1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
|
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* BSD LICENSE
*
* Copyright(c) 2013 6WIND.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define _FILE_OFFSET_BITS 64
#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <sys/file.h>
#include <unistd.h>
#include <limits.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_filesystem.h"
#include "eal_hugepages.h"
#ifdef RTE_LIBRTE_XEN_DOM0
int rte_xen_dom0_supported(void)
{
return internal_config.xen_dom0_support;
}
#endif
/**
* @file
* Huge page mapping under linux
*
* To reserve a big contiguous amount of memory, we use the hugepage
* feature of linux. For that, we need to have hugetlbfs mounted. This
* code will create many files in this directory (one per page) and
* map them in virtual memory. For each page, we will retrieve its
* physical address and remap it in order to have a virtual contiguous
* zone as well as a physical contiguous zone.
*/
static uint64_t baseaddr_offset;
static unsigned proc_pagemap_readable;
#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
static void
test_proc_pagemap_readable(void)
{
int fd = open("/proc/self/pagemap", O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, EAL,
"Cannot open /proc/self/pagemap: %s. "
"virt2phys address translation will not work\n",
strerror(errno));
return;
}
/* Is readable */
close(fd);
proc_pagemap_readable = 1;
}
/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
unsigned long virtual = (unsigned long)virt;
int page_size = getpagesize();
unsigned long aligned = (virtual & ~ (page_size - 1));
return mlock((void*)aligned, page_size);
}
/*
* Get physical address of any mapped virtual address in the current process.
*/
phys_addr_t
rte_mem_virt2phy(const void *virtaddr)
{
int fd;
uint64_t page, physaddr;
unsigned long virt_pfn;
int page_size;
off_t offset;
/* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
if (!proc_pagemap_readable)
return RTE_BAD_PHYS_ADDR;
/* standard page size */
page_size = getpagesize();
fd = open("/proc/self/pagemap", O_RDONLY);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
__func__, strerror(errno));
return RTE_BAD_PHYS_ADDR;
}
virt_pfn = (unsigned long)virtaddr / page_size;
offset = sizeof(uint64_t) * virt_pfn;
if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
__func__, strerror(errno));
close(fd);
return RTE_BAD_PHYS_ADDR;
}
if (read(fd, &page, sizeof(uint64_t)) < 0) {
RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
__func__, strerror(errno));
close(fd);
return RTE_BAD_PHYS_ADDR;
}
/*
* the pfn (page frame number) are bits 0-54 (see
* pagemap.txt in linux Documentation)
*/
physaddr = ((page & 0x7fffffffffffffULL) * page_size)
+ ((unsigned long)virtaddr % page_size);
close(fd);
return physaddr;
}
/*
* For each hugepage in hugepg_tbl, fill the physaddr value. We find
* it by browsing the /proc/self/pagemap special file.
*/
static int
find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
unsigned i;
phys_addr_t addr;
for (i = 0; i < hpi->num_pages[0]; i++) {
addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
if (addr == RTE_BAD_PHYS_ADDR)
return -1;
hugepg_tbl[i].physaddr = addr;
}
return 0;
}
/*
* Check whether address-space layout randomization is enabled in
* the kernel. This is important for multi-process as it can prevent
* two processes mapping data to the same virtual address
* Returns:
* 0 - address space randomization disabled
* 1/2 - address space randomization enabled
* negative error code on error
*/
static int
aslr_enabled(void)
{
char c;
int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
if (fd < 0)
return -errno;
retval = read(fd, &c, 1);
close(fd);
if (retval < 0)
return -errno;
if (retval == 0)
return -EIO;
switch (c) {
case '0' : return 0;
case '1' : return 1;
case '2' : return 2;
default: return -EINVAL;
}
}
/*
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
static void *
get_virtual_area(size_t *size, size_t hugepage_sz)
{
void *addr;
int fd;
long aligned_addr;
if (internal_config.base_virtaddr != 0) {
addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
baseaddr_offset);
}
else addr = NULL;
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
fd = open("/dev/zero", O_RDONLY);
if (fd < 0){
RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
return NULL;
}
do {
addr = mmap(addr,
(*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED)
*size -= hugepage_sz;
} while (addr == MAP_FAILED && *size > 0);
if (addr == MAP_FAILED) {
close(fd);
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
strerror(errno));
return NULL;
}
munmap(addr, (*size) + hugepage_sz);
close(fd);
/* align addr to a huge page size boundary */
aligned_addr = (long)addr;
aligned_addr += (hugepage_sz - 1);
aligned_addr &= (~(hugepage_sz - 1));
addr = (void *)(aligned_addr);
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
addr, *size);
/* increment offset */
baseaddr_offset += *size;
return addr;
}
/*
* Mmap all hugepages of hugepage table: it first open a file in
* hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
* virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
* in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
* map continguous physical blocks in contiguous virtual blocks.
