1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
Ido Barnea
Cisco Systems, Inc.
*/
/*
Copyright (c) 2016-2016 Cisco Systems, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include <rte_ethdev.h>
#include <arpa/inet.h>
#include <common/Network/Packet/EthernetHeader.h>
#include <common/Network/Packet/Arp.h>
#include "common/basic_utils.h"
#include "bp_sim.h"
#include "main_dpdk.h"
#include "pkt_gen.h"
#include "pre_test.h"
void CPretestPortInfo::set_params(CPerPortIPCfg port_cfg, const uint8_t *src_mac, bool resolve_needed) {
m_ip = port_cfg.get_ip();
m_def_gw = port_cfg.get_def_gw();
m_vlan = port_cfg.get_vlan();
memcpy(&m_src_mac, src_mac, sizeof(m_src_mac));
if (resolve_needed) {
m_state = CPretestPortInfo::RESOLVE_NEEDED;
} else {
m_state = CPretestPortInfo::RESOLVE_NOT_NEEDED;
}
}
void CPretestPortInfo::set_dst_mac(const uint8_t *dst_mac) {
memcpy(&m_dst_mac, dst_mac, sizeof(m_dst_mac));
m_state = CPretestPortInfo::RESOLVE_DONE;
}
void CPretestPortInfo::dump(FILE *fd) {
if (m_state == INIT_NEEDED) {
return;
}
uint32_t ip = htonl(m_ip);
fprintf(fd, " ip:%d.%d.%d.%d", ip & 0xFF, (ip >> 8) & 0xFF, (ip >> 16) & 0xFF, (ip >> 24) & 0xFF);
ip = htonl(m_def_gw);
fprintf(fd, " default gw:%d.%d.%d.%d\n", ip & 0xFF, (ip >> 8) & 0xFF, (ip >> 16) & 0xFF, (ip >> 24) & 0xFF);
printf(" src MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", m_src_mac[0], m_src_mac[1], m_src_mac[2], m_src_mac[3]
, m_src_mac[4], m_src_mac[5]);
printf( " dst MAC: ");
if (m_state == RESOLVE_DONE) {
printf("%02x:%02x:%02x:%02x:%02x:%02x\n", m_dst_mac[0], m_dst_mac[1], m_dst_mac[2], m_dst_mac[3]
, m_dst_mac[4], m_dst_mac[5]);
} else {
printf("Not resolved\n");
}
}
/*
put in mac relevant dest MAC for port/ip pair.
return false if no relevant info exists, true otherwise.
*/
bool CPretest::get_mac(uint16_t port_id, uint32_t ip, uint8_t *mac) {
assert(port_id < TREX_MAX_PORTS);
if (m_port_info[port_id].m_state != CPretestPortInfo::RESOLVE_DONE) {
return false;
}
memcpy(mac, &m_port_info[port_id].m_dst_mac, sizeof(m_port_info[port_id].m_dst_mac));
return true;
}
CPreTestStats CPretest::get_stats(uint16_t port_id) {
assert(port_id < TREX_MAX_PORTS);
return m_port_info[port_id].m_stats;
}
bool CPretest::is_loopback(uint16_t port) {
assert(port < TREX_MAX_PORTS);
return m_port_info[port].m_is_loopback;
}
void CPretest::set_port_params(uint16_t port_id, const CPerPortIPCfg &port_cfg, const uint8_t *src_mac, bool resolve_needed) {
if (port_id >= m_max_ports)
return;
m_port_info[port_id].set_params(port_cfg, src_mac, resolve_needed);
}
int CPretest::handle_rx(int port_id, int queue_id) {
rte_mbuf_t * rx_pkts[32];
uint16_t cnt;
int i;
int verbose = CGlobalInfo::m_options.preview.getVMode();
int tries = 0;
do {
cnt = rte_eth_rx_burst(port_id, queue_id, rx_pkts, sizeof(rx_pkts)/sizeof(rx_pkts[0]));
tries++;
bool free_pkt;
for (i = 0; i < cnt; i++) {
rte_mbuf_t * m = rx_pkts[i];
free_pkt = true;
int pkt_size = rte_pktmbuf_pkt_len(m);
uint8_t *p = rte_pktmbuf_mtod(m, uint8_t *);
ArpHdr *arp;
CPretestPortInfo *port = &m_port_info[port_id];
if (is_arp(p, pkt_size, arp)) {
m_port_info[port_id].m_stats.m_rx_arp++;
if (arp->m_arp_op == htons(ArpHdr::ARP_HDR_OP_REQUEST)) {
if (verbose >= 3) {
fprintf(stdout, "RX ARP request on port %d queue %d sip:0x%08x tip:0x%08x\n"
, port_id, queue_id, ntohl(arp->m_arp_sip), ntohl(arp->m_arp_tip));
}
// is this request for our IP?
