1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
|
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_acl.h>
#include "tb_mem.h"
#include "acl.h"
#define ACL_POOL_ALIGN 8
#define ACL_POOL_ALLOC_MIN 0x800000
/* number of pointers per alloc */
#define ACL_PTR_ALLOC 32
/* variable for dividing rule sets */
#define NODE_MAX 2500
#define NODE_PERCENTAGE (0.40)
#define RULE_PERCENTAGE (0.40)
/* TALLY are statistics per field */
enum {
TALLY_0 = 0, /* number of rules that are 0% or more wild. */
TALLY_25, /* number of rules that are 25% or more wild. */
TALLY_50,
TALLY_75,
TALLY_100,
TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */
TALLY_DEPTH,
/* number of rules that are 100% wild for this field and higher. */
TALLY_NUM
};
static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100};
enum {
ACL_INTERSECT_NONE = 0,
ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */
ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */
ACL_INTERSECT = 4, /* sets A and B intersect */
};
enum {
ACL_PRIORITY_EQUAL = 0,
ACL_PRIORITY_NODE_A = 1,
ACL_PRIORITY_NODE_B = 2,
ACL_PRIORITY_MIXED = 3
};
struct acl_mem_block {
uint32_t block_size;
void *mem_ptr;
};
#define MEM_BLOCK_NUM 16
/* Single ACL rule, build representation.*/
struct rte_acl_build_rule {
struct rte_acl_build_rule *next;
struct rte_acl_config *config;
/**< configuration for each field in the rule. */
const struct rte_acl_rule *f;
uint32_t *wildness;
};
/* Context for build phase */
struct acl_build_context {
const struct rte_acl_ctx *acx;
struct rte_acl_build_rule *build_rules;
struct rte_acl_config cfg;
uint32_t node;
uint32_t num_nodes;
uint32_t category_mask;
uint32_t num_rules;
uint32_t node_id;
uint32_t src_mask;
uint32_t num_build_rules;
uint32_t num_tries;
struct tb_mem_pool pool;
struct rte_acl_trie tries[RTE_ACL_MAX_TRIES];
struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES];
uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS];
/* memory free lists for nodes and blocks used for node ptrs */
struct acl_mem_block blocks[MEM_BLOCK_NUM];
struct rte_acl_node *node_free_list;
};
static int acl_merge_trie(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
uint32_t level, uint32_t subtree_id, struct rte_acl_node **node_c);
static int acl_merge(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
int move, int a_subset, int level);
static void
acl_deref_ptr(struct acl_build_context *context,
struct rte_acl_node *node, int index);
static void *
acl_build_alloc(struct acl_build_context *context, size_t n, size_t s)
{
uint32_t m;
void *p;
size_t alloc_size = n * s;
/*
* look for memory in free lists
*/
for (m = 0; m < RTE_DIM(context->blocks); m++) {
if (context->blocks[m].block_size ==
alloc_size && context->blocks[m].mem_ptr != NULL) {
p = context->blocks[m].mem_ptr;
context->blocks[m].mem_ptr = *((void **)p);
memset(p, 0, alloc_size);
return p;
}
}
/*
* return allocation from memory pool
*/
p = tb_alloc(&context->pool, alloc_size);
return p;
}
/*
* Free memory blocks (kept in context for reuse).
*/
static void
acl_build_free(struct acl_build_context *context, size_t s, void *p)
{
uint32_t n;
for (n = 0; n < RTE_DIM(context->blocks); n++) {
if (context->blocks[n].block_size == s) {
*((void **)p) = context->blocks[n].mem_ptr;
context->blocks[n].mem_ptr = p;
return;
}
}
for (n = 0; n < RTE_DIM(context->blocks); n++) {
if (context->blocks[n].block_size == 0) {
context->blocks[n].block_size = s;
*((void **)p) = NULL;
context->blocks[n].mem_ptr = p;
return;
}
}
}
/*
* Allocate and initialize a new node.
*/
static struct rte_acl_node *
acl_alloc_node(struct acl_build_context *context, int level)
{
struct rte_acl_node *node;
if (context->node_free_list != NULL) {
node = context->node_free_list;
context->node_free_list = node->next;
memset(node, 0, sizeof(struct rte_acl_node));
} else {
node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1);
}
if (node != NULL) {
node->num_ptrs = 0;
node->level = level;
node->node_type = RTE_ACL_NODE_UNDEFINED;
node->node_index = RTE_ACL_NODE_UNDEFINED;
context->num_nodes++;
node->id = context->node_id++;
}
return node;
}
/*
* Dereference all nodes to which this node points
*/
static void
acl_free_node(struct acl_build_context *context,
struct rte_acl_node *node)
{
uint32_t n;
if (node->prev != NULL)
node->prev->next = NULL;
for (n = 0; n < node->num_ptrs; n++)
acl_deref_ptr(context, node, n);
/* free mrt if this is a match node */
if (node->mrt != NULL) {
acl_build_free(context, sizeof(struct rte_acl_match_results),
node->mrt);
node->mrt = NULL;
}
/* free transitions to other nodes */
if (node->ptrs != NULL) {
acl_build_free(context,
node->max_ptrs * sizeof(struct rte_acl_ptr_set),
node->ptrs);
node->ptrs = NULL;
}
/* put it on the free list */
context->num_nodes--;
node->next = context->node_free_list;
context->node_free_list = node;
}
/*
* Include src bitset in dst bitset
*/
static void
acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask)
{
uint32_t n;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
dst->bits[n] = (dst->bits[n] & mask) | src->bits[n];
}
/*
* Set dst to bits of src1 that are not in src2
*/
static int
acl_exclude(struct rte_acl_bitset *dst,
struct rte_acl_bitset *src1,
struct rte_acl_bitset *src2)
{
uint32_t n;
bits_t all_bits = 0;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
dst->bits[n] = src1->bits[n] & ~src2->bits[n];
all_bits |= dst->bits[n];
}
return all_bits != 0;
}
/*
* Add a pointer (ptr) to a node.