*/
static int
map_all_hugepages(struct hugepage_file *hugepg_tbl,
struct hugepage_info *hpi, int orig)
{
int fd;
unsigned i;
void *virtaddr;
void *vma_addr = NULL;
size_t vma_len = 0;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
RTE_SET_USED(vma_len);
#endif
for (i = 0; i < hpi->num_pages[0]; i++) {
uint64_t hugepage_sz = hpi->hugepage_sz;
if (orig) {
hugepg_tbl[i].file_id = i;
hugepg_tbl[i].size = hugepage_sz;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
eal_get_hugefile_temp_path(hugepg_tbl[i].filepath,
sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
hugepg_tbl[i].file_id);
#else
eal_get_hugefile_path(hugepg_tbl[i].filepath,
sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
hugepg_tbl[i].file_id);
#endif
hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
}
#ifndef RTE_ARCH_64
/* for 32-bit systems, don't remap 1G and 16G pages, just reuse
* original map address as final map address.
*/
else if ((hugepage_sz == RTE_PGSIZE_1G)
|| (hugepage_sz == RTE_PGSIZE_16G)) {
hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
hugepg_tbl[i].orig_va = NULL;
continue;
}
#endif
#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS
else if (vma_len == 0) {
unsigned j, num_pages;
/* reserve a virtual area for next contiguous
* physical block: count the number of
* contiguous physical pages. */
for (j = i+1; j < hpi->num_pages[0] ; j++) {
#ifdef RTE_ARCH_PPC_64
/* The physical addresses are sorted in
* descending order on PPC64 */
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr - hugepage_sz)
break;
#else
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr + hugepage_sz)
break;
#endif
}
num_pages = j - i;
vma_len = num_pages * hugepage_sz;
/* get the biggest virtual memory area up to
* vma_len. If it fails, vma_addr is NULL, so
* let the kernel provide the address. */
vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
if (vma_addr == NULL)
vma_len = hugepage_sz;
}
#endif
/* try to create hugepage file */
fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
strerror(errno));
return -1;
}
virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
if (virtaddr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
strerror(errno));
close(fd);
return -1;
}
if (orig) {
hugepg_tbl[i].orig_va = virtaddr;
memset(virtaddr, 0, hugepage_sz);
}
else {
hugepg_tbl[i].final_va = virtaddr;
}
/* set shared flock on the file. */
if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
__func__, strerror(errno));
close(fd);
return -1;
}
close(fd);
vma_addr = (char *)vma_addr + hugepage_sz;
vma_len -= hugepage_sz;
}
return 0;
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/*
* Remaps all hugepages into single file segments
*/
static int
remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
int fd;
unsigned i = 0, j, num_pages, page_idx = 0;
void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL;
size_t vma_len = 0;
size_t hugepage_sz = hpi->hugepage_sz;
size_t total_size, offset;
char filepath[MAX_HUGEPAGE_PATH];
phys_addr_t physaddr;
int socket;
while (i < hpi->num_pages[0]) {
#ifndef RTE_ARCH_64
/* for 32-bit systems, don't remap 1G pages and 16G pages,
* just reuse original map address as final map address.