if (ntohl(arp->m_arp_tip) == port->m_ip) {
// If our request(i.e. we are connected in loopback)
// , do a shortcut, and write info directly to asking port
uint8_t magic[5] = {0x1, 0x3, 0x5, 0x7, 0x9};
if (! memcmp((uint8_t *)&arp->m_arp_tha.data, magic, 5)) {
uint8_t sent_port_id = arp->m_arp_tha.data[5];
if ((sent_port_id < m_max_ports) &&
(m_port_info[sent_port_id].m_def_gw == port->m_ip)) {
memcpy(m_port_info[sent_port_id].m_dst_mac, port->m_src_mac, ETHER_ADDR_LEN);
m_port_info[sent_port_id].m_state = CPretestPortInfo::RESOLVE_DONE;
m_port_info[sent_port_id].m_is_loopback = true;
}
} else {
// Not our request. Answer.
free_pkt = false; // We use the same mbuf to send response. Don't free it twice.
arp->m_arp_op = htons(ArpHdr::ARP_HDR_OP_REPLY);
uint32_t tmp_ip = arp->m_arp_sip;
arp->m_arp_sip = arp->m_arp_tip;
arp->m_arp_tip = tmp_ip;
memcpy((uint8_t *)&arp->m_arp_tha, (uint8_t *)&arp->m_arp_sha, ETHER_ADDR_LEN);
memcpy((uint8_t *)&arp->m_arp_sha, port->m_src_mac, ETHER_ADDR_LEN);
EthernetHeader *m_ether = (EthernetHeader *)p;
memcpy((uint8_t *)&m_ether->myDestination, (uint8_t *)&m_ether->mySource, ETHER_ADDR_LEN);
memcpy((uint8_t *)&m_ether->mySource, (uint8_t *)port->m_src_mac, ETHER_ADDR_LEN);
int num_sent = rte_eth_tx_burst(port_id, 0, &m, 1);
if (num_sent < 1) {
fprintf(stderr, "Failed sending ARP reply to port:%d\n", port_id);
rte_pktmbuf_free(m);
} else {
fprintf(stdout, "TX ARP reply on port:%d sip:0x%08x, tip:0x%08x\n"
, port_id ,htonl(arp->m_arp_sip), htonl(arp->m_arp_tip));
m_port_info[port_id].m_stats.m_tx_arp++;
}
}
} else {
// ARP request not to our IP.
if ((ntohl(arp->m_arp_tip) == port->m_def_gw) && (ntohl(arp->m_arp_sip) == port->m_def_gw)) {
// sip and tip equals def_gw, meaning we got gratitues ARP.
port->set_dst_mac((uint8_t *)&arp->m_arp_sha);
}
}
} else {
if (arp->m_arp_op == htons(ArpHdr::ARP_HDR_OP_REPLY)) {
if (verbose >= 3) {
bool is_grat = false;
if (arp->m_arp_sip == arp->m_arp_tip) {
is_grat = true;
}
fprintf(stdout, "RX %s on port %d queue %d sip:0x%08x tip:0x%08x\n"
, is_grat ? "grat ARP" : "ARP reply"
, port_id, queue_id
, ntohl(arp->m_arp_sip)
, ntohl(arp->m_arp_tip));
}
// If this is response to our request, update our tables
if (port->m_def_gw == ntohl(arp->m_arp_sip)) {
port->set_dst_mac((uint8_t *)&arp->m_arp_sha);
}
}
}
}
if (free_pkt)
rte_pktmbuf_free(m);
}
} while ((cnt != 0) && (tries < 1000));
return 0;
}
/*
Try to resolve def_gw address on all ports marked as needed.
Return false if failed to resolve on one of the ports
*/
bool CPretest::resolve_all() {
uint16_t port;
// send ARP request on all ports
for (port = 0; port < m_max_ports; port++) {
if (m_port_info[port].m_state == CPretestPortInfo::RESOLVE_NEEDED) {
send_arp_req(port, false);
}
}
int max_tries = 1000;
int i;
for (i = 0; i < max_tries; i++) {
bool all_resolved = true;
for (port = 0; port < m_max_ports; port++) {
if (m_port_info[port].m_state == CPretestPortInfo::RESOLVE_NEEDED) {
// We need to stop reading packets only if all ports are resolved.
