summaryrefslogtreecommitdiffstats
path: root/trex_book.asciidoc
blob: b8de9f3571d49467ea95ee3c0d032c871914c6b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
TRex 
====
:author: hhaim 
:email: <hhaim@cisco.com> 
:revnumber: 2.1
:quotes.++:
:numbered:
:web_server_url: http://trex-tgn.cisco.com/trex
:local_web_server_url: csi-wiki-01:8181/trex
:toclevels: 4

include::trex_ga.asciidoc[]


== Introduction

=== A word on traffic generators

Traditionally, routers have been tested using commercial traffic generators, while performance
typically has been measured using packets per second (PPS) metrics. As router functionality and
services have become more complex, stateful traffic generators have become necessary to
provide more realistic application traffic scenarios.

Advantages of realistic traffic generators:

* Accurate performance metrics
* Discovering bottlenecks in realistic traffic scenarios

==== Current Challenges:

* *Cost*: Commercial stateful traffic generators are expensive
* *Scale*: Bandwidth does not scale up well with feature complexity
* *Standardization*: Lack of standardization of traffic patterns and methodologies
* *Flexibility*: Commercial tools do not allow agility when flexibility and changes are needed

==== Implications 

* High capital expenditure (capex) spent by different teams.
* Testing in low scale and extrapolation became a common practice. This is non-ideal and fails to indicate bottlenecks that appear in real-world scenarios.
* Teams use different benchmark methodologies, so results are not standardized.
* Delays in development and testing due to dependence on testing tool features.
* Resource and effort investment in developing different ad hoc tools and test methodologies.

=== Overview of TRex

TRex addresses these problems through an innovative and extendable software implementation and by leveraging standard and open software and x86/UCS hardware.

* Generates and analyzes L4-7 traffic. In one package, provides capabilities of commercial L7 tools.
* Stateful traffic generator based on pre-processing and smart replay of real traffic templates.
* Generates and *amplifies* both client and server side traffic.
* Customized functionality can be added.
* Scales to 200Gb/sec for one UCS (using Intel 40Gb/sec NICs)
* Low cost
* Self-contained package that can be easily installed and deployed
* Virtual interface support enables TRex to be used in a fully virtual environment without physical NICs. Example use cases:
** Amazon AWS
** Cisco LaaS
// Which LaaS is this? Location as a service? Linux?
** TRex on your laptop



.TRex Hardware 
[options="header",cols="1^,1^"]
|=================
|Cisco UCS Platform | Intel NIC 
| image:images/ucs200_2.png[title="generator"] | image:images/Intel520.png[title="generator"]  
|=================

=== Purpose of this guide

This guide explains the use of TRex internals and the use of TRex together with Cisco ASR1000 Series routers. The examples illustrate novel traffic generation techniques made possible by TRex. 

== Download and installation

=== Hardware recommendations

TRex operates in a Linux application environment, interacting with Linux kernel modules. 
TRex curretly works on x86 architecture and can operate well on Cisco UCS hardware. The following platforms have been tested and are recommended for operating TRex. 

[NOTE]
=====================================
 A high-end UCS platform is not required for operating TRex in its current version, but may be required for future versions.
=====================================

[NOTE]
=====================================
 Not all supported DPDK interfaces are supported by TRex
=====================================
 

.Preferred UCS hardware
[options="header",cols="1,3"]
|=================
| UCS Type | Comments 
| UCS C220 M3/M4  | *Preferred Low-End*. Supports up to 40Gb/sec with 540-D2. With newer Intel NIC (recommended), supports 80Gb/sec with 1RU. See table below describing components.
| UCS C200| Early UCS model.
| UCS C210 M2 | Supports up to 40Gb/sec PCIe3.0.
| UCS C240 M3/M4 | *Preferred, High-End* Supports up to 200Gb/sec. 6x XL710 NICS (PCIex8) or 2xFM10K (PCIex16). See table below describing components.
| UCS C260M2 | Supports up to 30Gb/sec (limited by V2 PCIe).
|=================

.Low-End UCS C220 M4 - Internal components
[options="header",cols="1,2",width="60%"]
|=================
| Components |  Details 
| CPU  | 2x E5-2620 @ 2.0 GHz. 
| CPU Configuration | 2-Socket CPU configurations (also works with 1 CPU).
| Memory | 2x4 banks f.or each CPU. Total of 32GB in 8 banks.	 
| RAID | No RAID.
|=================

.High-End C240 M4 - Internal components 
[options="header",cols="1,2",width="60%"]
|=================
| Components |  Details 
| CPU  | 2x E5-2667 @ 3.20 GHz.
| PCIe | 1x Riser PCI expansion card option A PID UCSC-PCI-1A-240M4 enables 2 PCIex16.
| CPU Configuration | 2-Socket CPU configurations (also works with 1 CPU).
| Memory | 2x4 banks for each CPU. Total of 32GB in 8 banks. 
| RAID | No RAID.
|=================
 
.Supported NICs
[options="header",cols="1,1,2",width="50%"]
|=================
| Bandwidth | Chipset |  Example
| 1Gb/sec  | Intel I350 | Intel 4x1GE 350-T4 NIC
| 10Gb/sec | Intel 82599| Intel x520-D2 Cisco Order tool 2X Intel N2XX-AIPCI01, Intel X520 Dual Port 10Gb SFP+ Adapter
| 10Gb/sec | Intel X710   | link:https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver[SFP+], *Preferred* support per stream stats in hardware link:http://www.silicom-usa.com/PE310G4i71L_Quad_Port_Fiber_SFP+_10_Gigabit_Ethernet_PCI_Express_Server_Adapter_49[Silicom PE310G4i71L]
| 40Gb/sec | Intel XL710  | link:https://en.wikipedia.org/wiki/QSFP[QSFP+] (copper/optical)
| 100Gb/sec | Intel Intel FM10420  | QSFP28,  by Silicom link:http://www.silicom-usa.com/100_Gigabit_Dual_Port_Fiber_Ethernet_PCI_Express_PE3100G2DQiR_96[Silicom PE3100G2DQiR_96] (*in development*)
| VMXNET / +
VMXNET3 (see notes) | VMware paravirtualized  | Connect using VMware vSwitch
| E1000    | paravirtualized  | VMware/KVM/VirtualBox 
|=================

// in table above, is it correct to list "paravirtualized" as chipset? Also, what is QSFP28? It does not appear on the lined URL. Clarify: is Intel X710 the preferred NIC?

.X710 NIC base  SFP+ support 
[options="header",cols="1,1,1",width="70%"]
|=================
| link:https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver[SFP+]  | Intel Ethernet Converged X710-DAX |  Silicom link:http://www.silicom-usa.com/PE310G4i71L_Quad_Port_Fiber_SFP+_10_Gigabit_Ethernet_PCI_Express_Server_Adapter_49[PE310G4i71L] (Open optic)
| link:http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html[Cisco SFP-10G-SR] | Does not work     | [green]*works*
| link:http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html[Cisco SFP-10G-LR] | Does not work     | [green]*works*
| link:http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html[Cisco SFP-H10GB-CU1M]| [green]*works* | [green]*works*
| link:http://www.cisco.com/c/en/us/products/collateral/interfaces-modules/transceiver-modules/data_sheet_c78-455693.html[Cisco SFP-10G-AOC1M] | [green]*works* | [green]*works*
|=================

[NOTE]
=====================================
 Intel X710 NIC (example: FH X710DA4FHBLK) operates *only* with Intel SFP+. For open optic, use the link:http://www.silicom-usa.com/PE310G4i71L_Quad_Port_Fiber_SFP+_10_Gigabit_Ethernet_PCI_Express_Server_Adapter_49[Silicom PE310G4i71L] NIC.
=====================================

// clarify above table and note

.XL710 NIC base QSFP+ support 
[options="header",cols="1,1,1",width="90%"]
|=================
| link:https://en.wikipedia.org/wiki/QSFP[QSFP+]             |  Intel Ethernet Converged XL710-QDAX | Silicom link:http://www.silicom-usa.com/Dual_Port_Fiber_40_Gigabit_Ethernet_PCI_Express_Server_Adapter_PE340G2Qi71_83[PE340G2Qi71] Open optic 
| QSFP+ SR4 optics  |  APPROVED OPTICS [green]*works*,  Cisco QSFP-40G-SR4-S does *not* work   | Cisco QSFP-40G-SR4-S [green]*works* 
| QSFP+ LR-4 Optics |   APPROVED OPTICS [green]*works*, Cisco QSFP-40G-LR4-S does *not* work   | Cisco QSFP-40G-LR4-S [green]*works* 
| QSFP Active Optical Cables (AoC) | Cisco QSFP-H40G-AOC [green]*works*  | Cisco QSFP-H40G-AOC [green]*works* 
| QSFP+ Intel Ethernet Modular Optics |    N/A            |  N/A
| QSFP+ DA twin-ax cables | N/A  | N/A  
| Active QSFP+ Copper Cables | Cisco QSFP-4SFP10G-CU [green]*works*  | Cisco QSFP-4SFP10G-CU [green]*works*
|=================

[NOTE]
=====================================
 For Intel XL710 NICs, Cisco SR4/LR QSFP+ does not operate. Use Silicom with Open Optic.
=====================================

// clarify above table and note. let's discuss.

.FM10K QSFP28 support 
[options="header",cols="1,1",width="70%"]
|=================
| QSFP28             | Example 
| todo  |  todo
|=================

// do we want to show "todo"? maybe "pending"


[IMPORTANT]
=====================================
* Intel SFP+ 10Gb/sec is the only one supported by default on the standard Linux driver. TRex also supports Cisco 10Gb/sec SFP+. 
// above, replace "only one" with "only mode"?
* For operating high speed throughput (example: several Intel XL710 40Gb/sec), use different link:https://en.wikipedia.org/wiki/Non-uniform_memory_access[NUMA] nodes for different NICs. +
    To verify NUMA and NIC topology: `lstopo (yum install hwloc)` +
    To display CPU info, including NUMA node: `lscpu` +
    NUMA usage xref:numa-example[example]
* For Intel XL710 NICs, verify that the NVM is v5.04 . xref:xl710-firmware[Info].
**  `> sudo ./t-rex-64 -f cap2/dns.yaml -d 0 *-v 6* --nc | grep NVM` +
    `PMD:  FW 5.0 API 1.5 NVM 05.00.04  eetrack 800013fc` 
=====================================

// above, maybe rename the bullet points "NIC usage notes"? should we create a subsection for NICs? Maybe it would be under "2.1 Hardware recommendations" as a subsection.