*/
if ((hugepage_sz == RTE_PGSIZE_1G)
|| (hugepage_sz == RTE_PGSIZE_16G)) {
hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
hugepg_tbl[i].orig_va = NULL;
i++;
continue;
}
#endif
/* reserve a virtual area for next contiguous
* physical block: count the number of
* contiguous physical pages. */
for (j = i+1; j < hpi->num_pages[0] ; j++) {
#ifdef RTE_ARCH_PPC_64
/* The physical addresses are sorted in descending
* order on PPC64 */
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr - hugepage_sz)
break;
#else
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr + hugepage_sz)
break;
#endif
}
num_pages = j - i;
vma_len = num_pages * hugepage_sz;
socket = hugepg_tbl[i].socket_id;
/* get the biggest virtual memory area up to
* vma_len. If it fails, vma_addr is NULL, so
* let the kernel provide the address. */
vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
/* If we can't find a big enough virtual area, work out how many pages
* we are going to get */
if (vma_addr == NULL)
j = i + 1;
else if (vma_len != num_pages * hugepage_sz) {
num_pages = vma_len / hugepage_sz;
j = i + num_pages;
}
hugepg_tbl[page_idx].file_id = page_idx;
eal_get_hugefile_path(filepath,
sizeof(filepath),
hpi->hugedir,
hugepg_tbl[page_idx].file_id);
/* try to create hugepage file */
fd = open(filepath, O_CREAT | O_RDWR, 0755);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno));
return -1;
}
total_size = 0;
for (;i < j; i++) {
/* unmap current segment */
if (total_size > 0)
munmap(vma_addr, total_size);
/* unmap original page */
munmap(hugepg_tbl[i].orig_va, hugepage_sz);
unlink(hugepg_tbl[i].filepath);
total_size += hugepage_sz;
old_addr = vma_addr;
/* map new, bigger segment */
vma_addr = mmap(vma_addr, total_size,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
close(fd);
return -1;
}
/* touch the page. this is needed because kernel postpones mapping
* creation until the first page fault. with this, we pin down
* the page and it is marked as used and gets into process' pagemap.
*/
for (offset = 0; offset < total_size; offset += hugepage_sz)
*((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset));
}
/* set shared flock on the file. */
if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
__func__, strerror(errno));
close(fd);
return -1;
}
snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
filepath);
physaddr = rte_mem_virt2phy(vma_addr);
if (physaddr == RTE_BAD_PHYS_ADDR)
return -1;
hugepg_tbl[page_idx].final_va = vma_addr;
hugepg_tbl[page_idx].physaddr = physaddr;
hugepg_tbl[page_idx].repeated = num_pages;
hugepg_tbl[page_idx].socket_id = socket;
close(fd);
/* verify the memory segment - that is, check that every VA corresponds
* to the physical address we expect to see
*/
for (offset = 0; offset < vma_len; offset += hugepage_sz) {
uint64_t expected_physaddr;
expected_physaddr = hugepg_tbl[page_idx].physaddr + offset;
page_addr = RTE_PTR_ADD(vma_addr, offset);
physaddr = rte_mem_virt2phy(page_addr);
if (physaddr != expected_physaddr) {
RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr "
"at %p (offset 0x%" PRIx64 ": 0x%" PRIx64
" (expected 0x%" PRIx64 ")\n",
page_addr, offset, physaddr, expected_physaddr);
return -1;
}
}
/* zero out the whole segment */
memset(hugepg_tbl[page_idx].final_va, 0, total_size);
page_idx++;
}
/* zero out the rest */
memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file));
return page_idx;
}
#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */
/* Unmap all hugepages from original mapping */
static int
unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
unsigned i;
for (i = 0; i < hpi->num_pages[0]; i++) {
if (hugepg_tbl[i].orig_va) {
munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
hugepg_tbl[i].orig_va = NULL;
}
}
return 0;
}
#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */
/*
* Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
* page.
*/
static int
find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
int socket_id;
char *end, *nodestr;
unsigned i, hp_count = 0;
uint64_t virt_addr;
char buf[BUFSIZ];
char hugedir_str[PATH_MAX];
FILE *f;
f = fopen("/proc/self/numa_maps", "r");
if (f == NULL) {
RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
" consider that all memory is in socket_id 0\n");
return 0;
}
snprintf(hugedir_str, sizeof(hugedir_str),
"%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
/* parse numa map */
while (fgets(buf, sizeof(buf), f) != NULL) {
/* ignore non huge page */
if (strstr(buf, " huge ") == NULL &&
strstr(buf, hugedir_str) == NULL)
continue;
/* get zone addr */
virt_addr = strtoull(buf, &end, 16);
if (virt_addr == 0 || end == buf) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
/* get node id (socket id) */
nodestr = strstr(buf, " N");
if (nodestr == NULL) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
nodestr += 2;
end = strstr(nodestr, "=");
if (end == NULL) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
end[0] = '\0';
end = NULL;
socket_id = strtoul(nodestr, &end, 0);
if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
goto error;
}
/* if we find this page in our mappings, set socket_id */
for (i = 0; i < hpi->num_pages[0]; i++) {
void *va = (void *)(unsigned long)virt_addr;
if (hugepg_tbl[i].orig_va == va) {
hugepg_tbl[i].socket_id = socket_id;
hp_count++;
}
}
}
if (hp_count < hpi->num_pages[0])
goto error;
fclose(f);
return 0;
error:
fclose(f);
return -1;
}
/*
* Sort the hugepg_tbl by physical address (lower addresses first on x86,
* higher address first on powerpc). We use a slow algorithm, but we won't
* have millions of pages, and this is only done at init time.
