diff options
author | Chenmin Sun <chenmin.sun@intel.com> | 2020-03-28 00:34:19 +0800 |
---|---|---|
committer | Damjan Marion <dmarion@me.com> | 2020-04-22 08:44:56 +0000 |
commit | 7f83738b46e6e0dd17c7a23392ceaaef686ac08a (patch) | |
tree | 737cd8b91a7d6286838bb3f5797ee00301164c5d /build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch | |
parent | 1e5ed9774973221218883b919844d252b4467305 (diff) |
dpdk: DPDK 20.05 iavf flow director backporting to DPDK 20.02
0001 ~ 0014 patches are for virtual channel and PMD
0015 is the iavf fdir framework
0016 ~ 0017 are for the iavf fidr driver
Type: feature
Signed-off-by: Chenmin Sun <chenmin.sun@intel.com>
Change-Id: I38e69ca0065a71cc6ba0b44ef7c7db51193a0899
Diffstat (limited to 'build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch')
-rw-r--r-- | build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch | 671 |
1 files changed, 671 insertions, 0 deletions
diff --git a/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch b/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch new file mode 100644 index 00000000000..009a2c2854d --- /dev/null +++ b/build/external/patches/dpdk_20.02/0010-net-iavf-flexible-Rx-descriptor-support-in-AVX-path.patch @@ -0,0 +1,671 @@ +From b1138c10d2cd5938f4c0316e0b132caeb7e869dd Mon Sep 17 00:00:00 2001 +From: Leyi Rong <leyi.rong@intel.com> +Date: Wed, 8 Apr 2020 14:22:03 +0800 +Subject: [DPDK 10/17] net/iavf: flexible Rx descriptor support in AVX path + +Support flexible Rx descriptor format in AVX +path of iAVF PMD. + +Signed-off-by: Leyi Rong <leyi.rong@intel.com> +--- + drivers/net/iavf/iavf_rxtx.c | 24 +- + drivers/net/iavf/iavf_rxtx.h | 6 + + drivers/net/iavf/iavf_rxtx_vec_avx2.c | 550 +++++++++++++++++++++++++- + 3 files changed, 570 insertions(+), 10 deletions(-) + +diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c +index 67297dcb7..34c41d104 100644 +--- a/drivers/net/iavf/iavf_rxtx.c ++++ b/drivers/net/iavf/iavf_rxtx.c +@@ -2081,16 +2081,28 @@ iavf_set_rx_function(struct rte_eth_dev *dev) + "Using %sVector Scattered Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); +- dev->rx_pkt_burst = use_avx2 ? +- iavf_recv_scattered_pkts_vec_avx2 : +- iavf_recv_scattered_pkts_vec; ++ if (vf->vf_res->vf_cap_flags & ++ VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) ++ dev->rx_pkt_burst = use_avx2 ? ++ iavf_recv_scattered_pkts_vec_avx2_flex_rxd : ++ iavf_recv_scattered_pkts_vec; ++ else ++ dev->rx_pkt_burst = use_avx2 ? ++ iavf_recv_scattered_pkts_vec_avx2 : ++ iavf_recv_scattered_pkts_vec; + } else { + PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); +- dev->rx_pkt_burst = use_avx2 ? +- iavf_recv_pkts_vec_avx2 : +- iavf_recv_pkts_vec; ++ if (vf->vf_res->vf_cap_flags & ++ VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) ++ dev->rx_pkt_burst = use_avx2 ? ++ iavf_recv_pkts_vec_avx2_flex_rxd : ++ iavf_recv_pkts_vec; ++ else ++ dev->rx_pkt_burst = use_avx2 ? ++ iavf_recv_pkts_vec_avx2 : ++ iavf_recv_pkts_vec; + } + + return; +diff --git a/drivers/net/iavf/iavf_rxtx.h b/drivers/net/iavf/iavf_rxtx.h +index f33d1df41..8e1db2588 100644 +--- a/drivers/net/iavf/iavf_rxtx.h ++++ b/drivers/net/iavf/iavf_rxtx.h +@@ -413,9 +413,15 @@ uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); ++uint16_t iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, ++ struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts); + uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); ++uint16_t iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue, ++ struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts); + uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); + uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, +diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx2.c b/drivers/net/iavf/iavf_rxtx_vec_avx2.c +index 2587083d8..b23188fd3 100644 +--- a/drivers/net/iavf/iavf_rxtx_vec_avx2.c ++++ b/drivers/net/iavf/iavf_rxtx_vec_avx2.c +@@ -11,14 +11,16 @@ + #endif + + static inline void +-iavf_rxq_rearm(struct iavf_rx_queue *rxq) ++iavf_rxq_rearm(struct iavf_rx_queue *rxq, volatile union iavf_rx_desc *rxdp) + { + int i; + uint16_t rx_id; +- volatile union iavf_rx_desc *rxdp; + struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start]; + +- rxdp = rxq->rx_ring + rxq->rxrearm_start; ++ if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1) { ++ volatile union iavf_rx_flex_desc *rxdp = ++ (union iavf_rx_flex_desc *)rxdp; ++ } + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, +@@ -160,7 +162,7 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, + * of time to act + */ + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) +- iavf_rxq_rearm(rxq); ++ iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available +@@ -614,6 +616,465 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq, + return