.Sample order for recommended low-end Cisco UCSC-C220-M3S with 4x10Gb ports
[options="header",cols="1,1",width="70%"]
|=================
| Component | Quantity 
| UCSC-C220-M3S    |  1
| UCS-CPU-E5-2650  |  2
| UCS-MR-1X041RY-A |  8
| A03-D500GC3      |  1
| N2XX-AIPCI01     |  2
| UCSC-PSU-650W    |  1
| SFS-250V-10A-IS  |  1
| UCSC-CMA1        |  1
| UCSC-HS-C220M3   |  2
| N20-BBLKD        |  7
| UCSC-PSU-BLKP    |  1
| UCSC-RAIL1       |  1
|=================

// should table above say "low-end Cisco UCS C220 M3S" instead of "low-end USCS-C220-M3S"?

NOTE: Purchase the 10Gb/sec SFP+ separately. Cisco would be fine with TRex (but not for plain Linux driver).
// does note above mean "TRex operates with 10Gb/sec SFP+ components, but plain Linux does not provide drivers."? if so, how does purchasing separately solve this? where do they get drivers?

=== Installing OS 

==== Supported versions

Supported Linux versions:

* Fedora 20-23, 64-bit kernel (not 32-bit)
* Ubuntu 14.04.1 LTS, 64-bit kernel (not 32-bit)
* Ubuntu 16.xx LTS, 64-bit kernel (not 32-bit) 

NOTE: Additional OS version may be supported by compiling the necessary drivers.

To check whether a kernel is 64-bit, verify that the ouput of the following command is `x86_64`.

[source,bash]
----
$uname -m
x86_64 
----


==== Download Linux

ISO images for supported Linux releases can be downloaded from:

.Supported Linux ISO image links
[options="header",cols="1^,2^",width="50%"]
|======================================
| Distribution | SHA256 Checksum
| link:http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Fedora/x86_64/iso/Fedora-20-x86_64-DVD.iso[Fedora 20]
    | link:http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Fedora/x86_64/iso/Fedora-20-x86_64-CHECKSUM[Fedora 20 CHECKSUM] 
| link:http://fedora-mirror01.rbc.ru/pub/fedora/linux/releases/21/Server/x86_64/iso/Fedora-Server-DVD-x86_64-21.iso[Fedora 21]
    | link:http://fedora-mirror01.rbc.ru/pub/fedora/linux/releases/21/Server/x86_64/iso/Fedora-Server-21-x86_64-CHECKSUM[Fedora 21 CHECKSUM] 
| link:http://old-releases.ubuntu.com/releases/14.04.1/ubuntu-14.04-desktop-amd64.iso[Ubuntu 14.04.1]
    | http://old-releases.ubuntu.com/releases/14.04.1/SHA256SUMS[Ubuntu 14.04 CHECKSUM]
|======================================

For Fedora downloads...

* Select a mirror close to your location: +
https://admin.fedoraproject.org/mirrormanager/mirrors/Fedora +
Choose: "Fedora Linux http" -> releases -> <version number> -> Server -> x86_64 -> iso -> Fedora-Server-DVD-x86_64-<version number>.iso

* Verify the checksum of the downloaded file matches the linked checksum values with the `sha256sum` command. Example:

[source,bash]
----
$sha256sum Fedora-18-x86_64-DVD.iso
91c5f0aca391acf76a047e284144f90d66d3d5f5dcd26b01f368a43236832c03 #<1>
----
<1> Should be equal to the link:https://en.wikipedia.org/wiki/SHA-2[SHA-256] values described in the linked checksum files. 


==== Install Linux 

Ask your lab admin to install the Linux using CIMC, assign an IP, and set the DNS. Request the sudo or super user password to enable you to ping and SSH.

xref:fedora21_example[Example of installing Fedora 21 Server]

[NOTE]
=====================================
 * To use TRex, you should have sudo on the machine or the root password.
 * Upgrading the linux Kernel using `yum upgrade` requires building the TRex drivers. 
=====================================

==== Verify Intel NIC installation

Use `lspci` to verify the NIC installation. 

Example 4x 10Gb/sec TRex configuration (see output below):

* I350 management port

* 4x Intel Ethernet Converged Network Adapter model x520-D2 (82599 chipset)

[source,bash]
----
$[root@trex]lspci | grep Ethernet
01:00.0 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)                #<1>
01:00.1 Ethernet controller: Intel Corporation I350 Gigabit Network Connection (rev 01)                #<2>
03:00.0 Ethernet controller: Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection (rev 01) #<3>
03:00.1 Ethernet controller: Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection (rev 01)
82:00.0 Ethernet controller: Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection (rev 01)
82:00.1 Ethernet controller: Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection (rev 01)
----
<1> Management port 
<2> CIMC port
<3> 10Gb/sec traffic ports (Intel 82599EB) 

=== Obtaining the TRex package

Connect by `ssh` to the TRex machine and execute the commands described below.

NOTE: Prerequisite: *$WEB_URL* is *{web_server_url}* or *{local_web_server_url}* (Cisco internal)

Latest release:
[source,bash]
----
$mkdir trex
$cd trex
$wget --no-cache $WEB_URL/release/latest 
$tar -xzvf latest 
----


Bleeding edge version:
[source,bash]
----
$wget --no-cache $WEB_URL/release/be_latest 
----

To obtain a specific version, do the following: 
[source,bash]
----
$wget --no-cache $WEB_URL/release/vX.XX.tar.gz #<1>
----

<1> X.XX = Version number

=== Running TRex for the first time in loopback 

If you have a 10Gb/sec TRex (based on Intel 520-D2 NICs), you can verify that it works correctly by loopback on the ports.
You can install Intel SFP+ or Cisco SFP+, but you cannot connect ports that are on the same NIC to each other (it might not sync).
If you have only one NIC of 10gb/sec you cannot perform this test because the ports will not have a valid link. 
Another option for loopback is to use link:http://www.fiberopticshare.com/tag/cisco-10g-twinax[Cisco twinax copper cable].

//TBD: perhaps rephase, using a "Prerequisites" or "Required" heading. The requirement here would be: Two (2) 10gb/sec NICs 
//[hh] it is not accurate beacuse with 1Gb/sec you can have this test 

.Correct loopback
image:images/loopback_right.png[title="Correct Loopback"] 

.Wrong loopback
image:images/loopback_wrong.png[title="Wrong Loopback"] 

If you have a 1Gb/Sec Intel NIC (I350) or XL710/X710 NIC, you can do anything you like from the loopback perspective *but* first filter the management port - see xref:trex_config[TRex Configuration].

// above, clarify "you can do anything you like from the loopback perspective"

==== Identify the ports 

[source,bash]
----
 $>sudo ./dpdk_setup_ports.py --s

 Network devices using DPDK-compatible driver
 ============================================

 Network devices using kernel driver
 ===================================
 0000:02:00.0 '82545EM Gigabit Ethernet Controller (Copper)' if=eth2 drv=e1000 unused=igb_uio *Active*
 0000:03:00.0 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<1>
 0000:03:00.1 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<2>
 0000:13:00.0 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<3>
 0000:13:00.1 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<4>


 Other network devices
 =====================
 <none>
----
<1> TRex interface #1 before unbinding 
<2> TRex interface #2 before unbinding 
<3> TRex interface #3 before unbinding 
<4> TRex interface #4 before unbinding 

Choose a port to use and follow instructions in the next section to create a configuration file.

==== Create minimum configuration file 

Create a configuration file: `/etc/trex_cfg.yaml`.

You can copy a basic configuration file from cfg folder by running this command...

[source,bash]
----
$cp  cfg/simple_cfg.yaml /etc/trex_cfg.yaml
----

...and edit the configuration file with the desired values.

Example:

[source,bash]
----
<none>
- port_limit    : 4    #<1>     
  version       : 2    #<2>
  interfaces    : ["03:00.0","03:00.1","13:00.1","13:00.0"]  #<3> 
----
<1> Mumber of ports 
<2> Must add version 2 to the configuration file
<3> List of interfaces displayed by `#>sudo ./dpdk_setup_ports.py -s`

When working with a VM, set the destination MAC of one port as the source or the other for loopback the port in the vSwitch 
and you should take the right value from the hypervisor (in case of a physical NIC you can set the MAC address with virtual you can't and you should take it from the hypervisor)
and example

// Clarify paragraph above.

[source,python]
----
        - port_limit      : 2                                                                           
          version       : 2                                                                             
          interfaces    : ["03:00.0","03:00.1"]   <2>                                                      
          port_info       :  # set eh mac addr 
                  - dest_mac        :   [0x1,0x0,0x0,0x1,0x0,0x00]  # port 0                            
                    src_mac         :   [0x2,0x0,0x0,0x2,0x0,0x00]                                     <1>
                  - dest_mac        :   [0x2,0x0,0x0,0x2,0x0,0x00]  # port 1                           <1>
                    src_mac         :   [0x1,0x0,0x0,0x1,0x0,0x00]
----
<1> Source MAC is like destination MAC (this should be set or taken from VMware). The MAC was taken from the hypervisor.
<2> Currently TRex supports only one type of NIC at a time. You cannot mix different NIC types in one config file. For more info, see link:http://trex-tgn.cisco.com/youtrack/issue/trex-197[trex-201].

// where can we describe this limitation (TRex supports only one type of NIC at a time. You cannot mix different NIC types in one config file.) and other limitations?