*/
static int
sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
unsigned i, j;
int compare_idx;
uint64_t compare_addr;
struct hugepage_file tmp;
for (i = 0; i < hpi->num_pages[0]; i++) {
compare_addr = 0;
compare_idx = -1;
/*
* browse all entries starting at 'i', and find the
* entry with the smallest addr
*/
for (j=i; j< hpi->num_pages[0]; j++) {
if (compare_addr == 0 ||
#ifdef RTE_ARCH_PPC_64
hugepg_tbl[j].physaddr > compare_addr) {
#else
hugepg_tbl[j].physaddr < compare_addr) {
#endif
compare_addr = hugepg_tbl[j].physaddr;
compare_idx = j;
}
}
/* should not happen */
if (compare_idx == -1) {
RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__);
return -1;
}
/* swap the 2 entries in the table */
memcpy(&tmp, &hugepg_tbl[compare_idx],
sizeof(struct hugepage_file));
memcpy(&hugepg_tbl[compare_idx], &hugepg_tbl[i],
sizeof(struct hugepage_file));
memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file));
}
return 0;
}
/*
* Uses mmap to create a shared memory area for storage of data
* Used in this file to store the hugepage file map on disk
*/
static void *
create_shared_memory(const char *filename, const size_t mem_size)
{
void *retval;
int fd = open(filename, O_CREAT | O_RDWR, 0666);
if (fd < 0)
return NULL;
if (ftruncate(fd, mem_size) < 0) {
close(fd);
return NULL;
}
retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
close(fd);
return retval;
}
/*
* this copies *active* hugepages from one hugepage table to another.
* destination is typically the shared memory.
*/
static int
copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
const struct hugepage_file * src, int src_size)
{
int src_pos, dst_pos = 0;
for (src_pos = 0; src_pos < src_size; src_pos++) {
if (src[src_pos].final_va != NULL) {
/* error on overflow attempt */
if (dst_pos == dest_size)
return -1;
memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
dst_pos++;
}
}
return 0;
}
static int
unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
unsigned num_hp_info)
{
unsigned socket, size;
int page, nrpages = 0;
/* get total number of hugepages */
for (size = 0; size < num_hp_info; size++)
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
nrpages +=
internal_config.hugepage_info[size].num_pages[socket];
for (page = 0; page < nrpages; page++) {
struct hugepage_file *hp = &hugepg_tbl[page];
if (hp->final_va != NULL && unlink(hp->filepath)) {
RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
__func__, hp->filepath, strerror(errno));
}
}
return 0;
}
/*
* unmaps hugepages that are not going to be used. since we originally allocate
* ALL hugepages (not just those we need), additional unmapping needs to be done.
