1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
|
/*
Ido Barnea
Cisco Systems, Inc.
*/
/*
Copyright (c) 2016-2016 Cisco Systems, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <netinet/in.h>
#include "common/basic_utils.h"
#include "common/Network/Packet/EthernetHeader.h"
#include "common/Network/Packet/IPHeader.h"
#include "common/Network/Packet/IPv6Header.h"
#include "common/Network/Packet/TcpHeader.h"
#include "pkt_gen.h"
#include "flow_stat_parser.h"
#include "bp_sim.h"
void CFlowStatParser::reset() {
m_start = 0;
m_len = 0;
m_ipv4 = 0;
m_ipv6 = 0;
m_l4_proto = 0;
m_l4 = 0;
m_vlan_offset = 0;
m_stat_supported = false;
}
int CFlowStatParser::parse(uint8_t *p, uint16_t len) {
EthernetHeader *ether = (EthernetHeader *)p;
int min_len = ETH_HDR_LEN;
reset();
if (len < min_len)
return -1;
m_start = p;
m_len = len;
switch( ether->getNextProtocol() ) {
case EthernetHeader::Protocol::IP :
min_len += IPV4_HDR_LEN;
if (len < min_len)
return -1;
m_ipv4 = (IPHeader *)(p + ETH_HDR_LEN);
m_l4 = ((uint8_t *)m_ipv4) + m_ipv4->getHeaderLength();
m_l4_proto = m_ipv4->getProtocol();
m_stat_supported = true;
break;
case EthernetHeader::Protocol::IPv6 :
min_len += IPV6_HDR_LEN;
if (len < min_len)
return -1;
m_ipv6 = (IPv6Header *)(p + ETH_HDR_LEN);
m_stat_supported = true;
break;
case EthernetHeader::Protocol::VLAN :
m_vlan_offset = 4;
min_len += 4;
if (len < min_len)
return -1;
switch ( ether->getVlanProtocol() ){
case EthernetHeader::Protocol::IP:
min_len += IPV4_HDR_LEN;
if (len < min_len)
return -1;
m_ipv4 = (IPHeader *)(p + ETH_HDR_LEN + 4);
m_l4 = ((uint8_t *)m_ipv4) + m_ipv4->getHeaderLength();
m_l4_proto = m_ipv4->getProtocol();
m_stat_supported = true;
break;
case EthernetHeader::Protocol::IPv6 :
min_len += IPV6_HDR_LEN;
if (len < min_len)
return -1;
m_ipv6 = (IPv6Header *)(p + ETH_HDR_LEN + 4);
m_stat_supported = true;
break;
default:
m_stat_supported = false;
return -1;
}
break;
default:
m_stat_supported = false;
return -1;
break;
}
return 0;
}
int CFlowStatParser::get_ip_id(uint32_t &ip_id) {
if (m_ipv4) {
ip_id = m_ipv4->getId();
return 0;
}
if (m_ipv6) {
ip_id = m_ipv6->getFlowLabel();
return 0;
}
return -1;
}
int CFlowStatParser::set_ip_id(uint32_t new_id) {
if (m_ipv4) {
// Updating checksum, not recalculating, so if someone put bad checksum on purpose, it will stay bad
m_ipv4->updateCheckSum(PKT_NTOHS(m_ipv4->getFirstWord()), PKT_NTOHS(m_ipv4->getFirstWord() |TOS_TTL_RESERVE_DUPLICATE));
m_ipv4->updateCheckSum(PKT_NTOHS(m_ipv4->getId()), PKT_NTOHS(new_id));
m_ipv4->setId(new_id);
m_ipv4->setTOS(m_ipv4->getTOS()|TOS_TTL_RESERVE_DUPLICATE);
return 0;
}
if (m_ipv6) {
m_ipv6->setTrafficClass(m_ipv6->getTrafficClass()|TOS_TTL_RESERVE_DUPLICATE);
m_ipv6->setFlowLabel(new_id);
return 0;
}
return -1;
}
int CFlowStatParser::get_l3_proto(uint16_t &proto) {