*/
static int
acl_add_ptr(struct acl_build_context *context,
struct rte_acl_node *node,
struct rte_acl_node *ptr,
struct rte_acl_bitset *bits)
{
uint32_t n, num_ptrs;
struct rte_acl_ptr_set *ptrs = NULL;
/*
* If there's already a pointer to the same node, just add to the bitset
*/
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
if (node->ptrs[n].ptr == ptr) {
acl_include(&node->ptrs[n].values, bits, -1);
acl_include(&node->values, bits, -1);
return 0;
}
}
}
/* if there's no room for another pointer, make room */
if (node->num_ptrs >= node->max_ptrs) {
/* add room for more pointers */
num_ptrs = node->max_ptrs + ACL_PTR_ALLOC;
ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs));
if (ptrs == NULL)
return -ENOMEM;
/* copy current points to new memory allocation */
if (node->ptrs != NULL) {
memcpy(ptrs, node->ptrs,
node->num_ptrs * sizeof(*ptrs));
acl_build_free(context, node->max_ptrs * sizeof(*ptrs),
node->ptrs);
}
node->ptrs = ptrs;
node->max_ptrs = num_ptrs;
}
/* Find available ptr and add a new pointer to this node */
for (n = node->min_add; n < node->max_ptrs; n++) {
if (node->ptrs[n].ptr == NULL) {
node->ptrs[n].ptr = ptr;
acl_include(&node->ptrs[n].values, bits, 0);
acl_include(&node->values, bits, -1);
if (ptr != NULL)
ptr->ref_count++;
if (node->num_ptrs <= n)
node->num_ptrs = n + 1;
return 0;
}
}
return 0;
}
/*
* Add a pointer for a range of values
*/
static int
acl_add_ptr_range(struct acl_build_context *context,
struct rte_acl_node *root,
struct rte_acl_node *node,
uint8_t low,
uint8_t high)
{
uint32_t n;
struct rte_acl_bitset bitset;
/* clear the bitset values */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
bitset.bits[n] = 0;
/* for each bit in range, add bit to set */
for (n = 0; n < UINT8_MAX + 1; n++)
if (n >= low && n <= high)
bitset.bits[n / (sizeof(bits_t) * 8)] |=
1 << (n % (sizeof(bits_t) * 8));
return acl_add_ptr(context, root, node, &bitset);
}
/*
* Generate a bitset from a byte value and mask.
*/
static int
acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask)
{
int range = 0;
uint32_t n;
/* clear the bitset values */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
bitset->bits[n] = 0;
/* for each bit in value/mask, add bit to set */
for (n = 0; n < UINT8_MAX + 1; n++) {
if ((n & mask) == value) {
range++;
bitset->bits[n / (sizeof(bits_t) * 8)] |=
1 << (n % (sizeof(bits_t) * 8));
}
}
return range;
}
/*
* Determine how A and B intersect.
* Determine if A and/or B are supersets of the intersection.
*/
static int
acl_intersect_type(struct rte_acl_bitset *a_bits,
struct rte_acl_bitset *b_bits,
struct rte_acl_bitset *intersect)
{
uint32_t n;
bits_t intersect_bits = 0;
bits_t a_superset = 0;
bits_t b_superset = 0;
/*
* calculate and store intersection and check if A and/or B have
* bits outside the intersection (superset)
*/
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
a_superset |= a_bits->bits[n] ^ intersect->bits[n];
b_superset |= b_bits->bits[n] ^ intersect->bits[n];
intersect_bits |= intersect->bits[n];
}
n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) |
(b_superset == 0 ? 0 : ACL_INTERSECT_B) |
(a_superset == 0 ? 0 : ACL_INTERSECT_A);
return n;
}
/*
* Check if all bits in the bitset are on
*/
static int
acl_full(struct rte_acl_node *node)
{
uint32_t n;
bits_t all_bits = -1;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
all_bits &= node->values.bits[n];
return all_bits == -1;
}
/*
* Check if all bits in the bitset are off
*/
static int
acl_empty(struct rte_acl_node *node)
{
uint32_t n;
if (node->ref_count == 0) {
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
if (0 != node->values.bits[n])
return 0;
}
return 1;
} else {
return 0;
}
}
/*
* Compute intersection of A and B
* return 1 if there is an intersection else 0.
*/
static int
acl_intersect(struct rte_acl_bitset *a_bits,
struct rte_acl_bitset *b_bits,
struct rte_acl_bitset *intersect)
{
uint32_t n;
bits_t all_bits = 0;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
all_bits |= intersect->bits[n];
}
return all_bits != 0;
}
/*
* Duplicate a node
*/
static struct rte_acl_node *
acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node)
{
uint32_t n;
struct rte_acl_node *next;
next = acl_alloc_node(context, node->level);
if (next == NULL)
return NULL;
/* allocate the pointers */
if (node->num_ptrs > 0) {
next->ptrs = acl_build_alloc(context,
node->max_ptrs,
sizeof(struct rte_acl_ptr_set));
if (next->ptrs == NULL)
return NULL;
next->max_ptrs = node->max_ptrs;
}
/* copy over the pointers */
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
next->ptrs[n].ptr = node->ptrs[n].ptr;
next->ptrs[n].ptr->ref_count++;
acl_include(&next->ptrs[n].values,
&node->ptrs[n].values, -1);
}
}
next->num_ptrs = node->num_ptrs;
/* copy over node's match results */
if (node->match_flag == 0)
next->match_flag = 0;
else {
next->match_flag = -1;
next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt));
memcpy(next->mrt, node->mrt, sizeof(*next->mrt));
}
/* copy over node's bitset */
acl_include(&next->values, &node->values, -1);
node->next = next;
next->prev = node;
return next;
}
/*
* Dereference a pointer from a node
*/
static void
acl_deref_ptr(struct acl_build_context *context,
struct rte_acl_node *node, int index)
{
struct rte_acl_node *ref_node;
/* De-reference the node at the specified pointer */
if (node != NULL && node->ptrs[index].ptr != NULL) {
ref_node = node->ptrs[index].ptr;
ref_node->ref_count--;
if (ref_node->ref_count == 0)
acl_free_node(context, ref_node);
}
}
/*
* Exclude bitset from a node pointer
* returns 0 if poiter was deref'd
* 1 otherwise.
*/
static int
acl_exclude_ptr(struct acl_build_context *context,
struct rte_acl_node *node,
int index,
struct rte_acl_bitset *b_bits)
{
int retval = 1;
/*
* remove bitset from node pointer and deref
* if the bitset becomes empty.