*/
static int
unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
struct hugepage_info *hpi,
unsigned num_hp_info)
{
unsigned socket, size;
int page, nrpages = 0;
/* get total number of hugepages */
for (size = 0; size < num_hp_info; size++)
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
nrpages += internal_config.hugepage_info[size].num_pages[socket];
for (size = 0; size < num_hp_info; size++) {
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
unsigned pages_found = 0;
/* traverse until we have unmapped all the unused pages */
for (page = 0; page < nrpages; page++) {
struct hugepage_file *hp = &hugepg_tbl[page];
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* if this page was already cleared */
if (hp->final_va == NULL)
continue;
#endif
/* find a page that matches the criteria */
if ((hp->size == hpi[size].hugepage_sz) &&
(hp->socket_id == (int) socket)) {
/* if we skipped enough pages, unmap the rest */
if (pages_found == hpi[size].num_pages[socket]) {
uint64_t unmap_len;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
unmap_len = hp->size * hp->repeated;
#else
unmap_len = hp->size;
#endif
/* get start addr and len of the remaining segment */
munmap(hp->final_va, (size_t) unmap_len);
hp->final_va = NULL;
if (unlink(hp->filepath) == -1) {
RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
__func__, hp->filepath, strerror(errno));
return -1;
}
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* else, check how much do we need to map */
else {
int nr_pg_left =
hpi[size].num_pages[socket] - pages_found;
/* if we need enough memory to fit into the segment */
if (hp->repeated <= nr_pg_left) {
pages_found += hp->repeated;
}
/* truncate the segment */
else {
uint64_t final_size = nr_pg_left * hp->size;
uint64_t seg_size = hp->repeated * hp->size;
void * unmap_va = RTE_PTR_ADD(hp->final_va,
final_size);
int fd;
munmap(unmap_va, seg_size - final_size);
fd = open(hp->filepath, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
hp->filepath, strerror(errno));
return -1;
}
if (ftruncate(fd, final_size) < 0) {
RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n",
hp->filepath, strerror(errno));
return -1;
}
close(fd);
pages_found += nr_pg_left;
hp->repeated = nr_pg_left;
}
}
#else
/* else, lock the page and skip */
else
pages_found++;
#endif
} /* match page */
} /* foreach page */
} /* foreach socket */
} /* foreach pagesize */
return 0;
}
static inline uint64_t
get_socket_mem_size(int socket)
{
uint64_t size = 0;
unsigned i;
for (i = 0; i < internal_config.num_hugepage_sizes; i++){
struct hugepage_info *hpi = &internal_config.hugepage_info[i];
if (hpi->hugedir != NULL)
size += hpi->hugepage_sz * hpi->num_pages[socket];
}
return size;
}
/*
* This function is a NUMA-aware equivalent of calc_num_pages.
* It takes in the list of hugepage sizes and the
* number of pages thereof, and calculates the best number of
* pages of each size to fulfill the request for <memory> ram
*/
static int
calc_num_pages_per_socket(uint64_t * memory,
struct hugepage_info *hp_info,
struct hugepage_info *hp_used,
unsigned num_hp_info)
{
unsigned socket, j, i = 0;
unsigned requested, available;
int total_num_pages = 0;
uint64_t remaining_mem, cur_mem;
uint64_t total_mem = internal_config.memory;
if (num_hp_info == 0)
return -1;
/* if specific memory amounts per socket weren't requested */
if (internal_config.force_sockets == 0) {
int cpu_per_socket[RTE_MAX_NUMA_NODES];
size_t default_size, total_size;
unsigned lcore_id;
/* Compute number of cores per socket */
memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
RTE_LCORE_FOREACH(lcore_id) {
cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
}
/*
* Automatically spread requested memory amongst detected sockets according
* to number of cores from cpu mask present on each socket
*/
total_size = internal_config.memory;
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
/* Set memory amount per socket */
default_size = (internal_config.memory * cpu_per_socket[socket])
/ rte_lcore_count();
/* Limit to maximum available memory on socket */
default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
/* Update sizes */
memory[socket] = default_size;
total_size -= default_size;
}
/*
* If some memory is remaining, try to allocate it by getting all
* available memory from sockets, one after the other
*/
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
/* take whatever is available */
default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
total_size);
/* Update sizes */
memory[socket] += default_size;
total_size -= default_size;
}
}
for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
/* skips if the memory on specific socket wasn't requested */
for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
hp_used[i].hugedir = hp_info[i].hugedir;
hp_used[i].num_pages[socket] = RTE_MIN(
memory[socket] / hp_info[i].hugepage_sz,
hp_info[i].num_pages[socket]);
cur_mem = hp_used[i].num_pages[socket] *
hp_used[i].hugepage_sz;
memory[socket] -= cur_mem;
total_mem -= cur_mem;
total_num_pages += hp_used[i].num_pages[socket];
/* check if we have met all memory requests */
if (memory[socket] == 0)
break;
/* check if we have any more pages left at this size, if so
* move on to next size */
if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
continue;
/* At this point we know that there are more pages available that are
* bigger than the memory we want, so lets see if we can get enough
* from other page sizes.