if (m_ipv4) {
proto = EthernetHeader::Protocol::IP;
return 0;
}
if (m_ipv6) {
proto = EthernetHeader::Protocol::IPv6;
return 0;
}
return -1;
}
int CFlowStatParser::get_l4_proto(uint8_t &proto) {
if (m_ipv4) {
proto = m_ipv4->getProtocol();
return 0;
}
if (m_ipv6) {
if (!m_l4) {
uint16_t payload_len;
// in IPv6 we calculate l4 proto only when running get_payload_len
get_payload_len(m_start, m_len, payload_len);
}
proto = m_l4_proto;
return 0;
}
return -1;
}
uint16_t CFlowStatParser::get_pkt_size() {
uint16_t ip_len=0;
if (m_ipv4) {
ip_len = m_ipv4->getTotalLength();
} else if (m_ipv6) {
ip_len = m_ipv6->getHeaderLength() + m_ipv6->getPayloadLen();
}
return ( ip_len + m_vlan_offset + ETH_HDR_LEN);
}
uint8_t CFlowStatParser::get_ttl(){
if (m_ipv4) {
return ( m_ipv4->getTimeToLive() );
}
if (m_ipv6) {
return ( m_ipv6->getHopLimit() );
}
return (0);
}
// calculate the payload len. Do not want to do this in parse(), since this is required only in
// specific cases, while parse is used in many places (including on packet RX path, where we want to be as fast as possible)
int CFlowStatParser::get_payload_len(uint8_t *p, uint16_t len, uint16_t &payload_len) {
uint16_t l2_header_len;
uint16_t l4_header_len;
uint8_t *p_l3 = NULL;
uint8_t *p_l4 = NULL;
TCPHeader *p_tcp = NULL;
if (!m_ipv4 && !m_ipv6) {
payload_len = 0;
return -1;
}
if (m_ipv4) {
l2_header_len = ((uint8_t *)m_ipv4) - p;
m_l4_proto = m_ipv4->getProtocol();
p_l3 = (uint8_t *)m_ipv4;
p_l4 = p_l3 + m_ipv4->getHeaderLength();
} else if (m_ipv6) {
l2_header_len = ((uint8_t *)m_ipv6) - p;
m_l4_proto = m_ipv6->getl4Proto((uint8_t *)m_ipv6, len - l2_header_len, p_l4);
}
switch (m_l4_proto) {
case IPPROTO_UDP:
l4_header_len = 8;
break;
case IPPROTO_TCP:
if ((p_l4 + TCP_HEADER_LEN) > (p + len)) {
//Not enough space for TCP header
payload_len = 0;
return -2;
}
p_tcp = (TCPHeader *)p_l4;
l4_header_len = p_tcp->getHeaderLength();
break;
case IPPROTO_ICMP:
l4_header_len = 8;
break;
default:
l4_header_len = 0;
break;
}
payload_len = len - (p_l4 - p) - l4_header_len;
if (payload_len <= 0) {
payload_len = 0;
return -3;
}
return 0;
}
static const uint16_t TEST_IP_ID = 0xabcd;
static const uint16_t TEST_IP_ID2 = 0xabcd;
static const uint8_t TEST_L4_PROTO = IPPROTO_UDP;
int CFlowStatParserTest::verify_pkt_one_parser(uint8_t * p, uint16_t pkt_size, uint16_t payload_len, uint32_t ip_id
, uint8_t l4_proto, CFlowStatParser &parser, bool sup_pkt) {
int ret;
uint32_t pkt_ip_id = 0;
uint8_t pkt_l4_proto;
uint16_t pkt_payload_len;
ret = parser.parse(p, pkt_size);
if (sup_pkt) {
assert (ret == 0);
parser.get_ip_id(pkt_ip_id);
assert(pkt_ip_id == ip_id);
parser.set_ip_id(TEST_IP_ID2);
// utl_DumpBuffer(stdout, test_pkt, sizeof(test_pkt), 0);
parser.get_ip_id(ip_id);
assert(ip_id == TEST_IP_ID2);
if (parser.m_ipv4)
