or it was stopped).
| WORK    | Has streams. Transmitting.
| PAUSE   | Has streams. Transmission paused. 
|=================


[source,bash]
----

  IDLE -> (add streams) -> STREAMS (start) -> WORK (stop) -> STREAMS (start) 
                                           |   WORK (pause) -> PAUSE (resume )---
                                           |                                     | 
                                           |                                     |
                                           --------------------------------------    
----

==== Common Arguments 

Following command line arguments are common to many commands.

===== Help
You can specify -h or --help after each command to get full description of its purpose and arguments.

*Example*::

[source,bash]
----
$streams -h
----

===== Port mask 

Port mask enables selecting range, or set of ports.

*Example*::

[source,bash]
----
$<command>   [-a] [--port 1 2 3]  [--port 0xff]  [--port clients/servers] 

  port mask : 
    [-a]           : all ports 
    [--port 1 2 3]  : port 1,2 3
    [--port 0xff]   : port by mask 0x1 for port 0 0x3 for port 0 and 1
----

===== Duration 

Duration is expressed in seconds, minutes, or hours. 

*Example*::

[source,bash]
----
$<command> [-d 100] [-d 10m] [-d 1h] 
  
  duration:
   -d 100 : Seconds 
   -d 10m : Minutes
   -d 1h  : Hours
----


===== Multiplier 

The traffic profile defines default bandwidth for each stream. Using the multiplier command line argument, it is possible to set different bandwidth. It is possible to specify either packets or bytes per second, percentage of total port rate, or just factor to multiply the original rate by.

*Example*::

[source,bash]
----
$<command> [-m 100] [-m 10gb] [-m 10kpps] [-m 40%]
  
  multiplier :
  
  -m 100    : Multiply original rate by given factor.
  -m 10gbps : From graph calculate the maximum rate as this bandwidth for all streams( for each port )
  -m 10kpps : From graph calculate the maximum rate as this pps for all streams      ( for each port )
  -m 40%    : From graph calculate the maximum rate as this precent from total port rate ( for each port )
----
// What does it mean from graph???


==== Commands 

===== connect 

Attempts to connet to the server you were connected to. Can be used in case server was restarted. Can not be used
in order to connect to different server. In addition:

* Syncs the port info and stream info state.
* Reads all counter statistics for reference.

// IGNORE: this line helps rendering of next line

*Example*::

[source,bash]
----
$connect
----

===== reset 

Resets the server and client to a known state. Not used in normal scenarios.

- Forces acquire on all ports
- Stops all traffic on all ports
- Removes all streams from all ports


*Example*::

[source,bash]
----
$reset  
----

===== portattr

Configures port attributes.

*Example*::

[source,python]
----
$portattr --help
usage: port_attr [-h] [--port PORTS [PORTS ...] | -a] [--prom {on,off}]
                 [--link {up,down}] [--led {on,off}] [--fc {none,tx,rx,full}]
                 [--supp]

Sets port attributes

optional arguments:
  -h, --help            show this help message and exit
  --port PORTS [PORTS ...], -p PORTS [PORTS ...]
                        A list of ports on which to apply the command
  -a                    Set this flag to apply the command on all available
                        ports
  --prom {on,off}       Set port promiscuous on/off
  --link {up,down}      Set link status up/down
  --led {on,off}        Set LED status on/off
  --fc {none,tx,rx,full}
                        Set Flow Control type
  --supp                Show which attributes are supported by current NICs
----

image::images/console_link_down.png[title="Setting link down on port 0 affects port 1 at loopback"]


===== clear 

Clears all port stats counters.

*Example*::

[source,bash]
----
$clear -a
----


===== stats 

Can be used to show global/port/stream statistics. +
Also, can be used to retrieve extended stats from port (xstats)

*Example*::

[source,bash]
----
$stats --port 0 -p
$stats -s
----

*Xstats error example*::

[source,bash]
----

trex>stats -x --port 0 2
Xstats:

            Name:              |     Port 0:     |     Port 2:
\------------------------------------------------------------------
rx_good_packets                |       154612905 |       153744994
tx_good_packets                |       154612819 |       153745136
rx_good_bytes                  |      9895225920 |      9839679168
tx_good_bytes                  |      9276768500 |      9224707392
rx_unicast_packets             |       154611873 |       153743952
rx_unknown_protocol_packets    |       154611896 |       153743991
tx_unicast_packets             |       154612229 |       153744562
mac_remote_errors              |               1 |               0 #<1>
rx_size_64_packets             |       154612170 |       153744295
tx_size_64_packets             |       154612595 |       153744902

----

<1> Error that can be seen only with this command

// IGNORE - this line helps rendering

===== streams

Shows info about configured streams on each port, from the client cache. 