*/
remaining_mem = 0;
for (j = i+1; j < num_hp_info; j++)
remaining_mem += hp_info[j].hugepage_sz *
hp_info[j].num_pages[socket];
/* is there enough other memory, if not allocate another page and quit */
if (remaining_mem < memory[socket]){
cur_mem = RTE_MIN(memory[socket],
hp_info[i].hugepage_sz);
memory[socket] -= cur_mem;
total_mem -= cur_mem;
hp_used[i].num_pages[socket]++;
total_num_pages++;
break; /* we are done with this socket*/
}
}
/* if we didn't satisfy all memory requirements per socket */
if (memory[socket] > 0) {
/* to prevent icc errors */
requested = (unsigned) (internal_config.socket_mem[socket] /
0x100000);
available = requested -
((unsigned) (memory[socket] / 0x100000));
RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
"Requested: %uMB, available: %uMB\n", socket,
requested, available);
return -1;
}
}
/* if we didn't satisfy total memory requirements */
if (total_mem > 0) {
requested = (unsigned) (internal_config.memory / 0x100000);
available = requested - (unsigned) (total_mem / 0x100000);
RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
" available: %uMB\n", requested, available);
return -1;
}
return total_num_pages;
}
/*
* Prepare physical memory mapping: fill configuration structure with
* these infos, return 0 on success.
* 1. map N huge pages in separate files in hugetlbfs
* 2. find associated physical addr
* 3. find associated NUMA socket ID
* 4. sort all huge pages by physical address
* 5. remap these N huge pages in the correct order
* 6. unmap the first mapping
* 7. fill memsegs in configuration with contiguous zones
*/
int
rte_eal_hugepage_init(void)
{
struct rte_mem_config *mcfg;
struct hugepage_file *hugepage, *tmp_hp = NULL;
struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
uint64_t memory[RTE_MAX_NUMA_NODES];
unsigned hp_offset;
int i, j, new_memseg;
int nr_hugefiles, nr_hugepages = 0;
void *addr;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
int new_pages_count[MAX_HUGEPAGE_SIZES];
#endif
test_proc_pagemap_readable();
memset(used_hp, 0, sizeof(used_hp));
/* get pointer to global configuration */
mcfg = rte_eal_get_configuration()->mem_config;
/* hugetlbfs can be disabled */
if (internal_config.no_hugetlbfs) {
addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
strerror(errno));
return -1;
}
mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
mcfg->memseg[0].addr = addr;
mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
mcfg->memseg[0].len = internal_config.memory;
mcfg->memseg[0].socket_id = 0;
return 0;
}
/* check if app runs on Xen Dom0 */
if (internal_config.xen_dom0_support) {
#ifdef RTE_LIBRTE_XEN_DOM0
/* use dom0_mm kernel driver to init memory */
if (rte_xen_dom0_memory_init() < 0)
return -1;
else
return 0;
#endif
}
/* calculate total number of hugepages available. at this point we haven't
* yet started sorting them so they all are on socket 0 */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
/* meanwhile, also initialize used_hp hugepage sizes in used_hp */
used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
}
/*
* allocate a memory area for hugepage table.
* this isn't shared memory yet. due to the fact that we need some
* processing done on these pages, shared memory will be created
* at a later stage.
*/
tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
if (tmp_hp == NULL)
goto fail;
memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
hp_offset = 0; /* where we start the current page size entries */
/* map all hugepages and sort them */
for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
struct hugepage_info *hpi;
/*
* we don't yet mark hugepages as used at this stage, so
* we just map all hugepages available to the system
* all hugepages are still located on socket 0
*/
hpi = &internal_config.hugepage_info[i];
if (hpi->num_pages[0] == 0)
continue;
/* map all hugepages available */
if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* find physical addresses and sockets for each hugepage */
if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){
RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0)
goto fail;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* remap all hugepages into single file segments */
new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi);
if (new_pages_count[i] < 0){
RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* we have processed a num of hugepages of this size, so inc offset */
hp_offset += new_pages_count[i];
#else
/* remap all hugepages */
if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* unmap original mappings */
if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
goto fail;
/* we have processed a num of hugepages of this size, so inc offset */
hp_offset += hpi->num_pages[0];
#endif