assert(parser.m_ipv4->isChecksumOK() == true);
assert(parser.get_l4_proto(pkt_l4_proto) == 0);
assert(pkt_l4_proto == l4_proto);
assert(parser.m_stat_supported == true);
ret = parser.get_payload_len(p, pkt_size, pkt_payload_len);
assert(ret == 0);
assert(pkt_payload_len == payload_len);
} else {
assert(ret != 0);
assert(parser.m_stat_supported == false);
}
return 0;
}
int CFlowStatParserTest::verify_pkt(uint8_t *p, uint16_t pkt_size, uint16_t payload_len, uint32_t ip_id, uint8_t l4_proto
, uint16_t flags) {
int ret, ret_val;
CFlowStatParser parser;
C82599Parser parser82599(false);
C82599Parser parser82599_vlan(true);
printf (" ");
if ((flags & P_OK) || (flags & P_BAD)) {
printf("general parser");
ret = verify_pkt_one_parser(p, pkt_size, payload_len, ip_id, l4_proto, parser, flags & P_OK);
ret_val = ret;
if (ret == 0)
printf("-OK");
else {
printf("-BAD");
}
}
if ((flags & P82599_OK) || (flags & P82599_BAD)) {
printf(", 82599 parser");
ret = verify_pkt_one_parser(p, pkt_size, payload_len, ip_id, l4_proto, parser82599, flags & P82599_OK);
ret_val |= ret;
if (ret == 0)
printf("-OK");
else {
printf("-BAD");
}
}
if ((flags & P82599_VLAN_OK) || (flags & P82599_VLAN_BAD)) {
printf(", 82599 vlan parser");
ret = verify_pkt_one_parser(p, pkt_size, payload_len, ip_id, l4_proto, parser82599_vlan, flags & P82599_VLAN_OK);
ret_val |= ret;
if (ret == 0)
printf("-OK");
else {
printf("-BAD");
}
}
printf("\n");
return 0;
}
int CFlowStatParserTest::test_one_pkt(const char *name, uint16_t ether_type, uint8_t l4_proto, bool is_vlan
, uint16_t verify_flags) {
CTestPktGen gen;
uint8_t *p;
int pkt_size;
uint16_t payload_len = 16;
uint16_t pkt_flags;
int ret = 0;
printf("%s - ", name);
// in case of IPv6, we add rx_check header, just to make sure we now how to parse with multiple headers
if (is_vlan) {
pkt_flags = DPF_VLAN | DPF_RXCHECK;
} else {
pkt_flags = DPF_RXCHECK;
}
p = (uint8_t *)gen.create_test_pkt(ether_type, l4_proto, 255, TEST_IP_ID, pkt_flags, payload_len, pkt_size);
ret = verify_pkt(p, pkt_size, payload_len, TEST_IP_ID, l4_proto, verify_flags);
free(p);
return ret;
}
int CFlowStatParserTest::test() {
bool vlan = true;
uint8_t tcp = IPPROTO_TCP, udp = IPPROTO_UDP, icmp = IPPROTO_ICMP;
uint16_t ipv4 = EthernetHeader::Protocol::IP, ipv6 = EthernetHeader::Protocol::IPv6;
test_one_pkt("IPv4 TCP", ipv4, tcp, !vlan, P_OK | P82599_OK | P82599_VLAN_BAD);
test_one_pkt("IPv4 TCP VLAN", ipv4, tcp, vlan, P_OK | P82599_BAD | P82599_VLAN_OK);
test_one_pkt("IPv4 UDP", ipv4, udp, !vlan, P_OK | P82599_OK | P82599_VLAN_BAD);
test_one_pkt("IPv4 UDP VLAN", ipv4, udp, vlan, P_OK | P82599_BAD | P82599_VLAN_OK);
test_one_pkt("IPv4 ICMP", ipv4, icmp, !vlan, P_OK | P82599_OK | P82599_VLAN_BAD);
test_one_pkt("IPv4 ICMP VLAN", ipv4, icmp, vlan, P_OK | P82599_BAD | P82599_VLAN_OK);