*/
if (!acl_exclude(&node->ptrs[index].values,
&node->ptrs[index].values,
b_bits)) {
acl_deref_ptr(context, node, index);
node->ptrs[index].ptr = NULL;
retval = 0;
}
/* exclude bits from the composite bits for the node */
acl_exclude(&node->values, &node->values, b_bits);
return retval;
}
/*
* Remove a bitset from src ptr and move remaining ptr to dst
*/
static int
acl_move_ptr(struct acl_build_context *context,
struct rte_acl_node *dst,
struct rte_acl_node *src,
int index,
struct rte_acl_bitset *b_bits)
{
int rc;
if (b_bits != NULL)
if (!acl_exclude_ptr(context, src, index, b_bits))
return 0;
/* add src pointer to dst node */
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr,
&src->ptrs[index].values);
if (rc < 0)
return rc;
/* remove ptr from src */
acl_exclude_ptr(context, src, index, &src->ptrs[index].values);
return 1;
}
/*
* acl_exclude rte_acl_bitset from src and copy remaining pointer to dst
*/
static int
acl_copy_ptr(struct acl_build_context *context,
struct rte_acl_node *dst,
struct rte_acl_node *src,
int index,
struct rte_acl_bitset *b_bits)
{
int rc;
struct rte_acl_bitset bits;
if (b_bits != NULL)
if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits))
return 0;
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits);
if (rc < 0)
return rc;
return 1;
}
/*
* Fill in gaps in ptrs list with the ptr at the end of the list
*/
static void
acl_compact_node_ptrs(struct rte_acl_node *node_a)
{
uint32_t n;
int min_add = node_a->min_add;
while (node_a->num_ptrs > 0 &&
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
node_a->num_ptrs--;
for (n = min_add; n + 1 < node_a->num_ptrs; n++) {
/* if this entry is empty */
if (node_a->ptrs[n].ptr == NULL) {
/* move the last pointer to this entry */
acl_include(&node_a->ptrs[n].values,
&node_a->ptrs[node_a->num_ptrs - 1].values,
0);
node_a->ptrs[n].ptr =
node_a->ptrs[node_a->num_ptrs - 1].ptr;
/*
* mark the end as empty and adjust the number
* of used pointer enum_tries
*/
node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL;
while (node_a->num_ptrs > 0 &&
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
node_a->num_ptrs--;
}
}
}
/*
* acl_merge helper routine.
*/
static int
acl_merge_intersect(struct acl_build_context *context,
struct rte_acl_node *node_a, uint32_t idx_a,
struct rte_acl_node *node_b, uint32_t idx_b,
int next_move, int level,
struct rte_acl_bitset *intersect_ptr)
{
struct rte_acl_node *node_c;
/* Duplicate A for intersection */
node_c = acl_dup_node(context, node_a->ptrs[idx_a].ptr);
if (node_c == NULL)
return -1;
/* Remove intersection from A */
acl_exclude_ptr(context, node_a, idx_a, intersect_ptr);
/*
* Added link from A to C for all transitions
* in the intersection
*/
if (acl_add_ptr(context, node_a, node_c, intersect_ptr) < 0)
return -1;
/* merge B->node into C */
return acl_merge(context, node_c, node_b->ptrs[idx_b].ptr, next_move,
0, level + 1);
}
/*
* Merge the children of nodes A and B together.
*
* if match node
* For each category
* node A result = highest priority result
* if any pointers in A intersect with any in B
* For each intersection
* C = copy of node that A points to
* remove intersection from A pointer
* add a pointer to A that points to C for the intersection
* Merge C and node that B points to
* Compact the pointers in A and B
* if move flag
* If B has only one reference
* Move B pointers to A
* else
* Copy B pointers to A
*/
static int
acl_merge(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
int move, int a_subset, int level)
{
uint32_t n, m, ptrs_a, ptrs_b;
uint32_t min_add_a, min_add_b;
int intersect_type;
int node_intersect_type;
int b_full, next_move, rc;
struct rte_acl_bitset intersect_values;
struct rte_acl_bitset intersect_ptr;
min_add_a = 0;
min_add_b = 0;
intersect_type = 0;
node_intersect_type = 0;
if (level == 0)
a_subset = 1;
/*
* Resolve match priorities
*/
if (node_a->match_flag != 0 || node_b->match_flag != 0) {
if (node_a->match_flag == 0 || node_b->match_flag == 0)
RTE_LOG(ERR, ACL, "Not both matches\n");
if (node_b->match_flag < node_a->match_flag)
RTE_LOG(ERR, ACL, "Not same match\n");
for (n = 0; n < context->cfg.num_categories; n++) {
if (node_a->mrt->priority[n] <
node_b->mrt->priority[n]) {
node_a->mrt->priority[n] =
node_b->mrt->priority[n];
node_a->mrt->results[n] =
node_b->mrt->results[n];
}
}
}
/*
* If the two node transitions intersect then merge the transitions.
* Check intersection for entire node (all pointers)
*/
node_intersect_type = acl_intersect_type(&node_a->values,
&node_b->values,
&intersect_values);
if (node_intersect_type & ACL_INTERSECT) {
b_full = acl_full(node_b);
min_add_b = node_b->min_add;
node_b->min_add = node_b->num_ptrs;
ptrs_b = node_b->num_ptrs;
min_add_a = node_a->min_add;
node_a->min_add = node_a->num_ptrs;
ptrs_a = node_a->num_ptrs;
for (n = 0; n < ptrs_a; n++) {
for (m = 0; m < ptrs_b; m++) {
if (node_a->ptrs[n].ptr == NULL ||
node_b->ptrs[m].ptr == NULL ||
node_a->ptrs[n].ptr ==
node_b->ptrs[m].ptr)
continue;
intersect_type = acl_intersect_type(
&node_a->ptrs[n].values,
&node_b->ptrs[m].values,
&intersect_ptr);
/* If this node is not a 'match' node */
if ((intersect_type & ACL_INTERSECT) &&
(context->cfg.num_categories != 1 ||
!(node_a->ptrs[n].ptr->match_flag))) {
/*
* next merge is a 'move' pointer,
* if this one is and B is a
* subset of the intersection.