==== Script for creating config file

We provide a script to create configuration file by specifying as input desired interfaces.
Examples of using:

* Get view of all ports as table:

[source,bash]
----
sudo ./dpdk_setup_ports.py -t
----

* Create config file with given interfaces. You can use PCI addresses or Linux IF (eth1 etc.):

[source,bash]
----
sudo ./dpdk_setup_ports.py -c 13:00.0 eth3 --dump -o /etc/trex_cfg.yaml
### Config file generated by dpdk_setup_ports.py ###

- port_limit: 2
  version: 2
  interfaces: ['13:00.0', '1b:00.0']
  port_info:
      - dest_mac: [0x00, 0x0c, 0x29, 0x2a, 0x99, 0xda] # MAC OF LOOPBACK TO IT'S DUAL INTERFACE
        src_mac:  [0x00, 0x0c, 0x29, 0x2a, 0x99, 0xd0]
      - dest_mac: [0x00, 0x0c, 0x29, 0x2a, 0x99, 0xd0] # MAC OF LOOPBACK TO IT'S DUAL INTERFACE
        src_mac:  [0x00, 0x0c, 0x29, 0x2a, 0x99, 0xda]

  platform:
      master_thread_id: 0
      latency_thread_id: 1
      dual_if:
        - socket: 0
          threads: [2]
----

.Arguments of dpdk_setup_ports.py script
[options="header",cols="2,5,3",width="100%"]
|=================
| Arg | Description | Example
| -c  | Create a configuration file by specified interfaces (PCI address or Linux names: eth1 etc.) | -c 03:00.1 eth1 eth4 84:00.0
| --dump | Dump created config to screen. |
| -o | Output the config to this file. | -o /etc/trex_cfg.yaml
| --dest-macs | Destination MACs to be used in created yaml file per each interface. Without specifying the option, will be assumed loopback (0&#8660;1, 2&#8660;3 etc.) | --dest-macs 11:11:11:11:11:11 22:22:22:22:22:22
| --ci | Cores include: White list of cores to use. Make sure there is enough for each NUMA. | --ci 0 2 4 5 6
| --ce | Cores exclude: Black list of cores to exclude. Make sure there will be enough for each NUMA. | --ci 10 11 12
| --no-ht | No HyperThreading: Use only one thread of each Core in created config yaml. |
| --prefix | Advanced option: prefix to be used in TRex config in case of parallel instances. | --prefix first_instance
| --zmq-pub-port | Advanced option: ZMQ Publisher port to be used in TRex config in case of parallel instances. | --zmq-pub-port 4000
| --zmq-rpc-port | Advanced option: ZMQ RPC port to be used in TRex config in case of parallel instances. | --zmq-rpc-port
| --ignore-numa | Advanced option: Ignore NUMAs for config creation. Use this option only if you have to, as it might reduce performance. For example, if you have pair of interfaces at different NUMAs |
|=================

==== Run TRex

Use the following command to begin operation of a 4x 10Gb/sec TRex:
[source,bash]
----
$sudo ./t-rex-64 -f cap2/dns.yaml -c 4 -m 1 -d 100  -l 1000 
----

NOTE: For a 10Gb/sec TRex with 2, 6, or 8 ports, add `--limit-ports [number of ports]` *or* follow xref:trex_config[these instructions] to configure TRex. 

If successful, the output will be similar to the following:

[source,python]
----
$ sudo ./t-rex-64 -f cap2/dns.yaml -d 100 -l 1000           
Starting  TRex 1.50 please wait  ... 
zmq publisher at: tcp://*:4500 
 number of ports founded : 4 
  port : 0 
  ------------
  link         :  link : Link Up - speed 10000 Mbps - full-duplex      <1>
  promiscuous  : 0 
  port : 1 
  ------------
  link         :  link : Link Up - speed 10000 Mbps - full-duplex
  promiscuous  : 0 
  port : 2 
  ------------
  link         :  link : Link Up - speed 10000 Mbps - full-duplex
  promiscuous  : 0 
  port : 3 
  ------------
  link         :  link : Link Up - speed 10000 Mbps - full-duplex
  promiscuous  : 0 


 -Per port stats table 
      ports |               0 |               1 |               2 |               3 
 -------------------------------------------------------------------------------------
   opackets |            1003 |            1003 |            1002 |            1002 
     obytes |           66213 |           66229 |           66132 |           66132 
   ipackets |            1003 |            1003 |            1002 |            1002 
     ibytes |           66225 |           66209 |           66132 |           66132 
    ierrors |               0 |               0 |               0 |               0 
    oerrors |               0 |               0 |               0 |               0 
      Tx Bw |     217.09 Kbps |     217.14 Kbps |     216.83 Kbps |     216.83 Kbps 

 -Global stats enabled 
 Cpu Utilization : 0.0  % <12>  29.7 Gb/core <13>
 Platform_factor : 1.0    
 Total-Tx        :     867.89 Kbps                                             <2>
 Total-Rx        :     867.86 Kbps                                             <3>
 Total-PPS       :       1.64 Kpps  
 Total-CPS       :       0.50  cps  

 Expected-PPS    :       2.00  pps   <9>
 Expected-CPS    :       1.00  cps   <10>
 Expected-BPS    :       1.36 Kbps   <11>

 Active-flows    :        0 <6> Clients :      510   Socket-util  : 0.0000 % 
 Open-flows      :        1 <7> Servers :      254   Socket   :        1  Socket/Clients :  0.0  
 drop-rate       :       0.00  bps   <8>
 current time    : 5.3 sec  
 test duration   : 94.7 sec  

 -Latency stats enabled 
 Cpu Utilization : 0.2 %  <14>
 if|   tx_ok , rx_ok  , rx   ,error,    average   ,   max         , Jitter ,  max window 
   |         ,        , check,     , latency(usec),latency (usec) ,(usec)  ,             
 --------------------------------------------------------------------------------------------------
 0 |     1002,    1002,         0,   0,         51  ,      69,       0      |   0  69  67    <4>
 1 |     1002,    1002,         0,   0,         53  ,     196,       0      |   0  196  53   <5>
 2 |     1002,    1002,         0,   0,         54  ,      71,       0      |   0  71  69 
 3 |     1002,    1002,         0,   0,         53  ,     193,       0      |   0  193  52 
----
<1> Link must be up for TRex to work.
<2> Total Rx must be the same as Tx
<3> Total Rx must be the same as Tx 
<4> Tx_ok == Rx_ok
<5> Tx_ok == Rx_ok
<6> Number of TRex active "flows". Could be different than the number of router flows, due to aging issues. Usualy the TRex number of active flows is much lower than that of the router.
<7> Total number of TRex flows opened since startup (including active ones, and ones already closed). 
<8> Drop rate.
<9> Expected number of packets per second (calculated without latency packets).
<10> Expected number of connections per second (calculated without latency packets).
<11> Expected number of bits per second (calculated without latency packets).
<12> Average CPU utilization of transmitters threads. For best results it should be lower than 80%.
<13> Gb/sec generated per core of DP. Higher is better.
<14> Rx and latency thread CPU utilization.


More statistics information:

*socket*::  Same as the active flows.  

*Socket/Clients*:: Average of active flows per client, calculated as active_flows/#clients.

*Socket-util*:: Estimate of how many socket ports are used per client IP. This is approximately ~(100*active_flows/#clients)/64K, calculated as (average active flows per client*100/64K). Utilization of more than 50% means that TRex is generating too many flows per single client, and that more clients must be added.
// clarify above, especially the formula

*Max window*:: Momentary maximum latency for a time window of 500 msec. There are a few numbers per number of windows that are shown. 
 The newest number (last 500msec) is on the right. Oldest in the left. This can help identifying spikes of high latency clearing after some time. Maximum latency is the total maximum over the entire test duration. 
//clarify above

*Platform_factor*:: There are cases in which we duplicate the traffic using splitter/switch and we would like all numbers displayed to be multiplied by this factor (e.g. x2) 
//clarify above

WARNING: If you don't see rx packets, revisit your MAC address configuration.
//clarify above

==== Running TRex for the first time with ESXi:

* Virtual NICs can be used to bridge between TRex and non-supported NICs, or for basic testing. Bandwidth is limited by vSwitch, has IPv6 issues.
// clarify, especially what IPv6 issues

1. Click the host machine, enter Configuration -> Networking.

a. One of the NICs should be connected to the main vSwitch network to get an "outside" connection, for the TRex client and ssh: +
image:images/vSwitch_main.png[title="vSwitch_main"]

b. Other NICs that are used for TRex traffic should be in distinguish vSwitch: +
image:images/vSwitch_loopback.png[title="vSwitch_loopback"]

2. Right-click guest machine -> Edit settings -> Ensure the NICs are set to their networks: +
image:images/vSwitch_networks.png[title="vSwitch_networks"]


[NOTE]
=====================================================================
Current limitation: The following command does not function as expected:
[subs="quotes"]
....
sudo ./t-rex-64 -f cap2/dns.yaml *--lm 1 --lo* -l 1000 -d 100
....
The vSwitch does not "know" where to route the packet. This is expected to be fixed when TRex supports ARP.
=====================================================================

* Pass-through is the way to use directly the NICs from host machine inside the VM. Has no limitations except the NIC/hardware itself. The only difference via bare-metal OS is occasional spikes of latency (~10ms). Passthrough settings cannot be saved to OVA.

1. Click on the host machine. Enter Configuration -> Advanced settings -> Edit. Mark the desired NICs. Reboot the ESXi to apply. +
image:images/passthrough_marking.png[title="passthrough_marking"]

2. Right click on guest machine. Edit settings -> Add -> *PCI device* -> Choose the NICs one by one. +
image:images/passthrough_adding.png[title="passthrough_adding"]

==== Running TRex for the first time with router

You can follow this presentation: link:trex_config_guide.html[first time TRex configuration] 
or continue reading. 
Without config file, TRex sets source MAC of all ports to `00:00:00:01:00:00` and expects to receive packets with this destination MAC address.
So, you just need to configure your router with static ARP entry pointing to the above MAC address.

NOTE: Virtual routers on ESXi (for example, Cisco CSR1000v) must have distinct MAC address for each port. You need to specify the addresses in the configuration file. see more xref:trex_config[here]. Another example is TRex connected to a switch. In this case, each one of the TRex ports should have distinct MAC address.

include::trex_book_basic.asciidoc[]

== Advanced features

=== VLAN Trunk support 

anchor:trex_vlan[]

The VLAN Trunk TRex feature attempts to solve the router port bandwidth limitation when the traffic profile is asymmetric. Example: Asymmetric SFR profile.
This feature converts asymmetric traffic to symmetric, from the port perspective, using router sub-interfaces.
This requires TRex to send the traffic on two VLANs, as described below.