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
nr_hugefiles = 0;
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
nr_hugefiles += new_pages_count[i];
}
#else
nr_hugefiles = nr_hugepages;
#endif
/* clean out the numbers of pages */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
internal_config.hugepage_info[i].num_pages[j] = 0;
/* get hugepages for each socket */
for (i = 0; i < nr_hugefiles; i++) {
int socket = tmp_hp[i].socket_id;
/* find a hugepage info with right size and increment num_pages */
const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
(int)internal_config.num_hugepage_sizes);
for (j = 0; j < nb_hpsizes; j++) {
if (tmp_hp[i].size ==
internal_config.hugepage_info[j].hugepage_sz) {
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
internal_config.hugepage_info[j].num_pages[socket] +=
tmp_hp[i].repeated;
#else
internal_config.hugepage_info[j].num_pages[socket]++;
#endif
}
}
}
/* make a copy of socket_mem, needed for number of pages calculation */
for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
memory[i] = internal_config.socket_mem[i];
/* calculate final number of pages */
nr_hugepages = calc_num_pages_per_socket(memory,
internal_config.hugepage_info, used_hp,
internal_config.num_hugepage_sizes);
/* error if not enough memory available */
if (nr_hugepages < 0)
goto fail;
/* reporting in! */
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
if (used_hp[i].num_pages[j] > 0) {
RTE_LOG(DEBUG, EAL,
"Requesting %u pages of size %uMB"
" from socket %i\n",
used_hp[i].num_pages[j],
(unsigned)
(used_hp[i].hugepage_sz / 0x100000),
j);
}
}
}
/* create shared memory */
hugepage = create_shared_memory(eal_hugepage_info_path(),
nr_hugefiles * sizeof(struct hugepage_file));
if (hugepage == NULL) {
RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
goto fail;
}
memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
/*
* unmap pages that we won't need (looks at used_hp).
* also, sets final_va to NULL on pages that were unmapped.
*/
if (unmap_unneeded_hugepages(tmp_hp, used_hp,
internal_config.num_hugepage_sizes) < 0) {
RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
goto fail;
}
/*
* copy stuff from malloc'd hugepage* to the actual shared memory.
* this procedure only copies those hugepages that have final_va
* not NULL. has overflow protection.
*/
if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
tmp_hp, nr_hugefiles) < 0) {
RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
goto fail;
}
/* free the hugepage backing files */
if (internal_config.hugepage_unlink &&
unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
goto fail;
}
/* free the temporary hugepage table */
free(tmp_hp);
tmp_hp = NULL;
/* find earliest free memseg - this is needed because in case of IVSHMEM,
* segments might have already been initialized */
for (j = 0; j < RTE_MAX_MEMSEG; j++)
if (mcfg->memseg[j].addr == NULL) {
/* move to previous segment and exit loop */
j--;
break;
}
for (i = 0; i < nr_hugefiles; i++) {
new_memseg = 0;
/* if this is a new section, create a new memseg */
if (i == 0)
new_memseg = 1;
else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
new_memseg = 1;
else if (hugepage[i].size != hugepage[i-1].size)
new_memseg = 1;
#ifdef RTE_ARCH_PPC_64
/* On PPC64 architecture, the mmap always start from higher
* virtual address to lower address. Here, both the physical
* address and virtual address are in descending order */
else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
hugepage[i].size)
new_memseg = 1;
else if (((unsigned long)hugepage[i-1].final_va -
(unsigned long)hugepage[i].final_va) != hugepage[i].size)
new_memseg = 1;
#else
else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
hugepage[i].size)
new_memseg = 1;
else if (((unsigned long)hugepage[i].final_va -
(unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
new_memseg = 1;
#endif
if (new_memseg) {
j += 1;
if (j == RTE_MAX_MEMSEG)
break;
mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
mcfg->memseg[j].addr = hugepage[i].final_va;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated;
#else
mcfg->memseg[j].len = hugepage[i].size;
#endif
mcfg->memseg[j].socket_id = hugepage[i].socket_id;
mcfg->memseg[j].hugepage_sz = hugepage[i].size;
}
/* continuation of previous memseg */
else {
#ifdef RTE_ARCH_PPC_64
/* Use the phy and virt address of the last page as segment
* address for IBM Power architecture */
mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
mcfg->memseg[j].addr = hugepage[i].final_va;
#endif
mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
}
hugepage[i].memseg_id = j;
}
if (i < nr_hugefiles) {
RTE_LOG(ERR, EAL, "Can only reserve %d pages "
"from %d requested\n"
"Current %s=%d is not enough\n"
"Please either increase it or request less amount "
"of memory.\n",