*/
next_move = move &&
(intersect_type &
ACL_INTERSECT_B) == 0;
if (a_subset && b_full) {
rc = acl_merge(context,
node_a->ptrs[n].ptr,
node_b->ptrs[m].ptr,
next_move,
1, level + 1);
if (rc != 0)
return rc;
} else {
rc = acl_merge_intersect(
context, node_a, n,
node_b, m, next_move,
level, &intersect_ptr);
if (rc != 0)
return rc;
}
}
}
}
}
/* Compact pointers */
node_a->min_add = min_add_a;
acl_compact_node_ptrs(node_a);
node_b->min_add = min_add_b;
acl_compact_node_ptrs(node_b);
/*
* Either COPY or MOVE pointers from B to A
*/
acl_intersect(&node_a->values, &node_b->values, &intersect_values);
if (move && node_b->ref_count == 1) {
for (m = 0; m < node_b->num_ptrs; m++) {
if (node_b->ptrs[m].ptr != NULL &&
acl_move_ptr(context, node_a, node_b, m,
&intersect_values) < 0)
return -1;
}
} else {
for (m = 0; m < node_b->num_ptrs; m++) {
if (node_b->ptrs[m].ptr != NULL &&
acl_copy_ptr(context, node_a, node_b, m,
&intersect_values) < 0)
return -1;
}
}
/*
* Free node if its empty (no longer used)
*/
if (acl_empty(node_b))
acl_free_node(context, node_b);
return 0;
}
static int
acl_resolve_leaf(struct acl_build_context *context,
struct rte_acl_node *node_a,
struct rte_acl_node *node_b,
struct rte_acl_node **node_c)
{
uint32_t n;
int combined_priority = ACL_PRIORITY_EQUAL;
for (n = 0; n < context->cfg.num_categories; n++) {
if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) {
combined_priority |= (node_a->mrt->priority[n] >
node_b->mrt->priority[n]) ?
ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B;
}
}
/*
* if node a is higher or equal priority for all categories,
* then return node_a.
*/
if (combined_priority == ACL_PRIORITY_NODE_A ||
combined_priority == ACL_PRIORITY_EQUAL) {
*node_c = node_a;
return 0;
}
/*
* if node b is higher or equal priority for all categories,
* then return node_b.
*/
if (combined_priority == ACL_PRIORITY_NODE_B) {
*node_c = node_b;
return 0;
}
/*
* mixed priorities - create a new node with the highest priority
* for each category.
*/
/* force new duplication. */
node_a->next = NULL;
*node_c = acl_dup_node(context, node_a);
for (n = 0; n < context->cfg.num_categories; n++) {
if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) {
(*node_c)->mrt->priority[n] = node_b->mrt->priority[n];
(*node_c)->mrt->results[n] = node_b->mrt->results[n];
}
}
return 0;
}
/*
* Within the existing trie structure, determine which nodes are
* part of the subtree of the trie to be merged.
*
* For these purposes, a subtree is defined as the set of nodes that
* are 1) not a superset of the intersection with the same level of
* the merging tree, and 2) do not have any references from a node
* outside of the subtree.
*/
static void
mark_subtree(struct rte_acl_node *node,
struct rte_acl_bitset *level_bits,
uint32_t level,
uint32_t id)
{
uint32_t n;
/* mark this node as part of the subtree */
node->subtree_id = id | RTE_ACL_SUBTREE_NODE;
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
struct rte_acl_bitset intersect_bits;
int intersect;
/*
* Item 1) :
* check if this child pointer is not a superset of the
* same level of the merging tree.
*/
intersect = acl_intersect_type(&node->ptrs[n].values,
&level_bits[level],
&intersect_bits);
if ((intersect & ACL_INTERSECT_A) == 0) {
struct rte_acl_node *child = node->ptrs[n].ptr;
/*
* reset subtree reference if this is
* the first visit by this subtree.
*/
if (child->subtree_id != id) {
child->subtree_id = id;
child->subtree_ref_count = 0;
}
/*
* Item 2) :
* increment the subtree reference count and if
* all references are from this subtree then
* recurse to that child
*/
child->subtree_ref_count++;
if (child->subtree_ref_count ==
child->ref_count)
mark_subtree(child, level_bits,
level + 1, id);
}
}
}
}
/*
* Build the set of bits that define the set of transitions
* for each level of a trie.
*/
static void
build_subset_mask(struct rte_acl_node *node,
struct rte_acl_bitset *level_bits,
int level)
{
uint32_t n;
/* Add this node's transitions to the set for this level */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
level_bits[level].bits[n] &= node->values.bits[n];
/* For each child, add the transitions for the next level */
for (n = 0; n < node->num_ptrs; n++)
if (node->ptrs[n].ptr != NULL)
build_subset_mask(node->ptrs[n].ptr, level_bits,
level + 1);
}
/*
* Merge nodes A and B together,
* returns a node that is the path for the intersection
*
* If match node (leaf on trie)
* For each category
* return node = highest priority result
*
* Create C as a duplicate of A to point to child intersections
* If any pointers in C intersect with any in B
* For each intersection
* merge children
* remove intersection from C pointer
* add a pointer from C to child intersection node
* Compact the pointers in A and B
* Copy any B pointers that are outside of the intersection to C
* If C has no references to the B trie
* free C and return A
* Else If C has no references to the A trie
* free C and return B
* Else
* return C
*/
static int
acl_merge_trie(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
uint32_t level, uint32_t subtree_id, struct rte_acl_node **return_c)
{
uint32_t n, m, ptrs_c, ptrs_b;
uint32_t min_add_c, min_add_b;
int node_intersect_type;
struct rte_acl_bitset node_intersect;
struct rte_acl_node *node_c;
struct rte_acl_node *node_a_next;
int node_b_refs;
int node_a_refs;
node_c = node_a;
node_a_next = node_a->next;
min_add_c = 0;
min_add_b = 0;
node_a_refs = node_a->num_ptrs;
node_b_refs = 0;
node_intersect_type = 0;
/* Resolve leaf nodes (matches) */
if (node_a->match_flag != 0) {
acl_resolve_leaf(context, node_a, node_b, return_c);
return 0;
}
/*
* Create node C as a copy of node A if node A is not part of
* a subtree of the merging tree (node B side). Otherwise,
* just use node A.