.YAML format 
[source,python]
----
  vlan       : { enable : 1  ,  vlan0 : 100 , vlan1 : 200 }
----


.Example
[source,python]
----
- duration : 0.1
  vlan       : { enable : 1  ,  vlan0 : 100 , vlan1 : 200 }   <1>
----
<1> Enable VLAN feature, valn0==100 , valn1==200
        
*Problem definition:*::

Scenario: TRex with two ports and an SFR traffic profile.

.Without VLAN/sub interfaces 
[source,python]
----
0 ( client) -> [  ] - 1 ( server)
----
Without VLAN support the traffic is asymmetric. 10% of the traffic is sent from port 0 (client side), 90% is from port 1 (server). Port 1 become the bottlneck (10Gb/s limit) before port 0.

.With VLAN/sub interfaces 
[source,python]
----
port 0 ( client VLAN0) <->  |  | <-> port 1 ( server-VLAN0)
port 0 ( server VLAN1) <->  |  | <-> port 1 ( client-VLAN1)
----

In this case both ports have the same amount of traffic.

*Router configuation:*::
[source,python]
----
        !
        interface TenGigabitEthernet1/0/0      <1>
         mac-address 0000.0001.0000   
         mtu 4000
         no ip address
         load-interval 30
        !
        i
        interface TenGigabitEthernet1/0/0.100
         encapsulation dot1Q 100               <2> 
         ip address 11.77.11.1 255.255.255.0
         ip nbar protocol-discovery
         ip policy route-map vlan_100_p1_to_p2 <3> 
        !
        interface TenGigabitEthernet1/0/0.200
         encapsulation dot1Q 200               <4>
         ip address 11.88.11.1 255.255.255.0
         ip nbar protocol-discovery
         ip policy route-map vlan_200_p1_to_p2 <5> 
        !
        interface TenGigabitEthernet1/1/0
         mac-address 0000.0001.0000
         mtu 4000
         no ip address
         load-interval 30
        !
        interface TenGigabitEthernet1/1/0.100
         encapsulation dot1Q 100
         ip address 22.77.11.1 255.255.255.0
         ip nbar protocol-discovery
         ip policy route-map vlan_100_p2_to_p1
        !
        interface TenGigabitEthernet1/1/0.200
         encapsulation dot1Q 200
         ip address 22.88.11.1 255.255.255.0
         ip nbar protocol-discovery
         ip policy route-map vlan_200_p2_to_p1
        !
        
        arp 11.77.11.12 0000.0001.0000 ARPA      <6>
        arp 22.77.11.12 0000.0001.0000 ARPA
        
        route-map vlan_100_p1_to_p2 permit 10    <7>
         set ip next-hop 22.77.11.12
        !
        route-map vlan_100_p2_to_p1 permit 10
         set ip next-hop 11.77.11.12
        !
        
        route-map vlan_200_p1_to_p2 permit 10
         set ip next-hop 22.88.11.12
        !
        route-map vlan_200_p2_to_p1 permit 10
         set ip next-hop 11.88.11.12
        !
----
<1> Disable the IP on the main port it is important.
// above, clarify what's important
<2> Enable VLAN1
<3> PBR configuration
<4> Enable VLAN2  
<5> PBR configuration
<6> TRex destination port MAC address
<7> PBR configuration rules

=== Static source MAC address setting  

With this feature, TRex replaces the source MAC address with the client IP address.

 Note: This feature was requested by the Cisco ISG group. 


*YAML:*::
[source,python]
----
 mac_override_by_ip : true
----

.Example
[source,python]
----
- duration : 0.1
 ..
  mac_override_by_ip : true <1>
----
<1> In this case, the client side MAC address looks like this:
SRC_MAC = IPV4(IP) + 00:00  

=== IPv6 support 

Support for IPv6 includes:

1. Support for pcap files containing IPv6 packets
2. Ability to generate IPv6 traffic from pcap files containing IPv4 packets
The following switch enables this feature: `--ipv6`
Two new keywords (`src_ipv6`, `dst_ipv6`) have been added to the YAML file to specify the most significant 96 bits of the IPv6 address - for example:

[source,python]
----
      src_ipv6 : [0xFE80,0x0232,0x1002,0x0051,0x0000,0x0000]
      dst_ipv6 : [0x2001,0x0DB8,0x0003,0x0004,0x0000,0x0000]
----
      
The IPv6 address is formed by placing what would typically be the IPv4
address into the least significant 32-bits and copying the value provided
in the src_ipv6/dst_ipv6 keywords into the most signficant 96-bits.
If src_ipv6 and dst_ipv6 are not specified in the YAML file, the default
is to form IPv4-compatible addresses (where the most signifcant 96-bits
are zero).

There is a support for all plugins (control flows that needed to be changed).
  
*Example:*::
[source,bash]
----
$sudo ./t-rex-64 -f cap2l/sfr_delay_10_1g.yaml -c 4 -p -l 100 -d 100000 -m 30  --ipv6
----

*Limitations:*::

* TRex cannot generate both IPv4 and IPv6 traffic. The `--ipv6` switch must be specified even when using a pcap file containing only IPv6 packets.


*Router configuration:*::

[source,python]
----
interface TenGigabitEthernet1/0/0
 mac-address 0000.0001.0000
 mtu 4000
 ip address 11.11.11.11 255.255.255.0
 ip policy route-map p1_to_p2
 load-interval 30
 ipv6 enable   ==> IPv6
 ipv6 address 2001:DB8:1111:2222::1/64                  <1>
 ipv6 policy route-map ipv6_p1_to_p2                    <2>
!


ipv6 unicast-routing                                    <3>

ipv6 neighbor 3001::2 TenGigabitEthernet0/1/0 0000.0002.0002   <4>
ipv6 neighbor 2001::2 TenGigabitEthernet0/0/0 0000.0003.0002

route-map ipv6_p1_to_p2 permit 10                              <5>
 set ipv6 next-hop 2001::2
!
route-map ipv6_p2_to_p1 permit 10
 set ipv6 next-hop 3001::2
!


asr1k(config)#ipv6 route 4000::/64 2001::2                 
asr1k(config)#ipv6 route 5000::/64 3001::2 
----
<1> Enable IPv6 
<2> Add pbr 
<3> Enable IPv6 routing 
<4> MAC address setting should be like TRex
<5> PBR configuraion


=== Source MAC address mapping using a file 

Extends the source MAC address replacment capability. Enables mapping between IPv4->MAC using the `--mac` CLI switch. The file format is YAML.

*Example:*::
[source,bash]
----
$sudo ./t-rex-64 -f cap2/sfr_delay_10_1g.yaml -c 4  -l 100 -d 100000 -m 30  --mac cap2/test_example.yaml
----

*MAC file structure:*::

[source,python]
----
- items :
    - ip : "16.0.0.1"
      mac : [0x16,0x1,0x4,0x5,0x6,0x7]
    - ip : "16.0.0.2"
      mac : [0x16,0x2,0x0,0x1,0x0,0x0]
----

*Limitations:*::

. It is assumed that most clients have a MAC address. At least 90% of IPs should have MAC address mapping.

=== Destination MAC address spreading 

anchor:mac_spread[] 

Using this option, one can send traffic to few destination devices. In normal mode, all packets are sent to the port destination MAC address.
To enable this option, add `--mac-spread` to the command line.

Example:

[source,bash]
----
$sudo ./t-rex-64 -f cap2/http_simple.yaml -d 1000 -m 1000 -c 4 -l 100 --mac-spread 2
----
In this example, TRex sends to port destination MAC and port destination MAC +1. Using a switch, you can connect TRex to multiple devices under test (DUTs). 
All of the DUTs return the traffic only to the correct port source address.
// above, i removed "should" - verify accuracy

[source,bash]
----
        switch A                   switch A
         |                            |
         |   D0+0   -> DUT0  <- D1+0  |
TRex(0) -|                            |-TRex(1)
         |                            |
         |   D0+1  ->  DUT1  <- D1+1  |
                                      |

----


=== NAT support 

TRex can learn dynamic NAT/PAT translation. To enable this feature add `--learn-mode <mode>` to the command line.
To learn the NAT translation, TRex must embed information describing the flow a packet belongs to, in the first
packet of each flow. This can be done in two different methods, depending on the chosen <mode>.

*mode 1:*::

Flow info is embedded in the ACK of the first TCP SYN.
In this mode, there is a limitation that bidirectional UDP templates (for example, DNS) are not supported. 
This mode was developed for testing NAT with firewalls (which usually do not work with mode 2).
In this mode, TRex also learn and compensate for TCP sequence number randomization that might be done by the DUT.
TRex can learn and compensate for seq num randomization in both directions of the connection.

*mode 2:*::

Flow info is added in a special IPv4 option header (8 bytes long 0x10 id). The option is added only to the first packet in the flow.
This mode does not work with DUTs that drop packets with IP options (for example, Cisco ASA firewall).

*mode 3:*::

This is like mode 1, with the only change being that TRex does not learn the seq num randomization in the server->client direction.
This mode can give much better connections per second performance than mode 1 (still, for all existing firewalls, mode 1 cps rate is more than enough).