test_one_pkt("IPv6 TCP", ipv6, tcp, !vlan, P_OK | P82599_BAD | P82599_VLAN_BAD);
test_one_pkt("IPv6 TCP VLAN", ipv6, tcp, vlan, P_OK | P82599_BAD | P82599_VLAN_BAD);
test_one_pkt("IPv6 UDP", ipv6, udp, !vlan, P_OK | P82599_BAD | P82599_VLAN_BAD);
test_one_pkt("IPv6 UDP VLAN", ipv6, udp, vlan, P_OK | P82599_BAD | P82599_VLAN_BAD);
test_one_pkt("IPv4 IGMP", ipv4, IPPROTO_IGMP, !vlan, P_OK | P82599_OK | P82599_VLAN_BAD);
test_one_pkt("BAD l3 type", 0xaa, icmp, !vlan, P_BAD | P82599_BAD | P82599_VLAN_BAD);
test_one_pkt("VLAN + BAD l3 type", 0xaa, icmp, vlan, P_BAD | P82599_BAD | P82599_VLAN_BAD);
return 0;
}
// In 82599 10G card we do not support VLANs
int C82599Parser::parse(uint8_t *p, uint16_t len) {
EthernetHeader *ether = (EthernetHeader *)p;
int min_len = ETH_HDR_LEN + IPV4_HDR_LEN;
reset();
if (len < min_len)
return -1;
switch( ether->getNextProtocol() ) {
case EthernetHeader::Protocol::IP :
// In 82599 all streams should be with vlan, or without. Can't mix
if (m_vlan_supported)
return -1;
m_ipv4 = (IPHeader *)(p + ETH_HDR_LEN);
m_stat_supported = true;
break;
case EthernetHeader::Protocol::VLAN :
if (!m_vlan_supported)
return -1;
min_len += 4;
if (len < min_len)
return -1;
switch ( ether->getVlanProtocol() ){
case EthernetHeader::Protocol::IP:
m_ipv4 = (IPHeader *)(p + 18);
m_stat_supported = true;
break;
default:
m_stat_supported = false;
return -1;
}
break;
default:
m_stat_supported = false;
return -1;
break;
}
return 0;
}
int CPassAllParser::parse(uint8_t *pkt, uint16_t len) {
reset();
if (len < ETH_HDR_LEN)
return -1;
m_len = len;
return 0;
}
bool CSimplePacketParser::Parse(){
rte_mbuf_t * m=m_m;
uint8_t *p=rte_pktmbuf_mtod(m, uint8_t*);
EthernetHeader *m_ether = (EthernetHeader *)p;
IPHeader * ipv4=0;
IPv6Header * ipv6=0;
m_vlan_offset=0;
uint8_t protocol = 0;
// Retrieve the protocol type from the packet
switch( m_ether->getNextProtocol() ) {
case EthernetHeader::Protocol::IP :
// IPv4 packet
ipv4=(IPHeader *)(p+14);
m_l4 = (uint8_t *)ipv4 + ipv4->getHeaderLength();
protocol = ipv4->getProtocol();
break;
case EthernetHeader::Protocol::IPv6 :
// IPv6 packet
ipv6=(IPv6Header *)(p+14);
m_l4 = (uint8_t *)ipv6 + ipv6->getHeaderLength();
protocol = ipv6->getNextHdr();
break;
case EthernetHeader::Protocol::VLAN :
m_vlan_offset = 4;
switch ( m_ether->getVlanProtocol() ){
case EthernetHeader::Protocol::IP:
// IPv4 packet
ipv4=(IPHeader *)(p+18);
m_l4 = (uint8_t *)ipv4 + ipv4->getHeaderLength();
protocol = ipv4->getProtocol();
break;
case EthernetHeader::Protocol::IPv6 :
// IPv6 packet
ipv6=(IPv6Header *)(p+18);
m_l4 = (uint8_t *)ipv6 + ipv6->getHeaderLength();
protocol = ipv6->getNextHdr();
break;
default:
break;
}
default:
break;
}
m_protocol =protocol;
m_ipv4=ipv4;
m_ipv6=ipv6;
if ( protocol == 0 ){
return (false);
}
return (true);
}
|