*/
if (level > 0 &&
node_a->subtree_id !=
(subtree_id | RTE_ACL_SUBTREE_NODE)) {
node_c = acl_dup_node(context, node_a);
node_c->subtree_id = subtree_id | RTE_ACL_SUBTREE_NODE;
}
/*
* If the two node transitions intersect then merge the transitions.
* Check intersection for entire node (all pointers)
*/
node_intersect_type = acl_intersect_type(&node_c->values,
&node_b->values,
&node_intersect);
if (node_intersect_type & ACL_INTERSECT) {
min_add_b = node_b->min_add;
node_b->min_add = node_b->num_ptrs;
ptrs_b = node_b->num_ptrs;
min_add_c = node_c->min_add;
node_c->min_add = node_c->num_ptrs;
ptrs_c = node_c->num_ptrs;
for (n = 0; n < ptrs_c; n++) {
if (node_c->ptrs[n].ptr == NULL) {
node_a_refs--;
continue;
}
node_c->ptrs[n].ptr->next = NULL;
for (m = 0; m < ptrs_b; m++) {
struct rte_acl_bitset child_intersect;
int child_intersect_type;
struct rte_acl_node *child_node_c = NULL;
if (node_b->ptrs[m].ptr == NULL ||
node_c->ptrs[n].ptr ==
node_b->ptrs[m].ptr)
continue;
child_intersect_type = acl_intersect_type(
&node_c->ptrs[n].values,
&node_b->ptrs[m].values,
&child_intersect);
if ((child_intersect_type & ACL_INTERSECT) !=
0) {
if (acl_merge_trie(context,
node_c->ptrs[n].ptr,
node_b->ptrs[m].ptr,
level + 1, subtree_id,
&child_node_c))
return 1;
if (child_node_c != NULL &&
child_node_c !=
node_c->ptrs[n].ptr) {
node_b_refs++;
/*
* Added link from C to
* child_C for all transitions
* in the intersection.
*/
acl_add_ptr(context, node_c,
child_node_c,
&child_intersect);
/*
* inc refs if pointer is not
* to node b.
*/
node_a_refs += (child_node_c !=
node_b->ptrs[m].ptr);
/*
* Remove intersection from C
* pointer.
*/
if (!acl_exclude(
&node_c->ptrs[n].values,
&node_c->ptrs[n].values,
&child_intersect)) {
acl_deref_ptr(context,
node_c, n);
node_c->ptrs[n].ptr =
NULL;
node_a_refs--;
}
}
}
}
}
/* Compact pointers */
node_c->min_add = min_add_c;
acl_compact_node_ptrs(node_c);
node_b->min_add = min_add_b;
acl_compact_node_ptrs(node_b);
}
/*
* Copy pointers outside of the intersection from B to C
*/
if ((node_intersect_type & ACL_INTERSECT_B) != 0) {
node_b_refs++;
for (m = 0; m < node_b->num_ptrs; m++)
if (node_b->ptrs[m].ptr != NULL)
acl_copy_ptr(context, node_c,
node_b, m, &node_intersect);
}
/*
* Free node C if top of trie is contained in A or B
* if node C is a duplicate of node A &&
* node C was not an existing duplicate
*/
if (node_c != node_a && node_c != node_a_next) {
/*
* if the intersection has no references to the
* B side, then it is contained in A
*/
if (node_b_refs == 0) {
acl_free_node(context, node_c);
node_c = node_a;
} else {
/*
* if the intersection has no references to the
* A side, then it is contained in B.
*/
if (node_a_refs == 0) {
acl_free_node(context, node_c);
node_c = node_b;
}
}
}
if (return_c != NULL)
*return_c = node_c;
if (level == 0)
acl_free_node(context, node_b);
return 0;
}
/*
* Reset current runtime fields before next build:
* - free allocated RT memory.
* - reset all RT related fields to zero.
*/
static void
acl_build_reset(struct rte_acl_ctx *ctx)
{
rte_free(ctx->mem);
memset(&ctx->num_categories, 0,
sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories));
}
static void
acl_gen_range(struct acl_build_context *context,
const uint8_t *hi, const uint8_t *lo, int size, int level,
struct rte_acl_node *root, struct rte_acl_node *end)
{
struct rte_acl_node *node, *prev;
uint32_t n;
prev = root;
for (n = size - 1; n > 0; n--) {
node = acl_alloc_node(context, level++);
acl_add_ptr_range(context, prev, node, lo[n], hi[n]);
prev = node;
}
acl_add_ptr_range(context, prev, end, lo[0], hi[0]);
}
static struct rte_acl_node *
acl_gen_range_trie(struct acl_build_context *context,
const void *min, const void *max,
int size, int level, struct rte_acl_node **pend)
{
int32_t n;
struct rte_acl_node *root;
const uint8_t *lo = (const uint8_t *)min;
const uint8_t *hi = (const uint8_t *)max;
*pend = acl_alloc_node(context, level+size);
root = acl_alloc_node(context, level++);
if (lo[size - 1] == hi[size - 1]) {
acl_gen_range(context, hi, lo, size, level, root, *pend);
} else {
uint8_t limit_lo[64];
uint8_t limit_hi[64];
uint8_t hi_ff = UINT8_MAX;
uint8_t lo_00 = 0;
memset(limit_lo, 0, RTE_DIM(limit_lo));
memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi));
for (n = size - 2; n >= 0; n--) {
hi_ff = (uint8_t)(hi_ff & hi[n]);
lo_00 = (uint8_t)(lo_00 | lo[n]);
}
if (hi_ff != UINT8_MAX) {
limit_lo[size - 1] = hi[size - 1];
acl_gen_range(context, hi, limit_lo, size, level,
root, *pend);
}
if (lo_00 != 0) {
limit_hi[size - 1] = lo[size - 1];
acl_gen_range(context, limit_hi, lo, size, level,
root, *pend);
}
if (hi[size - 1] - lo[size - 1] > 1 ||
lo_00 == 0 ||
hi_ff == UINT8_MAX) {
limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0));
limit_hi[size-1] = (uint8_t)(hi[size-1] -
(hi_ff != UINT8_MAX));
acl_gen_range(context, limit_hi, limit_lo, size,
level, root, *pend);
}
}
return root;
}
static struct rte_acl_node *
acl_gen_mask_trie(struct acl_build_context *context,
const void *value, const void *mask,
int size, int level, struct rte_acl_node **pend)
{
int32_t n;
struct rte_acl_node *root;
struct rte_acl_node *node, *prev;
struct rte_acl_bitset bits;
const uint8_t *val = (const uint8_t *)value;
const uint8_t *msk = (const uint8_t *)mask;
root = acl_alloc_node(context, level++);
prev = root;
for (n = size - 1; n >= 0; n--) {
node = acl_alloc_node(context, level++);
acl_gen_mask(&bits, val[n] & msk[n], msk[n]);