i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
RTE_MAX_MEMSEG);
return -ENOMEM;
}
return 0;
fail:
if (tmp_hp)
free(tmp_hp);
return -1;
}
/*
* uses fstat to report the size of a file on disk
*/
static off_t
getFileSize(int fd)
{
struct stat st;
if (fstat(fd, &st) < 0)
return 0;
return st.st_size;
}
/*
* This creates the memory mappings in the secondary process to match that of
* the server process. It goes through each memory segment in the DPDK runtime
* configuration and finds the hugepages which form that segment, mapping them
* in order to form a contiguous block in the virtual memory space
*/
int
rte_eal_hugepage_attach(void)
{
const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
const struct hugepage_file *hp = NULL;
unsigned num_hp = 0;
unsigned i, s = 0; /* s used to track the segment number */
off_t size;
int fd, fd_zero = -1, fd_hugepage = -1;
if (aslr_enabled() > 0) {
RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
"(ASLR) is enabled in the kernel.\n");
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory "
"into secondary processes\n");
}
test_proc_pagemap_readable();
if (internal_config.xen_dom0_support) {
#ifdef RTE_LIBRTE_XEN_DOM0
if (rte_xen_dom0_memory_attach() < 0) {
RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay "
"process\n");
return -1;
}
return 0;
#endif
}
fd_zero = open("/dev/zero", O_RDONLY);
if (fd_zero < 0) {
RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
goto error;
}
fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
if (fd_hugepage < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
goto error;
}
/* map all segments into memory to make sure we get the addrs */
for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
void *base_addr;
/*
* the first memory segment with len==0 is the one that
* follows the last valid segment.
*/
if (mcfg->memseg[s].len == 0)
break;
#ifdef RTE_LIBRTE_IVSHMEM
/*
* if segment has ioremap address set, it's an IVSHMEM segment and
* doesn't need mapping as it was already mapped earlier
*/
if (mcfg->memseg[s].ioremap_addr != 0)
continue;
#endif
/*
* fdzero is mmapped to get a contiguous block of virtual
* addresses of the appropriate memseg size.
* use mmap to get identical addresses as the primary process.
*/
base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
PROT_READ, MAP_PRIVATE, fd_zero, 0);
if (base_addr == MAP_FAILED ||
base_addr != mcfg->memseg[s].addr) {
RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
"in /dev/zero to requested address [%p]: '%s'\n",
(unsigned long long)mcfg->memseg[s].len,
mcfg->memseg[s].addr, strerror(errno));
if (aslr_enabled() > 0) {
RTE_LOG(ERR, EAL, "It is recommended to "
"disable ASLR in the kernel "
"and retry running both primary "
"and secondary processes\n");
}
goto error;
}
}
size = getFileSize(fd_hugepage);
hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
if (hp == NULL) {
RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
goto error;
}
num_hp = size / sizeof(struct hugepage_file);
RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
s = 0;
while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
void *addr, *base_addr;
uintptr_t offset = 0;
size_t mapping_size;
#ifdef RTE_LIBRTE_IVSHMEM
/*
* if segment has ioremap address set, it's an IVSHMEM segment and
* doesn't need mapping as it was already mapped earlier
*/
if (mcfg->memseg[s].ioremap_addr != 0) {
s++;
continue;
}
#endif
/*
* free previously mapped memory so we can map the
* hugepages into the space
*/
base_addr = mcfg->memseg[s].addr;
munmap(base_addr, mcfg->memseg[s].len);
/* find the hugepages for this segment and map them
* we don't need to worry about order, as the server sorted the
* entries before it did the second mmap of them */
for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
if (hp[i].memseg_id == (int)s){
fd = open(hp[i].filepath, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Could not open %s\n",
hp[i].filepath);
goto error;
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
mapping_size = hp[i].size * hp[i].repeated;
#else
mapping_size = hp[i].size;
#endif
addr = mmap(RTE_PTR_ADD(base_addr, offset),
mapping_size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
close(fd); /* close file both on success and on failure */
if (addr == MAP_FAILED ||
addr != RTE_PTR_ADD(base_addr, offset)) {
RTE_LOG(ERR, EAL, "Could not mmap %s\n",
hp[i].filepath);
goto error;
}
offset+=mapping_size;
}
}
RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
(unsigned long long)mcfg->memseg[s].len);
s++;
}
/* unmap the hugepage config file, since we are done using it */
munmap((void *)(uintptr_t)hp, size);
close(fd_zero);
close(fd_hugepage);
return 0;
error:
if (fd_zero >= 0)
close(fd_zero);
if (fd_hugepage >= 0)
close(fd_hugepage);
return -1;
}
|