// If we are on loopback, We might get requests on port even after it is in RESOLVE_DONE state
all_resolved = false;
}
handle_rx(port, MAIN_DPDK_DATA_Q);
if (! CGlobalInfo::m_options.preview.get_vm_one_queue_enable())
handle_rx(port, MAIN_DPDK_RX_Q);
}
if (all_resolved) {
break;
} else {
delay(1);
}
}
if (i == max_tries) {
return false;
} else {
return true;
}
}
void CPretest::dump(FILE *fd) {
for (int port = 0; port < m_max_ports; port++) {
if (m_port_info[port].m_state != CPretestPortInfo::INIT_NEEDED) {
fprintf(fd, "port %d:\n", port);
m_port_info[port].dump(fd);
}
}
}
// Send ARP request for our default gateway on port
// If is_grat is true - send gratuitous ARP.
void CPretest::send_arp_req(uint16_t port_id, bool is_grat) {
rte_mbuf_t *m[1];
int num_sent;
int verbose = CGlobalInfo::m_options.preview.getVMode();
m[0] = CGlobalInfo::pktmbuf_alloc_small(0);
if ( unlikely(m[0] == 0) ) {
fprintf(stderr, "ERROR: Could not allocate mbuf for sending ARP to port:%d\n", port_id);
exit(1);
}
uint32_t tip;
uint8_t *p = (uint8_t *)rte_pktmbuf_append(m[0], 60); // ARP packet is shorter than 60
uint32_t sip = m_port_info[port_id].m_ip;
uint8_t *src_mac = m_port_info[port_id].m_src_mac;
uint16_t vlan = m_port_info[port_id].m_vlan;
if (is_grat) {
tip = sip;
} else {
tip = m_port_info[port_id].m_def_gw;
}
if (verbose >= 3) {
fprintf(stdout, "TX %s port:%d sip:0x%08x, tip:0x%08x\n"
, is_grat ? "grat ARP": "ARP request", port_id ,sip, tip);
}
CTestPktGen::create_arp_req(p, sip, tip, src_mac, vlan, port_id);
num_sent = rte_eth_tx_burst(port_id, 0, m, 1);
if (num_sent < 1) {
fprintf(stderr, "Failed sending ARP to port:%d\n", port_id);
exit(1);
} else {
m_port_info[port_id].m_stats.m_tx_arp++;
}
}
/*
Send gratuitous ARP on all ports
*/
void CPretest::send_grat_arp_all() {
for (uint16_t port = 0; port < m_max_ports; port++) {
if (m_port_info[port].m_state == CPretestPortInfo::RESOLVE_NEEDED) {
send_arp_req(port, true);
}
}
}
bool CPretest::is_arp(const uint8_t *p, uint16_t pkt_size, ArpHdr *&arp) {
EthernetHeader *m_ether = (EthernetHeader *)p;
if ((pkt_size < 60) ||
((m_ether->getNextProtocol() != EthernetHeader::Protocol::ARP)
&& (m_ether->getNextProtocol() != EthernetHeader::Protocol::VLAN)))
return false;
if (m_ether->getNextProtocol() == EthernetHeader::Protocol::ARP) {
arp = (ArpHdr *)(p + 14);
} else {
if (m_ether->getVlanProtocol() != EthernetHeader::Protocol::ARP) {
return false;
} else {
arp = (ArpHdr *)(p + 18);
}
}
return true;
}
// Should be run on setup with two interfaces connected by loopback.
// Before running, should put ports on receive all mode.
void CPretest::test() {
uint8_t found_mac[ETHER_ADDR_LEN];
uint8_t mac0[ETHER_ADDR_LEN] = {0x90, 0xe2, 0xba, 0xae, 0x87, 0xd0};
uint8_t mac1[ETHER_ADDR_LEN] = {0x90, 0xe2, 0xba, 0xae, 0x87, 0xd1};
uint32_t ip0 = 0x0f000003;
uint32_t ip1 = 0x0f000001;
CPerPortIPCfg port_cfg0;
CPerPortIPCfg port_cfg1;
port_cfg0.set_ip(ip0);
port_cfg0.set_def_gw(ip1);
port_cfg0.set_vlan(0);
port_cfg1.set_ip(ip1);
port_cfg1.set_def_gw(ip0);
port_cfg1.set_vlan(0);
set_port_params(0, port_cfg0, mac0, true);
set_port_params(1, port_cfg1, mac1, true);
dump(stdout);
resolve_all();
dump(stdout);
get_mac(0, ip1, found_mac);
if (memcmp(found_mac, mac1, ETHER_ADDR_LEN)) {
fprintf(stderr, "Test failed: Could not resolve def gw on port 0\n");
exit(1);
}
get_mac(1, ip0, found_mac);
if (memcmp(found_mac, mac0, ETHER_ADDR_LEN)) {
fprintf(stderr, "Test failed: Could not resolve def gw on port 1\n");
exit(1);
}
printf("Test passed\n");
exit(0);
}
|