acl_add_ptr(context, prev, node, &bits);
prev = node;
}
*pend = prev;
return root;
}
static struct rte_acl_node *
build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head,
struct rte_acl_build_rule **last, uint32_t *count)
{
uint32_t n, m;
int field_index, node_count;
struct rte_acl_node *trie;
struct rte_acl_build_rule *prev, *rule;
struct rte_acl_node *end, *merge, *root, *end_prev;
const struct rte_acl_field *fld;
struct rte_acl_bitset level_bits[RTE_ACL_MAX_LEVELS];
prev = head;
rule = head;
trie = acl_alloc_node(context, 0);
if (trie == NULL)
return NULL;
while (rule != NULL) {
root = acl_alloc_node(context, 0);
if (root == NULL)
return NULL;
root->ref_count = 1;
end = root;
for (n = 0; n < rule->config->num_fields; n++) {
field_index = rule->config->defs[n].field_index;
fld = rule->f->field + field_index;
end_prev = end;
/* build a mini-trie for this field */
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
merge = acl_gen_mask_trie(context,
&fld->value,
&fld->mask_range,
rule->config->defs[n].size,
end->level + 1,
&end);
break;
case RTE_ACL_FIELD_TYPE_MASK:
{
/*
* set msb for the size of the field and
* all higher bits.
*/
uint64_t mask;
if (fld->mask_range.u32 == 0) {
mask = 0;
/*
* arithmetic right shift for the length of
* the mask less the msb.
*/
} else {
mask = -1 <<
(rule->config->defs[n].size *
CHAR_BIT - fld->mask_range.u32);
}
/* gen a mini-trie for this field */
merge = acl_gen_mask_trie(context,
&fld->value,
(char *)&mask,
rule->config->defs[n].size,
end->level + 1,
&end);
}
break;
case RTE_ACL_FIELD_TYPE_RANGE:
merge = acl_gen_range_trie(context,
&rule->f->field[field_index].value,
&rule->f->field[field_index].mask_range,
rule->config->defs[n].size,
end->level + 1,
&end);
break;
default:
RTE_LOG(ERR, ACL,
"Error in rule[%u] type - %hhu\n",
rule->f->data.userdata,
rule->config->defs[n].type);
return NULL;
}
/* merge this field on to the end of the rule */
if (acl_merge_trie(context, end_prev, merge, 0,
0, NULL) != 0) {
return NULL;
}
}
end->match_flag = ++context->num_build_rules;
/*
* Setup the results for this rule.
* The result and priority of each category.
*/
if (end->mrt == NULL &&
(end->mrt = acl_build_alloc(context, 1,
sizeof(*end->mrt))) == NULL)
return NULL;
for (m = 0; m < context->cfg.num_categories; m++) {
if (rule->f->data.category_mask & (1 << m)) {
end->mrt->results[m] = rule->f->data.userdata;
end->mrt->priority[m] = rule->f->data.priority;
} else {
end->mrt->results[m] = 0;
end->mrt->priority[m] = 0;
}
}
node_count = context->num_nodes;
memset(&level_bits[0], UINT8_MAX, sizeof(level_bits));
build_subset_mask(root, &level_bits[0], 0);
mark_subtree(trie, &level_bits[0], 0, end->match_flag);
(*count)++;
/* merge this rule into the trie */
if (acl_merge_trie(context, trie, root, 0, end->match_flag,
NULL))
return NULL;
node_count = context->num_nodes - node_count;
if (node_count > NODE_MAX) {
*last = prev;
return trie;
}
prev = rule;
rule = rule->next;
}
*last = NULL;
return trie;
}
static int
acl_calc_wildness(struct rte_acl_build_rule *head,
const struct rte_acl_config *config)
{
uint32_t n;
struct rte_acl_build_rule *rule;
for (rule = head; rule != NULL; rule = rule->next) {
for (n = 0; n < config->num_fields; n++) {
double wild = 0;
double size = CHAR_BIT * config->defs[n].size;
int field_index = config->defs[n].field_index;
const struct rte_acl_field *fld = rule->f->field +
field_index;
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
wild = (size - __builtin_popcount(
fld->mask_range.u8)) /
size;
break;
case RTE_ACL_FIELD_TYPE_MASK:
wild = (size - fld->mask_range.u32) / size;
break;
case RTE_ACL_FIELD_TYPE_RANGE:
switch (rule->config->defs[n].size) {
case sizeof(uint8_t):
wild = ((double)fld->mask_range.u8 -
fld->value.u8) / UINT8_MAX;
break;
case sizeof(uint16_t):
wild = ((double)fld->mask_range.u16 -
fld->value.u16) / UINT16_MAX;
break;
case sizeof(uint32_t):
wild = ((double)fld->mask_range.u32 -
fld->value.u32) / UINT32_MAX;
break;
case sizeof(uint64_t):
wild = ((double)fld->mask_range.u64 -
fld->value.u64) / UINT64_MAX;
break;
default:
RTE_LOG(ERR, ACL,
"%s(rule: %u) invalid %u-th "
"field, type: %hhu, "
"unknown size: %hhu\n",
__func__,
rule->f->data.userdata,
n,
rule->config->defs[n].type,
rule->config->defs[n].size);
return -EINVAL;
}
break;
default:
RTE_LOG(ERR, ACL,
"%s(rule: %u) invalid %u-th "
"field, unknown type: %hhu\n",
__func__,
rule->f->data.userdata,
n,
rule->config->defs[n].type);
return -EINVAL;
}
rule->wildness[field_index] = (uint32_t)(wild * 100);
}
}
return 0;
}
static int
acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config,
uint32_t *wild_limit)
{
int min;
struct rte_acl_build_rule *rule;
uint32_t n, m, fields_deactivated = 0;
uint32_t start = 0, deactivate = 0;
int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM];
memset(tally, 0, sizeof(tally));
for (rule = head; rule != NULL; rule = rule->next) {
for (n = 0; n < config->num_fields; n++) {
uint32_t field_index = config->defs[n].field_index;
tally[n][TALLY_0]++;
for (m = 1; m < RTE_DIM(wild_limits); m++) {
if (rule->wildness[field_index] >=
wild_limits[m])
tally[n][m]++;
}
}
for (n = config->num_fields - 1; n > 0; n--) {
uint32_t field_index = config->defs[n].field_index;
if (rule->wildness[field_index] == 100)
tally[n][TALLY_DEPTH]++;
else
break;
}
}
/*
* Look for any field that is always wild and drop it from the config
* Only deactivate if all fields for a given input loop are deactivated.