*Example*::
  
[source,bash]
----
$streams 

Port 0:

    ID     |     packet type     |  length  |       mode       |      rate       | next stream

    1      | Ethernet:IP:UDP:Raw |       64 |    continuous    |           1 pps |      -1
    2      | Ethernet:IP:UDP:Raw |       64 |    continuous    |       1.00 Kpps |      -1

Port 1:

    ID     |     packet type     |  length  |       mode       |      rate       | next stream

    1      | Ethernet:IP:UDP:Raw |       64 |    continuous    |           1 pps |      -1
    2      | Ethernet:IP:UDP:Raw |       64 |    continuous    |       1.00 Kpps |      -1

----


*Example*::

Use this command to show only ports 1 and 2. 

[source,bash]
----
$streams --port 1 2 

 ..
 ..
----

*Example*::

Use this command to show full information for stream 0 and port 0, output in JSON format.

[source,bash]
----
$streams --port 0 --streams 0

----
        

===== start 

Start transmitting traffic on set of ports

* Removes all streams
* Loads new streams
* Starts traffic (can set multiplier, duration and other parameters)
* Acts only on ports in "stopped: mode. If `--force` is specified, port(s) are first stopped.
* Note: If any ports are not in "stopped" mode, and `--force` is not used the command fails.

// IGNORE: this line helps rendering of next line

*Example*::

Use this command to start a profile on all ports, with a maximum bandwidth of 10 GB.

[source,bash]
----
$start -a -f stl/imix.py  -m 10gb
----

*Example*::

Use this command to start a profile on ports 1 and 2, and multiply the bandwidth specified in the traffic profile by 100.
   
[source,bash]
----
$start -port 1 2 -f stl/imix.py  -m 100
----


===== stop

* Operates on a set of ports 
* Changes the mode of the port(s) to "stopped"
* Does not remove streams

// IGNORE: this line helps rendering of next line

*Example*::

Use this command to stop the specified ports.

[source,bash]
----
$stop --port 0

----


===== pause 

* Operates on a set of ports 
* Changes a working set of ports to "pause" (no traffic transmission) state.

*Example*::

[source,bash]
----
$pause --port 0

----


===== resume 

* Operates on a set of ports 
* Changes a working set of port(s) to "resume" state (transmitting traffic again).
* All ports should be in "paused" status. If any of the ports is not paused, the command fails.

// IGNORE: this line helps rendering of next line

*Example*::

[source,bash]
----
$resume --port 0

----


===== update 

Update the bandwidth multiplier for a set of ports.

* All ports must be in "work" state. If any ports are not in "work" state, the command fails

// IGNORE: this line helps rendering of next line

*Example*::

Multiplly traffic on all ports by a factor of 5.

[source,bash]
----
>update -a -m 5
----


[NOTE]
=====================================
 We might add in the future the ability to disable/enable specific stream, load a new stream dynamically, and so on.
=====================================

// clarify note above

===== TUI

The textual user interface (TUI) displays constantly updated TRex statistics in a textual window.

*Example*::
        
[source,bash]
----
$tui
----

Enters a Stats mode and displays three types of TRex statistics:
* Global/port stats/version/connected etc 
* Per port
* Per port stream 


The followig keyboard commands operate in the TUI window: +
 q - Quit the TUI window (get back to console) +
 c - Clear all counters +
 d, s, l - change display between dashboard (d), streams (s) and l (latency) info. +

=== Benchmarks of 40G NICs

link:trex_stateless_bench.html[TRex stateless benchmarks]

=== Appendix

==== Scapy packet examples

[source,python]
----

# UDP header 
Ether()/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)

# UDP over one vlan
Ether()/Dot1Q(vlan=12)/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)

# UDP QinQ
Ether()/Dot1Q(vlan=12)/Dot1Q(vlan=12)/IP(src="16.0.0.1",dst="48.0.0.1")/UDP(dport=12,sport=1025)

#TCP over IP over VLAN
Ether()/Dot1Q(vlan=12)/IP(src="16.0.0.1",dst="48.0.0.1")/TCP(dport=12,sport=1025)

# IPv6 over vlan
Ether()/Dot1Q(vlan=12)/IPv6(src="::5")/TCP(dport=12,sport=1025)

#Ipv6 over UDP over IP 
Ether()/IP()/UDP()/IPv6(src="::5")/TCP(dport=12,sport=1025)

#DNS packet
Ether()/IP()/UDP()/DNS()

#HTTP packet 
Ether()/IP()/TCP()/"GET / HTTP/1.1\r\nHost: www.google.com\r\n\r\n"
----


==== HLT supported Arguments anchor:altapi-support[]

include::build/hlt_args.asciidoc[]

==== FD.IO open source project using TRex 

link:https://gerrit.fd.io/r/gitweb?p=csit.git;a=tree;f=resources/tools/t-rex[here]


==== Using Stateless client via JSON-RPC

For functions that do not require complex objects and can use JSON-serializable input/output, you can use Stateless API via JSON-RPC proxy server. +
Thus, you can use Stateless TRex *from any language* supporting JSON-RPC.