==== Examples

*simple HTTP traffic*

[source,bash]
----
$sudo ./t-rex-64 -f cap2/http_simple.yaml -c 4  -l 1000 -d 100000 -m 30  --learn-mode 1
----

*SFR traffic without bundeling/ALG support*

[source,bash]
----
$sudo ./t-rex-64 -f avl/sfr_delay_10_1g_no_bundeling.yaml -c 4  -l 1000 -d 100000 -m 10  --learn-mode 2
----

*NAT terminal counters:*::

[source,python]
----
-Global stats enabled 
 Cpu Utilization : 0.6  %  33.4 Gb/core 
 Platform_factor : 1.0
 Total-Tx        :       3.77 Gbps   NAT time out    :      917 <1> (0 in wait for syn+ack) <5>
 Total-Rx        :       3.77 Gbps   NAT aged flow id:        0 <2>
 Total-PPS       :     505.72 Kpps   Total NAT active:      163 <3> (12 waiting for syn) <6>
 Total-CPS       :      13.43 Kcps   Total NAT opened:    82677 <4>
----
<1> Number of connections for which TRex had to send the next packet in the flow, but did not learn the NAT translation yet. Should be 0. Usually, value different than 0 is seen if the DUT drops the flow (probably because it can't handle the number of connections)
<2> Number of flows for which when we got the translation info, flow was aged out already. Non 0 value here should be very rare. Can occur only when there is huge latency in the DUT input/output queue.
<3> Number of flows for which we sent the first packet, but did not learn the NAT translation yet. Value seen depends on the connection per second rate and round trip time.
<4> Total number of translations over the lifetime of the TRex instance. May be different from the total number of flows if template is uni-directional (and consequently does not need translation).
<5> Out of the timed out flows, how many were timed out while waiting to learn the TCP seq num randomization of the server->client from the SYN+ACK packet (Seen only in --learn-mode 1)
<6> Out of the active NAT sessions, how many are waiting to learn the client->server translation from the SYN packet (others are waiting for SYN+ACK from server) (Seen only in --learn-mode 1)

*Configuration for Cisco ASR1000 Series:*::

This feature was tested with the following configuration and  sfr_delay_10_1g_no_bundeling. yaml traffic profile.
Client address range is 16.0.0.1 to 16.0.0.255 

[source,python]
----
interface TenGigabitEthernet1/0/0            <1>
 mac-address 0000.0001.0000
 mtu 4000
 ip address 11.11.11.11 255.255.255.0
 ip policy route-map p1_to_p2
 ip nat inside                               <2>
 load-interval 30
!

interface TenGigabitEthernet1/1/0
 mac-address 0000.0001.0000
 mtu 4000
 ip address 11.11.11.11 255.255.255.0
 ip policy route-map p1_to_p2
 ip nat outside                              <3>
 load-interval 30

ip  nat pool my 200.0.0.0 200.0.0.255 netmask 255.255.255.0  <4>

ip nat inside source list 7 pool my overload 
access-list 7 permit 16.0.0.0 0.0.0.255                      <5>

ip nat inside source list 8 pool my overload                 <6>
access-list 8 permit 17.0.0.0 0.0.0.255                      
----
<1> Must be connected to TRex Client port (router inside port)
<2> NAT inside 
<3> NAT outside
<4> Pool of outside address with overload
<5> Match TRex YAML client range
<6> In case of dual port TRex

// verify 1 and 5 above; rephrased


*Limitations:*::

. The IPv6-IPv6 NAT feature does not exist on routers, so this feature can work on IPv4 only.
. Does not support NAT64. 
. Bundling/plugin support is not fully supported. Consequently, sfr_delay_10.yaml does not work. Use sfr_delay_10_no_bundeling.yaml instead. 
// verify file name "sfr_delay_10_no_bundeling.yaml" above. english spelling is bundling but maybe the filename has the "e"

[NOTE]
=====================================================================
* `--learn-verify` is a TRex debug mechanism for testing the TRex learn mechanism.
* If the router is configured without NAT, it will verify that the inside_ip==outside_ip and inside_port==outside_port.
=====================================================================

=== Flow order/latency verification 

In normal mode (without this feature enabled), received traffic is not checked by software. Hardware (Intel NIC) testin for dropped packets occurs at the end of the test. The only exception is the Latency/Jitter packets. 
This is one reason that with TRex, you *cannot* check features that terminate traffic (for example TCP Proxy).
To enable this feature, add `--rx-check <sample>` to the command line options, where <sample> is the sample rate. 
The number of flows that will be sent to the software for verification is (1/(sample_rate). For 40Gb/sec traffic you can use a sample rate of 1/128. Watch for Rx CPU% utilization.

 INFO: This feature changes the TTL of the sampled flows to 255 and expects to receive packets with TTL 254 or 255 (one routing hop). If you have more than one hop in your setup, use `--hops` to change it to a higher value. More than one hop is possible if there are number of routers betwean TRex client side and TRex server side.

This feature ensures that:

* Packets get out of DUT in order (from each flow perspective).
* There are no packet drops (no need to wait for the end of the test). Without this flag, you must wait for the end of the test in order to identify packet drops, because there is always a difference between TX and Rx, due to RTT.


.Full example 
[source,bash]
----
$sudo ./t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 4 -p -l 100 -d 100000 -m 30  --rx-check 128
----

[source,python]
----
Cpu Utilization : 0.1 %                                                                       <1>
 if|   tx_ok , rx_ok  , rx   ,error,    average   ,   max         , Jitter ,  max window 
   |         ,        , check,     , latency(usec),latency (usec) ,(usec)  ,             
 --------------------------------------------------------------------------------
 0 |     1002,    1002,      2501,   0,         61  ,      70,       3      |  60
 1 |     1002,    1002,      2012,   0,         56  ,      63,       2      |  50
 2 |     1002,    1002,      2322,   0,         66  ,      74,       5      |  68
 3 |     1002,    1002,      1727,   0,         58  ,      68,       2      |  52

 Rx Check stats enabled                                                                       <2>
 -------------------------------------------------------------------------------------------
 rx check:  avg/max/jitter latency,       94  ,     744,       49      |  252  287  309       <3>
 
 active flows: <6>      10, fif: <5>     308,  drop:        0, errors:        0                <4>
 -------------------------------------------------------------------------------------------
----
<1> CPU% of the Rx thread. If it is too high, *increase* the sample rate.
<2> Rx Check section. For more detailed info, press 'r' during the test or at the end of the test.
<3> Average latency, max latency, jitter on the template flows in microseconds. This is usually *higher* than the latency check packet because the feature works more on this packet.
<4> Drop counters and errors counter should be zero. If not, press 'r' to see the full report or view the report at the end of the test.
<5> fif - First in flow. Number of new flows handled by the Rx thread.
<6> active flows - number of active flows handled by rx thread 

.Press R to Display Full Report
[source,python]
----
 m_total_rx                              : 2 
 m_lookup                                : 2 
 m_found                                 : 1 
 m_fif                                   : 1 
 m_add                                   : 1 
 m_remove                                : 1 
 m_active                                : 0 
                                                        <1>
 0  0  0  0  1041  0  0  0  0  0  0  0  0  min_delta  : 10 usec 
 cnt        : 2 
 high_cnt   : 2 
 max_d_time : 1041 usec
 sliding_average    : 1 usec                            <2>
 precent    : 100.0 %
 histogram 
 -----------
 h[1000]  :  2 
 tempate_id_ 0 , errors:       0,  jitter: 61           <3>
 tempate_id_ 1 , errors:       0,  jitter: 0 
 tempate_id_ 2 , errors:       0,  jitter: 0 
 tempate_id_ 3 , errors:       0,  jitter: 0 
 tempate_id_ 4 , errors:       0,  jitter: 0 
 tempate_id_ 5 , errors:       0,  jitter: 0 
 tempate_id_ 6 , errors:       0,  jitter: 0 
 tempate_id_ 7 , errors:       0,  jitter: 0 
 tempate_id_ 8 , errors:       0,  jitter: 0 
 tempate_id_ 9 , errors:       0,  jitter: 0 
 tempate_id_10 , errors:       0,  jitter: 0 
 tempate_id_11 , errors:       0,  jitter: 0 
 tempate_id_12 , errors:       0,  jitter: 0 
 tempate_id_13 , errors:       0,  jitter: 0 
 tempate_id_14 , errors:       0,  jitter: 0 
 tempate_id_15 , errors:       0,  jitter: 0 
 ager :
 m_st_alloc                                 : 1 
 m_st_free                                  : 0 
 m_st_start                                 : 2 
 m_st_stop                                  : 1 
 m_st_handle                                : 0 
----
<1> Errors, if any, shown here
<2> Low pass filter on the active average of latency events 
<3> Error per template info

// IGNORE: this line added to help rendition. Without this line, the "Notes and Limitations" section below does not appear.

*Notes and Limitations:*::

** This feature must be enabled with a latency check (`-l`).
** To receive the packets TRex does the following:
*** Changes the TTL to 0xff and expects 0xFF (loopback) or oxFE (route). (Use `--hop` to configure this value.)
*** Adds 24 bytes of metadata as ipv4/ipv6 option header.
// clarify "ipv4/ipv6 option header" above

== Reference

=== Traffic YAML (parameter of -f option)

==== Global Traffic YAML section 

[source,python]
----
- duration : 10.0                          <1>
  generator :                              <2>
          distribution : "seq"           
          clients_start : "16.0.0.1"     
          clients_end   : "16.0.0.255"   
          servers_start : "48.0.0.1"     
          servers_end   : "48.0.0.255"   
          clients_per_gb : 201
          min_clients    : 101
          dual_port_mask : "1.0.0.0" 
          tcp_aging      : 1
          udp_aging      : 1
  mac        : [0x00,0x00,0x00,0x01,0x00,0x00] <3>
  cap_ipg    : true                            <4>
  cap_ipg_min    : 30                          <5>
  cap_override_ipg    : 200                    <6>
  vlan       : { enable : 1  ,  vlan0 : 100 , vlan1 : 200 } <7>
  mac_override_by_ip : true  <8>
----
<1> Test duration (seconds). Can be overridden using the `-d` option.
<2> See the generator section.
// what does note 2 mean? see somewhere else? isn't this simply the generator section?
<3> Default source/destination MAC address. The configuration YAML can override this.
<4> true (default) indicates that the IPG is taken from the cap file (also taking into account cap_ipg_min and cap_override_ipg if they exist). false indicates that IPG is taken from per template section.
<5> The following two options can set the min ipg in microseconds: (if (pkt_ipg<cap_ipg_min) { pkt_ipg=cap_override_ipg} )
<6> Value to override (microseconds), as described in note above.
<7> Enable vlan feature. See xref:trex_vlan[trex_vlan section] for info.
<8> Enable MAC address replacement by client IP.

==== Per template section 
// clarify "per template"  

[source,python]
----
     - name: cap2/dns.pcap <1>
       cps : 10.0          <2>
       ipg : 10000         <3>
       rtt : 10000         <4>
       w   : 1             <5>
       server_addr : "48.0.0.7"    <6>
       one_app_server : true       <7>
       
----
<1> The name of the template pcap file. Can be relative path from the t-rex-64 image directory, or an absolute path. The pcap file should include only one flow. (Exception: in case of plug-ins).
<2> Connection per second. This is the value that will be used if specifying -m 1 from command line (giving -m x will multiply this 
<3> If the global section of the YAML file includes `cap_ipg    : false`, this line sets the inter-packet gap in microseconds. 
<4> Should be set to the same value as ipg (microseconds). 
<5> Default value: w=1. This indicates to the IP generator how to generate the flows. If w=2, two flows from the same template will be generated in a burst (more for HTTP that has burst of flows).
<6> If `one_app_server` is set to true, then all templates will use the same server.
<7> If the same server address is required, set this value to true.