*/
for (n = 1; n < config->num_fields; n++) {
if (config->defs[n].input_index !=
config->defs[n - 1].input_index) {
for (m = start; m < n; m++)
tally[m][TALLY_DEACTIVATED] = deactivate;
fields_deactivated += deactivate;
start = n;
deactivate = 1;
}
/* if the field is not always completely wild */
if (tally[n][TALLY_100] != tally[n][TALLY_0])
deactivate = 0;
}
for (m = start; m < n; m++)
tally[m][TALLY_DEACTIVATED] = deactivate;
fields_deactivated += deactivate;
/* remove deactivated fields */
if (fields_deactivated) {
uint32_t k, l = 0;
for (k = 0; k < config->num_fields; k++) {
if (tally[k][TALLY_DEACTIVATED] == 0) {
memcpy(&tally[l][0], &tally[k][0],
TALLY_NUM * sizeof(tally[0][0]));
memcpy(&config->defs[l++],
&config->defs[k],
sizeof(struct rte_acl_field_def));
}
}
config->num_fields = l;
}
min = RTE_ACL_SINGLE_TRIE_SIZE;
if (config->num_fields == 2)
min *= 4;
else if (config->num_fields == 3)
min *= 3;
else if (config->num_fields == 4)
min *= 2;
if (tally[0][TALLY_0] < min)
return 0;
for (n = 0; n < config->num_fields; n++)
wild_limit[n] = 0;
/*
* If trailing fields are 100% wild, group those together.
* This allows the search length of the trie to be shortened.
*/
for (n = 1; n < config->num_fields; n++) {
double rule_percentage = (double)tally[n][TALLY_DEPTH] /
tally[n][0];
if (rule_percentage > RULE_PERCENTAGE) {
/* if it crosses an input boundary then round up */
while (config->defs[n - 1].input_index ==
config->defs[n].input_index)
n++;
/* set the limit for selecting rules */
while (n < config->num_fields)
wild_limit[n++] = 100;
if (wild_limit[n - 1] == 100)
return 1;
}
}
/* look for the most wild that's 40% or more of the rules */
for (n = 1; n < config->num_fields; n++) {
for (m = TALLY_100; m > 0; m--) {
double rule_percentage = (double)tally[n][m] /
tally[n][0];
if (tally[n][TALLY_DEACTIVATED] == 0 &&
tally[n][TALLY_0] >
RTE_ACL_SINGLE_TRIE_SIZE &&
rule_percentage > NODE_PERCENTAGE &&
rule_percentage < 0.80) {
wild_limit[n] = wild_limits[m];
return 1;
}
}
}
return 0;
}
static int
order(struct rte_acl_build_rule **insert, struct rte_acl_build_rule *rule)
{
uint32_t n;
struct rte_acl_build_rule *left = *insert;
if (left == NULL)
return 0;
for (n = 1; n < left->config->num_fields; n++) {
int field_index = left->config->defs[n].field_index;
if (left->wildness[field_index] != rule->wildness[field_index])
return (left->wildness[field_index] >=
rule->wildness[field_index]);
}
return 0;
}
static struct rte_acl_build_rule *
ordered_insert_rule(struct rte_acl_build_rule *head,
struct rte_acl_build_rule *rule)
{
struct rte_acl_build_rule **insert;
if (rule == NULL)
return head;
rule->next = head;
if (head == NULL)
return rule;
insert = &head;
while (order(insert, rule))
insert = &(*insert)->next;
rule->next = *insert;
*insert = rule;
return head;
}
static struct rte_acl_build_rule *
sort_rules(struct rte_acl_build_rule *head)
{
struct rte_acl_build_rule *rule, *reordered_head = NULL;
struct rte_acl_build_rule *last_rule = NULL;
for (rule = head; rule != NULL; rule = rule->next) {
reordered_head = ordered_insert_rule(reordered_head, last_rule);
last_rule = rule;
}
if (last_rule != reordered_head)
reordered_head = ordered_insert_rule(reordered_head, last_rule);
return reordered_head;
}
static uint32_t
acl_build_index(const struct rte_acl_config *config, uint32_t *data_index)
{
uint32_t n, m;
int32_t last_header;
m = 0;
last_header = -1;
for (n = 0; n < config->num_fields; n++) {
if (last_header != config->defs[n].input_index) {
last_header = config->defs[n].input_index;
data_index[m++] = config->defs[n].offset;
}
}
return m;
}
static int
acl_build_tries(struct acl_build_context *context,
struct rte_acl_build_rule *head)
{
int32_t rc;
uint32_t n, m, num_tries;
struct rte_acl_config *config;
struct rte_acl_build_rule *last, *rule;
uint32_t wild_limit[RTE_ACL_MAX_LEVELS];
struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES];
config = head->config;
rule = head;
rule_sets[0] = head;
num_tries = 1;
/* initialize tries */
for (n = 0; n < RTE_DIM(context->tries); n++) {
context->tries[n].type = RTE_ACL_UNUSED_TRIE;
context->bld_tries[n].trie = NULL;
context->tries[n].count = 0;
context->tries[n].smallest = INT32_MAX;
}
context->tries[0].type = RTE_ACL_FULL_TRIE;
/* calc wildness of each field of each rule */
rc = acl_calc_wildness(head, config);
if (rc != 0)
return rc;
n = acl_rule_stats(head, config, &wild_limit[0]);
/* put all rules that fit the wildness criteria into a seperate trie */
while (n > 0 && num_tries < RTE_ACL_MAX_TRIES) {
struct rte_acl_config *new_config;
struct rte_acl_build_rule **prev = &rule_sets[num_tries - 1];