===== How to run TRex side:

* Run the Stateless TRex server in one of 2 ways:

** Either run TRex directly in shell:
+
[source,bash]
----
sudo ./t-rex-64 -i
----

** Or run it via JSON-RPC command to trex_daemon_server:
+
[source,python]
----
start_trex(trex_cmd_options, user, block_to_success = True, timeout = 40, stateless = True)
----

* Run the RPC "proxy" to stateless, here are also 2 ways:

** run directly:
+
[source,bash]
----
cd automation/trex_control_plane/stl/examples
python rpc_proxy_server.py
----

** Send JSON-RPC command to master_daemon:
+
[source,python]
----
if not master_daemon.is_stl_rpc_proxy_running():
    master_daemon.start_stl_rpc_proxy()
----

Done :)

Now you can send requests to the rpc_proxy_server and get results as array of 2 values:

* If fail, result will be: [False, <traceback log with error>]
* If success, result will be: [True, <return value of called function>]

In same directory of rpc_proxy_server.py, there is python example of usage: using_rpc_proxy.py

===== Native Stateless API functions:

* acquire
* connect
* disconnect
* get_stats
* get_warnings
* push_remote
* reset
* wait_on_traffic

...can be called directly as server.push_remote(\'udp_traffic.pcap'). +
If you need any other function of stateless client, you can either add it to rpc_proxy_server.py, or use this method: +
server.*native_method*(<string of function name>, <args of the function>) +

===== HLTAPI Methods can be called here as well:

* connect
* cleanup_session
* interface_config
* traffic_config
* traffic_control
* traffic_stats

[NOTE]
=====================================================================
In case of names collision with native functions (such as connect), for HLTAPI, function will change to have "hlt_" prefix.
=====================================================================

===== Example of running from Java:

[source,java]
----
package com.cisco.trex_example;

import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Map;
import java.util.HashMap;

import com.googlecode.jsonrpc4j.JsonRpcHttpClient;

public class TrexMain {

    @SuppressWarnings("rawtypes")
    public static Object verify(ArrayList response) {
        if ((boolean) response.get(0)) {
            return response.get(1);
        }
        System.out.println("Error: " + response.get(1));
        System.exit(1);
        return null;
    }

    @SuppressWarnings("rawtypes")
    public static void main(String[] args) throws Throwable {
        try {
            String trex_host = "csi-trex-11";
            int rpc_proxy_port = 8095;
            Map<String, Object> kwargs = new HashMap<>();
            ArrayList<Integer> ports = new ArrayList<Integer>();
            HashMap res_dict = new HashMap<>();
            ArrayList res_list = new ArrayList();
            JsonRpcHttpClient rpcConnection = new JsonRpcHttpClient(new URL("http://" + trex_host + ":" + rpc_proxy_port));

            System.out.println("Initializing Native Client");
            kwargs.put("server", trex_host);
            kwargs.put("force", true);
            verify(rpcConnection.invoke("native_proxy_init", kwargs, ArrayList.class));
            kwargs.clear();

            System.out.println("Connecting to TRex server");
            verify(rpcConnection.invoke("connect", kwargs, ArrayList.class));
            
            System.out.println("Resetting all ports");
            verify(rpcConnection.invoke("reset", kwargs, ArrayList.class));

            System.out.println("Getting ports info");
            kwargs.put("func_name", "get_port_info"); // some "custom" function
            res_list = (ArrayList) verify(rpcConnection.invoke("native_method", kwargs, ArrayList.class));
            System.out.println("Ports info is: " + Arrays.toString(res_list.toArray()));
            kwargs.clear();
            for (int i = 0; i < res_list.size(); i++) {
                    Map port = (Map) res_list.get(i);
                    ports.add((int)port.get("index"));
                    }

            System.out.println("Sending pcap to ports: " + Arrays.toString(ports.toArray()));
            kwargs.put("pcap_filename", "stl/sample.pcap");
            verify(rpcConnection.invoke("push_remote", kwargs, ArrayList.class));
            kwargs.clear();
            verify(rpcConnection.invoke("wait_on_traffic", kwargs, ArrayList.class));

            System.out.println("Getting stats");
            res_dict = (HashMap) verify(rpcConnection.invoke("get_stats", kwargs, ArrayList.class));
            System.out.println("Stats: " + res_dict.toString());

            System.out.println("Deleting Native Client instance");
            verify(rpcConnection.invoke("native_proxy_del", kwargs, ArrayList.class));

        } catch (Throwable e) {
            e.printStackTrace();
        }
    }
}

----