=== Configuration YAML (parameter of --cfg option)

anchor:trex_config[]

The configuration file, in YAML format, configures TRex behavior, including:

 
- MAC address for each port (source and destination)
- Masking interfaces (usually for 1Gb/Sec TRex) to ensure that TRex does not take the management ports as traffic ports.
- Changing the zmq/telnet TCP port.

==== Basic Configuration 

Copy/install the configuration file to `/etc/trex_cfg.yaml`. 
TRex loads it automatically at startup. You still can override options with the command line option switch `--cfg [file]` in the CLI
Configuration file examples can be found in the `$ROOT/cfg` folder


[source,python]
----
        - port_limit    : 2    #mandatory                                                               <1>
          version       : 2    #mandatory                                                               <2>
          interfaces    : ["03:00.0","03:00.1"]   #mandatory                                            <3>          
          #enable_zmq_pub  : true                                                                       <4>
          #zmq_pub_port    : 4500                                                                       <5>
          #prefix          : setup1                                                                     <6>
          #limit_memory    : 1024                                                                       <7>
          c               : 4                                                                           <8>
          port_bandwidth_gb : 10                                                                        <9>
          port_info       :  # set eh mac addr  mandatory
                  - dest_mac        :   [0x1,0x0,0x0,0x1,0x0,0x00]  # port 0                            <10>
                    src_mac         :   [0x2,0x0,0x0,0x2,0x0,0x00]
                  - dest_mac        :   [0x3,0x0,0x0,0x3,0x0,0x00]  # port 1
                    src_mac         :   [0x4,0x0,0x0,0x4,0x0,0x00]
                  - dest_mac        :   [0x5,0x0,0x0,0x5,0x0,0x00]  # port 2
                    src_mac         :   [0x6,0x0,0x0,0x6,0x0,0x00]
                  - dest_mac        :   [0x7,0x0,0x0,0x7,0x0,0x01]  # port 3
                    src_mac         :   [0x0,0x0,0x0,0x8,0x0,0x02]
                  - dest_mac        :   [0x0,0x0,0x0,0x9,0x0,0x03]  # port 4
----
<1>  The number of ports, should be equal to the number of interfaces in 3)   - mandatory
<2>  Must be set to 2                                                         - mandatory
<3>  Interface that should be used. used `sudo ./dpdk_setup_ports.py --show`  - mandatory
<4>  Enable the ZMQ publisher for stats data, default is true. 
<5>  ZMQ port number. the default value is good. you can remove this line 

<6> The name of the setup should be distinct ( DPDK --file-prefix )
<7> DPDK -m limit the packet memory 
<8> Number of threads per dual interface ( like -c CLI option )
<9> The bandwidth of each interface in Gb/sec. In this example we have 10Gb/sec interfaces. for VM put 1. it used to tune the amount of memory allocated by TRex.
<10>  MAC address per port - source and destination.


To find out what the interfaces ids, perform the following:

[source,bash]
----
 $>sudo ./dpdk_setup_ports.py --show

 Network devices using DPDK-compatible driver
 ============================================

 Network devices using kernel driver
 ===================================
 0000:02:00.0 '82545EM Gigabit Ethernet Controller (Copper)' if=eth2 drv=e1000 unused=igb_uio *Active*
 0000:03:00.0 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<1>
 0000:03:00.1 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<2>
 0000:13:00.0 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<3>
 0000:13:00.1 '82599ES 10-Gigabit SFI/SFP+ Network Connection' drv= unused=ixgb #<4>

 Other network devices
 =====================
 <none>
----
<1> TRex interface #1 before unbinding 
<2> TRex interface #2 before unbinding 
<3> TRex interface #3 before unbinding 
<4> TRex interface #4 before unbinding 


minimum configuration file is:

[source,bash]
----
<none>
- port_limit    : 4         
  version       : 2   #<1>
  interfaces    : ["03:00.0","03:00.1","13:00.1","13:00.0"]  #<2> 
----
<1> must add version 2 to the configuration file
<2> The list of interfaces from `sudo ./dpdk_setup_ports.py --show`


==== Memory section configuration  

The memory section is optional. It is used when there is a need to tune the amount of memory used by packet manager 

[source,python]
----
        - port_limit      : 2                                                                           
          version       : 2                                                                             
          interfaces    : ["03:00.0","03:00.1"]                                                         
          memory    :                                           <1>
             mbuf_64     : 16380                                <2>
             mbuf_128    : 8190
             mbuf_256    : 8190
             mbuf_512    : 8190
             mbuf_1024   : 8190
             mbuf_2048   : 4096
             traffic_mbuf_64     : 16380                        <3>
             traffic_mbuf_128    : 8190
             traffic_mbuf_256    : 8190
             traffic_mbuf_512    : 8190
             traffic_mbuf_1024   : 8190
             traffic_mbuf_2048   : 4096
             dp_flows    : 1048576                              <4>
             global_flows : 10240                               <5>
----
<1> Memory section 
<2> Per dual interfaces number of buffers - buffer for real time traffic generation 
<3> Traffic buffer - when you have many template only this section should be enlarge  
<4> number of TRex flows needed 
<5> reserved 


==== Platform section configuration  

The platform section is optional. It is used to tune the performance and allocate the cores to the right NUMA  
a configuration file now has the folowing struct to support multi instance 

[source,python]
----
- version       : 2
  interfaces    : ["03:00.0","03:00.1"]                         
  port_limit    : 2 
  prefix          : setup1                                      <1>
  limit_memory    : 1024                                        <2>
  c               : 4                                           <3>
  port_bandwidth_gb : 10                                        <4>
  platform :                                                    <5>
        master_thread_id  : 0                                   <6>        
        latency_thread_id : 5                                   <7>
        dual_if   :                                             
             - socket   : 0                                     <8>
               threads  : [1,2,3,4]                             <9>
----
<1> The name of the setup should be distinct ( DPDK --file-prefix )
<2> DPDK -m 
<3> Number of threads per dual interface ( like -c CLI option )
<4> The bandwidth of each interface in Gb/sec. In this example we have 10Gb/sec interfaces. for VM put 1. it used to tune the amount of memory allocated by TRex.
<5> the platform section
<6> The thread_id for control 
<7> The thread_id for latency if used
<8> Socket of the dual interfaces, in this example of 03:00.0 and 03:00.1, memory should be local to the interface. (Currently dual interface can't use 2 NUMAs.)
<9> Thread to be used, should be local to the NIC. The threads are pinned to cores, thus specifying threads is like specifying cores.

*Real example:* anchor:numa-example[]

We've connected 2 Intel XL710 NICs close to each other on motherboard, they shared same NUMA:

image:images/same_numa.png[title="2_NICSs_same_NUMA"]

The CPU utilization was very high ~100%, with c=2 and c=4 the results were same.

Then, we moved the cards to different NUMAs:

image:images/different_numa.png[title="2_NICSs_different_NUMAs"]

*+*
We added configuration to the /etc/trex_cfg.yaml:

[source,python]
  platform :
        master_thread_id  : 0
        latency_thread_id : 8
        dual_if   :
             - socket   : 0
               threads  : [1, 2, 3, 4, 5, 6, 7]
             - socket   : 1
               threads  : [9, 10, 11, 12, 13, 14, 15]

This gave best results: with *\~98 Gb/s* TX BW and c=7, CPU utilization became *~21%*! (40% with c=4)

=== Command line options 

anchor:cml-line[]

*-f=TRAFIC_YAML_FILE*:: 
       Traffic YAML configuration file.

*-c=CORES*::
  Number of cores _per dual interface_. Use 4 for TRex 40Gb/sec. Monitor the CPU% of TRex - it should be ~50%. +
  TRex uses 2 cores for inner needs, the rest of cores can be used divided by number of dual interfaces. +
  For virtual NICs the limit is -c=1.

*-l=HZ*::
    Run the latency daemon in this Hz rate. Example: -l 1000 runs 1000 pkt/sec from each interface. A value of zero (0) disables the latency check.

*-d=DURATION*::
        Duration of the test (sec), Default: 0 

*-m=MUL*::
   Factor for bandwidth (multiply the CPS of each template by this value).

*--ipv6*::
       Convert template to IPv6 mode.

*--learn-mode <mode (1-2)>*::
    Learn the dynamic NAT translation. +
    1 - Use TCP ACK in first SYN to pass NAT translation information. Will work only for TCP streams. Initial SYN packet must be present in stream. +
    2 - Add special IP option to pass NAT translation information. Will not work on certain firewalls if they drop packets with IP options.

*--learn-verify*::
    Learn the translation. This feature is intended for verification of the mechanism in cases where there is no NAT.
  
*-p*::                
  Flow-flip. Sends all flow packets from the same interface. This can solve the flow order. Does not work with any router configuration.

*-e*::                
  same as `-p` but comply to the direction rules and replace source/destination IPs. it might not be good for NBAR as it is expected clients ip to be sent from same direction.

//TBD: The last 2 sentences (flow order, router configuration) are unclear.

  
*--lm=MASK*::                        
  Latency mask. Use this to verify port connectivity. Possible values: 0x1 (only port 0 will send traffic), 0x2 (only port 1 will send traffic). 

*--lo*::                         
   Latency test.
  
*--limit-ports=PORTS*::
   Limit number of ports. Configure this in the --cfg file. Possible values (number of ports): 2, 4, 6, 8. (Default: 4)
  
*--nc*::       
    If set, will terminate exacly at the end of the duration. This provides a faster, more accurate TRex termination. In default it wait for all the flow to terminate gracefully. In case of a very long flow the termination might be prolong. 
    
*-pm=MULTIFLIER*::
   Platform factor. If the setup includes a splitter, you can multiply the total results by this factor. Example: --pm 2.0 will multiply all bps results by this factor.
  
*-pubd*::
  Disable ZMQ monitor's  publishers.

*-1g*::                       
   Deprecated. Configure TRex to 1G. Configure this in the --cfg file. 
  
*-k=SEC*::
   Run a latency test before starting the test. TRex will wait for x sec before and after sending latency packets at startup.
   Current limitation (holds for TRex version 1.82): does not work properly on VM.