struct rte_acl_build_rule *next = head->next;
new_config = acl_build_alloc(context, 1, sizeof(*new_config));
if (new_config == NULL) {
RTE_LOG(ERR, ACL,
"Failed to get space for new config\n");
return -ENOMEM;
}
memcpy(new_config, config, sizeof(*new_config));
config = new_config;
rule_sets[num_tries] = NULL;
for (rule = head; rule != NULL; rule = next) {
int move = 1;
next = rule->next;
for (m = 0; m < config->num_fields; m++) {
int x = config->defs[m].field_index;
if (rule->wildness[x] < wild_limit[m]) {
move = 0;
break;
}
}
if (move) {
rule->config = new_config;
rule->next = rule_sets[num_tries];
rule_sets[num_tries] = rule;
*prev = next;
} else
prev = &rule->next;
}
head = rule_sets[num_tries];
n = acl_rule_stats(rule_sets[num_tries], config,
&wild_limit[0]);
num_tries++;
}
if (n > 0)
RTE_LOG(DEBUG, ACL,
"Number of tries(%d) exceeded.\n", RTE_ACL_MAX_TRIES);
for (n = 0; n < num_tries; n++) {
rule_sets[n] = sort_rules(rule_sets[n]);
context->tries[n].type = RTE_ACL_FULL_TRIE;
context->tries[n].count = 0;
context->tries[n].num_data_indexes =
acl_build_index(rule_sets[n]->config,
context->data_indexes[n]);
context->tries[n].data_index = context->data_indexes[n];
context->bld_tries[n].trie =
build_trie(context, rule_sets[n],
&last, &context->tries[n].count);
if (context->bld_tries[n].trie == NULL) {
RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
return -ENOMEM;
}
if (last != NULL) {
rule_sets[num_tries++] = last->next;
last->next = NULL;
acl_free_node(context, context->bld_tries[n].trie);
context->tries[n].count = 0;
context->bld_tries[n].trie =
build_trie(context, rule_sets[n],
&last, &context->tries[n].count);
if (context->bld_tries[n].trie == NULL) {
RTE_LOG(ERR, ACL,
"Build of %u-th trie failed\n", n);
return -ENOMEM;
}
}
}
context->num_tries = num_tries;
return 0;
}
static void
acl_build_log(const struct acl_build_context *ctx)
{
uint32_t n;
RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n"
"memory consumed: %zu\n",
ctx->acx->name,
ctx->pool.alloc);
for (n = 0; n < RTE_DIM(ctx->tries); n++) {
if (ctx->tries[n].count != 0)
RTE_LOG(DEBUG, ACL,
"trie %u: number of rules: %u\n",
n, ctx->tries[n].count);
}
}
static int
acl_build_rules(struct acl_build_context *bcx)
{
struct rte_acl_build_rule *br, *head;
const struct rte_acl_rule *rule;
uint32_t *wp;
uint32_t fn, i, n, num;
size_t ofs, sz;
fn = bcx->cfg.num_fields;
n = bcx->acx->num_rules;
ofs = n * sizeof(*br);
sz = ofs + n * fn * sizeof(*wp);
br = tb_alloc(&bcx->pool, sz);
if (br == NULL) {
RTE_LOG(ERR, ACL, "ACL context %s: failed to create a copy "
"of %u build rules (%zu bytes)\n",
bcx->acx->name, n, sz);
return -ENOMEM;
}
wp = (uint32_t *)((uintptr_t)br + ofs);
num = 0;
head = NULL;
for (i = 0; i != n; i++) {
rule = (const struct rte_acl_rule *)
((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i);
if ((rule->data.category_mask & bcx->category_mask) != 0) {
br[num].next = head;
br[num].config = &bcx->cfg;
br[num].f = rule;
br[num].wildness = wp;
wp += fn;
head = br + num;
num++;
}
}
bcx->num_rules = num;
bcx->build_rules = head;
return 0;
}
/*
* Copy data_indexes for each trie into RT location.
*/
static void
acl_set_data_indexes(struct rte_acl_ctx *ctx)
{
uint32_t i, n, ofs;
ofs = 0;
for (i = 0; i != ctx->num_tries; i++) {
n = ctx->trie[i].num_data_indexes;
memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index,
n * sizeof(ctx->data_indexes[0]));
ctx->trie[i].data_index = ctx->data_indexes + ofs;
ofs += n;
}
}
int
rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
{
int rc;
struct acl_build_context bcx;
if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 ||
cfg->num_categories > RTE_ACL_MAX_CATEGORIES)
return -EINVAL;
acl_build_reset(ctx);
memset(&bcx, 0, sizeof(bcx));
bcx.acx = ctx;
bcx.pool.alignment = ACL_POOL_ALIGN;
bcx.pool.min_alloc = ACL_POOL_ALLOC_MIN;
bcx.cfg = *cfg;
bcx.category_mask = LEN2MASK(bcx.cfg.num_categories);
/* Create a build rules copy. */
rc = acl_build_rules(&bcx);
if (rc != 0)
return rc;
/* No rules to build for that context+config */
if (bcx.build_rules == NULL) {
rc = -EINVAL;
/* build internal trie representation. */
} else if ((rc = acl_build_tries(&bcx, bcx.build_rules)) == 0) {
/* allocate and fill run-time structures. */
rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries,
bcx.num_tries, bcx.cfg.num_categories,
RTE_ACL_IPV4VLAN_NUM * RTE_DIM(bcx.tries),
bcx.num_build_rules);
if (rc == 0) {
/* set data indexes. */
acl_set_data_indexes(ctx);
/* copy in build config. */
ctx->config = *cfg;
}
}
acl_build_log(&bcx);
/* cleanup after build. */
tb_free_pool(&bcx.pool);
return rc;
}
|