*-w=SEC*::
   Wait additional time between NICs initialization and sending traffic. Can be useful if DUT needs extra setup time. Default is 1 second.
  
*--cfg=platform_yaml*::     
        Load and configure platform using this file. See example file: cfg/cfg_examplexx.yaml 
        This file is used to configure/mask interfaces, cores, affinity, and MAC addresses.  
        You can use the example file by copying it to: /etc/trex_cfg.yaml   
  
  
*-v=VERBOSE*::
   Verbose mode (works only on the debug image! )  
      1    Show only stats.
      2    Run preview. Does not write to file.
      3    Run preview and write to stats file.
  Note: When using verbose mode, it is not necessary to add an output file. 
  Caution: Operating in verbose mode can generate very large files (terabytes). Use with caution, only on a local drive.
 
  
*--rx-check=SAMPLE_RATE*::
        Enable Rx check module. Using this each thread samples flows (1/sample) and checks order, latency, and additional statistics.
        Note: This feature operates as an additional thread.
  
*--hops=HOPES*::
   Number of hops in the setup (default is one hop). Relevant only if the Rx check is enabled.
   
*--iom=MODE*::
        I/O mode for interactive mode. Possible values: 0 (silent), 1 (normal), 2 (short)
  
*--no-flow-control-change*::
  Prevents TRex from changing flow control. By default (without this option), TRex disables flow control at startup for all cards, except for the Intel XL710 40G card.

*--mac-spread*::            
  Spread the destination mac by this this factor. e.g 2 will generate the traffic to 2 devices DEST-MAC ,DEST-MAC+1. The maximum is up to 128 devices.


ifndef::backend-docbook[]


endif::backend-docbook[]

== Appendix

=== Simulator 
 
The TRex simulator is a linux application that can process on any Linux CEL (it can run on TRex itself).
you can create create output pcap file from input of traffic YAML.

====  Simulator 


[source,bash]
----

$./bp-sim-64-debug -f avl/sfr_delay_10_1g.yaml -v 1

 -- loading cap file avl/delay_10_http_get_0.pcap 
 -- loading cap file avl/delay_10_http_post_0.pcap 
 -- loading cap file avl/delay_10_https_0.pcap 
 -- loading cap file avl/delay_10_http_browsing_0.pcap 
 -- loading cap file avl/delay_10_exchange_0.pcap 
 -- loading cap file avl/delay_10_mail_pop_0.pcap 
 -- loading cap file avl/delay_10_mail_pop_1.pcap 
 -- loading cap file avl/delay_10_mail_pop_2.pcap 
 -- loading cap file avl/delay_10_oracle_0.pcap 
 -- loading cap file avl/delay_10_rtp_160k_full.pcap 
 -- loading cap file avl/delay_10_rtp_250k_full.pcap 
 -- loading cap file avl/delay_10_smtp_0.pcap 
 -- loading cap file avl/delay_10_smtp_1.pcap 
 -- loading cap file avl/delay_10_smtp_2.pcap 
 -- loading cap file avl/delay_10_video_call_0.pcap 
 -- loading cap file avl/delay_10_sip_video_call_full.pcap 
 -- loading cap file avl/delay_10_citrix_0.pcap 
 -- loading cap file avl/delay_10_dns_0.pcap 
 id,name                                    , tps, cps,f-pkts,f-bytes, duration,   Mb/sec,   MB/sec,   c-flows,  PPS,total-Mbytes-duration,errors,flows    #<2>
 00, avl/delay_10_http_get_0.pcap             ,404.52,404.52,    44 ,   37830 ,   0.17 , 122.42 ,   15.30 ,         67 , 17799 ,       2 , 0 , 1 
 01, avl/delay_10_http_post_0.pcap            ,404.52,404.52,    54 ,   48468 ,   0.21 , 156.85 ,   19.61 ,         85 , 21844 ,       2 , 0 , 1 
 02, avl/delay_10_https_0.pcap                ,130.87,130.87,    96 ,   91619 ,   0.22 ,  95.92 ,   11.99 ,         29 , 12564 ,       1 , 0 , 1 
 03, avl/delay_10_http_browsing_0.pcap        ,709.89,709.89,    37 ,   34425 ,   0.13 , 195.50 ,   24.44 ,         94 , 26266 ,       2 , 0 , 1 
 04, avl/delay_10_exchange_0.pcap             ,253.81,253.81,    43 ,    9848 ,   1.57 ,  20.00 ,    2.50 ,        400 , 10914 ,       0 , 0 , 1 
 05, avl/delay_10_mail_pop_0.pcap             ,4.76,4.76,    20 ,    5603 ,   0.17 ,   0.21 ,    0.03 ,          1 ,    95 ,       0 , 0 , 1 
 06, avl/delay_10_mail_pop_1.pcap             ,4.76,4.76,   114 ,  101517 ,   0.25 ,   3.86 ,    0.48 ,          1 ,   543 ,       0 , 0 , 1 
 07, avl/delay_10_mail_pop_2.pcap             ,4.76,4.76,    30 ,   15630 ,   0.19 ,   0.60 ,    0.07 ,          1 ,   143 ,       0 , 0 , 1 
 08, avl/delay_10_oracle_0.pcap               ,79.32,79.32,   302 ,   56131 ,   6.86 ,  35.62 ,    4.45 ,        544 , 23954 ,       0 , 0 , 1 
 09, avl/delay_10_rtp_160k_full.pcap          ,2.78,8.33,  1354 , 1232757 ,  61.24 ,  27.38 ,    3.42 ,        170 ,  3759 ,       0 , 0 , 3 
 10, avl/delay_10_rtp_250k_full.pcap          ,1.98,5.95,  2069 , 1922000 ,  61.38 ,  30.48 ,    3.81 ,        122 ,  4101 ,       0 , 0 , 3 
 11, avl/delay_10_smtp_0.pcap                 ,7.34,7.34,    22 ,    5618 ,   0.19 ,   0.33 ,    0.04 ,          1 ,   161 ,       0 , 0 , 1 
 12, avl/delay_10_smtp_1.pcap                 ,7.34,7.34,    35 ,   18344 ,   0.21 ,   1.08 ,    0.13 ,          2 ,   257 ,       0 , 0 , 1 
 13, avl/delay_10_smtp_2.pcap                 ,7.34,7.34,   110 ,   96544 ,   0.27 ,   5.67 ,    0.71 ,          2 ,   807 ,       0 , 0 , 1 
 14, avl/delay_10_video_call_0.pcap           ,11.90,11.90,  2325 , 2532577 ,  36.56 , 241.05 ,   30.13 ,        435 , 27662 ,       3 , 0 , 1 
 15, avl/delay_10_sip_video_call_full.pcap    ,29.35,58.69,  1651 ,  120315 ,  24.56 ,  28.25 ,    3.53 ,        721 , 48452 ,       0 , 0 , 2 
 16, avl/delay_10_citrix_0.pcap               ,43.62,43.62,   272 ,   84553 ,   6.23 ,  29.51 ,    3.69 ,        272 , 11866 ,       0 , 0 , 1 
 17, avl/delay_10_dns_0.pcap                  ,1975.02,1975.02,     2 ,     162 ,   0.01 ,   2.56 ,    0.32 ,         22 ,  3950 ,       0 , 0 , 1 

 00, sum                                      ,4083.86,93928.84,  8580 , 6413941 ,   0.00 , 997.28 ,  124.66 ,       2966 , 215136 ,      12 , 0 , 23 
 Memory usage 
 size_64        : 1687 
 size_128       : 222 
 size_256       : 798 
 size_512       : 1028 
 size_1024      : 86 
 size_2048      : 4086 
 Total    :       8.89 Mbytes  159% util #<1>

----
<1> the memory usage of the templates 
<2> CSV for all the templates 


=== firmware update to XL710/X710 
anchor:xl710-firmware[]
 
To upgrade the firmware  follow  this

==== Download the driver 

*Download driver i40e from link:https://downloadcenter.intel.com/download/24411/Network-Adapter-Driver-for-PCI-E-40-Gigabit-Network-Connections-under-Linux-[here]
*Build the kernel module

[source,bash]
----
$tar -xvzf i40e-1.3.47
$cd i40e-1.3.47/src
$make 
$sudo insmod  i40e.ko
----


====  Bind the NIC to Linux

In this stage we bind the NIC to Linux (take it from DPDK)

[source,bash]
----
$sudo ./dpdk_nic_bind.py --status # show the ports 

Network devices using DPDK-compatible driver
============================================
0000:02:00.0 'Device 1583' drv=igb_uio unused=      #<1>
0000:02:00.1 'Device 1583' drv=igb_uio unused=      #<2>
0000:87:00.0 'Device 1583' drv=igb_uio unused=
0000:87:00.1 'Device 1583' drv=igb_uio unused=

$sudo dpdk_nic_bind.py -u 02:00.0  02:00.1          #<3> 

$sudo dpdk_nic_bind.py -b i40e 02:00.0 02:00.1      #<4>

$ethtool -i p1p2                                    #<5>  

driver: i40e
version: 1.3.47
firmware-version: 4.24 0x800013fc 0.0.0             #<6>
bus-info: 0000:02:00.1
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes

   
$ethtool -S p1p2 
$lspci -s 02:00.0 -vvv                              #<7>


----
<1> XL710 ports that need to unbind from DPDK
<2> XL710 ports that need to unbind from DPDK
<3> Unbind from DPDK using this command
<4> Bind to linux to i40e driver 
<5> Show firmware version throw linux driver 
<6> Firmare version
<7> More info 


====  Upgrade 

Download NVMUpdatePackage.zip from Intel site link:http://downloadcenter.intel.com/download/24769/NVM-Update-Utility-for-Intel-Ethernet-Converged-Network-Adapter-XL710-X710-Series[here]  
It includes the utility `nvmupdate64e`

Run this:

[source,bash]
----
$sudo ./nvmupdate64e  
----

You might need a power cycle and to run this command a few times to get the latest firmware  

====  QSFP+ support for XL710

see link:https://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjJhPSH3b3LAhUp7nIKHSkACUYQFggaMAA&url=http%3A%2F%2Fwww.intel.co.id%2Fcontent%2Fdam%2Fwww%2Fpublic%2Fus%2Fen%2Fdocuments%2Frelease-notes%2Fxl710-ethernet-controller-feature-matrix.pdf&usg=AFQjCNFhwozfz-XuKGMOy9_MJDbetw15Og&sig2=ce7YU9F9Et6xf6KvqSFBxg&bvm=bv.116636494,d.bGs[QSFP+ support] for QSFP+ support and Firmware requirement for XL710


=== TRex with ASA 5585

When running TRex aginst ASA 5585, you have to notice following things:

* ASA can't forward ipv4 options, so there is a need to use --learn-mode 1 (or 3) in case of NAT. In this mode, bidirectional UDP flows are not supported.
--learn-mode 1 support TCP sequence number randomization in both sides of the connection (client to server and server client). For this to work, TRex must learn
the translation of packets from both sides, so this mode reduce the amount of connections per second TRex can generate (The number is still high enough to test
any existing firewall). If you need higher cps rate, you can use --learn-mode 3. This mode handles sequence number randomization on client->server side only.
* Latency should be tested using ICMP with `--l-pkt-mode 2`

====  ASA 5585 sample configuration

[source,bash]
----
ciscoasa# show running-config 
: Saved

: 
: Serial Number: JAD194801KX
: Hardware:   ASA5585-SSP-10, 6144 MB RAM, CPU Xeon 5500 series 2000 MHz, 1 CPU (4 cores)
:
ASA Version 9.5(2) 
!
hostname ciscoasa
enable password 8Ry2YjIyt7RRXU24 encrypted
passwd 2KFQnbNIdI.2KYOU encrypted
names
!
interface Management0/0
 management-only
 nameif management
 security-level 100
 ip address 10.56.216.106 255.255.255.0 
!             
interface TenGigabitEthernet0/8
 nameif inside
 security-level 100
 ip address 15.0.0.1 255.255.255.0 
!             
interface TenGigabitEthernet0/9
 nameif outside
 security-level 0
 ip address 40.0.0.1 255.255.255.0 
!             
boot system disk0:/asa952-smp-k8.bin
ftp mode passive
pager lines 24
logging asdm informational
mtu management 1500
mtu inside 9000
mtu outside 9000
no failover   
no monitor-interface service-module 
icmp unreachable rate-limit 1 burst-size 1
no asdm history enable
arp outside 40.0.0.2 90e2.baae.87d1 
arp inside 15.0.0.2 90e2.baae.87d0 
arp timeout 14400
no arp permit-nonconnected
route management 0.0.0.0 0.0.0.0 10.56.216.1 1
route inside 16.0.0.0 255.0.0.0 15.0.0.2 1
route outside 48.0.0.0 255.0.0.0 40.0.0.2 1
timeout xlate 3:00:00
timeout pat-xlate 0:00:30
timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 sctp 0:02:00 icmp 0:00:02
timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00
timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00
timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute
timeout tcp-proxy-reassembly 0:01:00
timeout floating-conn 0:00:00
user-identity default-domain LOCAL
http server enable
http 192.168.1.0 255.255.255.0 management
no snmp-server location
no snmp-server contact
crypto ipsec security-association pmtu-aging infinite
crypto ca trustpool policy
telnet 0.0.0.0 0.0.0.0 management
telnet timeout 5
ssh stricthostkeycheck
ssh timeout 5 
ssh key-exchange group dh-group1-sha1
console timeout 0
!             
tls-proxy maximum-session 1000
!             
threat-detection basic-threat
threat-detection statistics access-list
no threat-detection statistics tcp-intercept
dynamic-access-policy-record DfltAccessPolicy
!             
class-map icmp-class
 match default-inspection-traffic
class-map inspection_default
 match default-inspection-traffic
!             
!             
policy-map type inspect dns preset_dns_map
 parameters   
  message-length maximum client auto
  message-length maximum 512
policy-map icmp_policy
 class icmp-class
  inspect icmp 
policy-map global_policy
 class inspection_default
  inspect dns preset_dns_map 
  inspect ftp 
  inspect h323 h225 
  inspect h323 ras 
  inspect rsh 
  inspect rtsp 
  inspect esmtp 
  inspect sqlnet 
  inspect skinny  
  inspect sunrpc 
  inspect xdmcp 
  inspect sip  
  inspect netbios 
  inspect tftp 
  inspect ip-options 
!             
service-policy global_policy global
service-policy icmp_policy interface outside
prompt hostname context 
!             
jumbo-frame reservation
!             
no call-home reporting anonymous
: end         
ciscoasa# 
----

====  TRex commands example 

Using these commands the configuration is:

1. NAT learn mode (TCP-ACK)
2. Delay of 1 second at start up (-k 1). It was added because ASA drops the first packets.
3. Latency is configured to ICMP reply mode (--l-pkt-mode 2).


*Simple HTTP:*::
[source,bash]
----
$sudo ./t-rex-64 -f cap2/http_simple.yaml -d 1000 -l 1000 --l-pkt-mode 2 -m 1000  --learn-mode 1 -k 1
----

This is more realistic traffic for enterprise (we removed from SFR file the bidirectional UDP traffic templates, which (as described above), are not supported in this mode).

*Enterprise profile:*::
[source,bash]
----
$sudo ./t-rex-64 -f avl/sfr_delay_10_1g_asa_nat.yaml -d 1000 -l 1000 --l-pkt-mode 2 -m 4 --learn-mode 1 -k 1
----

The TRex output

[source,bash]
----
-Per port stats table 
      ports |               0 |               1 
 -----------------------------------------------------------------------------------------
   opackets |       106347896 |       118369678 
     obytes |     33508291818 |    118433748567 
   ipackets |       118378757 |       106338782 
     ibytes |    118434305375 |     33507698915 
    ierrors |               0 |               0 
    oerrors |               0 |               0 
      Tx Bw |     656.26 Mbps |       2.27 Gbps 

-Global stats enabled 
 Cpu Utilization : 18.4  %  31.7 Gb/core 
 Platform_factor : 1.0  
 Total-Tx        :       2.92 Gbps   NAT time out    :        0 #<1> (0 in wait for syn+ack) #<1>
 Total-Rx        :       2.92 Gbps   NAT aged flow id:        0 #<1>
 Total-PPS       :     542.29 Kpps   Total NAT active:      163  (12 waiting for syn)
 Total-CPS       :       8.30 Kcps   Nat_learn_errors:        0

 Expected-PPS    :     539.85 Kpps
 Expected-CPS    :       8.29 Kcps  
 Expected-BPS    :       2.90 Gbps  

 Active-flows    :     7860  Clients :      255   Socket-util : 0.0489 %    
 Open-flows      :  3481234  Servers :     5375   Socket :     7860 Socket/Clients :  30.8 
 drop-rate       :       0.00  bps   #<1>
 current time    : 425.1 sec  
 test duration   : 574.9 sec  

-Latency stats enabled 
 Cpu Utilization : 0.3 %  
 if|   tx_ok , rx_ok  , rx   ,error,    average   ,   max         , Jitter ,  max window 
   |         ,        , check,     , latency(usec),latency (usec) ,(usec)  ,             
 ---------------------------------------------------------------------------------------------------------------- 
 0 |   420510,  420495,         0,   1,         58  ,    1555,      14      |  240  257  258  258  219  930  732  896  830  472  190  207  729 
 1 |   420496,  420509,         0,   1,         51  ,    1551,      13      |  234  253  257  258  214  926  727  893  826  468  187  204  724
----
<1>  These counters should be zero 

anchor:fedora21_example[]

=== Fedora 21 Server installation

Download the .iso file from link above, boot with it using Hypervisor or CIMC console. +
Troubleshooting -> install in basic graphics mode

* In packages selection, choose:

** C Development Tools and Libraries

** Development Tools

** System Tools

* Set Ethernet configuration if needed

* Use default hard-drive partitions, reclaim space if needed

* After installation, edit file /etc/selinux/config +
set: +
SELINUX=disabled

* Run: +
systemctl disable firewalld 

* Edit file /etc/yum.repos.d/fedora-updates.repo +
set everywhere: +
enabled=0

* Reboot

=== Configure Linux host as network emulator

There are lots of Linux tutorials on the web, so this will not be full tutorial, only highlighting some key points. Commands
were checked on Ubuntu system.

For this example:

1. TRex Client side network is 16.0.0.x 
2. TRex Server side network is 48.0.0.x 
3. Linux Client side network eth0 is configured with IPv4 as 172.168.0.1 
4. Linux Server side network eth1 is configured with IPv4 as 10.0.0.1 

[source,bash]
----

  TRex-0 (16.0.0.1->48.0.0.1 )   <-->

                ( 172.168.0.1/255.255.0.0)-eth0 [linux] -( 10.0.0.1/255.255.0.0)-eth1 

                <--> TRex-1 (16.0.0.1<-48.0.0.1)
  
----


==== Enable forwarding
One time (will be discarded after reboot): +

[source,bash]
----
echo 1 > /proc/sys/net/ipv4/ip_forward
----
To make this permanent, add the following line to the file /etc/sysctl.conf: +
----
net.ipv4.ip_forward=1
----

==== Add static routes
Example if for the default TRex networks, 48.0.0.0 and 16.0.0.0.

Routing all traffic from 48.0.0.0 to the gateway 10.0.0.100
[source,bash]
----
route add -net 48.0.0.0 netmask 255.255.0.0 gw 10.0.0.100
----

Routing all traffic from 16.0.0.0 to the gateway 172.168.0.100
[source,bash]
----
route add -net 16.0.0.0 netmask 255.255.0.0 gw 172.168.0.100
----
If you use stateless mode, and decide to add route only in one direction, remember to disable reverse path check. +
For example, to disable on all interfaces:
[source,bash]
----
for i in /proc/sys/net/ipv4/conf/*/rp_filter ; do
  echo 0 > $i 
done
----

Alternatively, you can edit /etc/network/interfaces, and add something like this for both ports connected to TRex.
This will take effect, only after restarting networking (rebooting the machine in an alternative also).
----
auto eth1
iface eth1 inet static
address 16.0.0.100
netmask 255.0.0.0
network 16.0.0.0
broadcast 16.255.255.255
... same for 48.0.0.0
----

==== Add static ARP entries
[source,bash]
----
sudo arp -s 10.0.0.100 <Second TRex port MAC>
sudo arp -s 172.168.0.100 <TRex side the NICs are not visible to ifconfig, run:
----