received; + } + ++static inline uint16_t ++_iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq, ++ struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts, uint8_t *split_packet) ++{ ++#define IAVF_DESCS_PER_LOOP_AVX 8 ++ ++ const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl; ++ ++ const __m256i mbuf_init = _mm256_set_epi64x(0, 0, ++ 0, rxq->mbuf_initializer); ++ struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; ++ volatile union iavf_rx_flex_desc *rxdp = ++ (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail; ++ ++ rte_prefetch0(rxdp); ++ ++ /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ ++ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); ++ ++ /* See if we need to rearm the RX queue - gives the prefetch a bit ++ * of time to act ++ */ ++ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) ++ /* iavf_rxq_rearm(rxq); */ ++ iavf_rxq_rearm(rxq, rxq->rx_ring + rxq->rxrearm_start); ++ ++ /* Before we start moving massive data around, check to see if ++ * there is actually a packet available ++ */ ++ if (!(rxdp->wb.status_error0 & ++ rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S))) ++ return 0; ++ ++ /* constants used in processing loop */ ++ const __m256i crc_adjust = ++ _mm256_set_epi16 ++ (/* first descriptor */ ++ 0, 0, 0, /* ignore non-length fields */ ++ -rxq->crc_len, /* sub crc on data_len */ ++ 0, /* ignore high-16bits of pkt_len */ ++ -rxq->crc_len, /* sub crc on pkt_len */ ++ 0, 0, /* ignore pkt_type field */ ++ /* second descriptor */ ++ 0, 0, 0, /* ignore non-length fields */ ++ -rxq->crc_len, /* sub crc on data_len */ ++ 0, /* ignore high-16bits of pkt_len */ ++ -rxq->crc_len, /* sub crc on pkt_len */ ++ 0, 0 /* ignore pkt_type field */ ++ ); ++ ++ /* 8 packets DD mask, LSB in each 32-bit value */ ++ const __m256i dd_check = _mm256_set1_epi32(1); ++ ++ /* 8 packets EOP mask, second-LSB in each 32-bit value */ ++ const __m256i eop_check = _mm256_slli_epi32(dd_check, ++ IAVF_RX_FLEX_DESC_STATUS0_EOF_S); ++ ++ /* mask to shuffle from desc. to mbuf (2 descriptors)*/ ++ const __m256i shuf_msk = ++ _mm256_set_epi8 ++ (/* first descriptor */ ++ 15, 14, ++ 13, 12, /* octet 12~15, 32 bits rss */ ++ 11, 10, /* octet 10~11, 16 bits vlan_macip */ ++ 5, 4, /* octet 4~5, 16 bits data_len */ ++ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ ++ 5, 4, /* octet 4~5, 16 bits pkt_len */ ++ 0xFF, 0xFF, /* pkt_type set as unknown */ ++ 0xFF, 0xFF, /*pkt_type set as unknown */ ++ /* second descriptor */ ++ 15, 14, ++ 13, 12, /* octet 12~15, 32 bits rss */ ++ 11, 10, /* octet 10~11, 16 bits vlan_macip */ ++ 5, 4, /* octet 4~5, 16 bits data_len */ ++ 0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */ ++ 5, 4, /* octet 4~5, 16 bits pkt_len */ ++ 0xFF, 0xFF, /* pkt_type set as unknown */ ++ 0xFF, 0xFF /*pkt_type set as unknown */ ++ ); ++ /** ++ * compile-time check the above crc and shuffle layout is correct. ++ * NOTE: the first field (lowest address) is given last in set_epi ++ * calls above. ++ */ ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != ++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != ++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != ++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != ++ offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); ++ ++ /* Status/Error flag masks */ ++ /** ++ * mask everything except Checksum Reports, RSS indication ++ * and VLAN indication. ++ * bit6:4 for IP/L4 checksum errors. ++ * bit12 is for RSS indication. ++ * bit13 is for VLAN indication. ++ */ ++ const __m256i flags_mask = ++ _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13)); ++ /** ++ * data to be shuffled by the result of the flags mask shifted by 4 ++ * bits. This gives use the l3_l4 flags. ++ */ ++ const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, ++ /* shift right 1 bit to make sure it not exceed 255 */ ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | ++ PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | ++ PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | ++ PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | ++ PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1, ++ /* second 128-bits */ ++ 0, 0, 0, 0, 0, 0, 0, 0, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | ++ PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | ++ PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | ++ PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | ++ PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, ++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, ++ (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1); ++ const __m256i cksum_mask = ++ _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | ++ PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | ++ PKT_RX_EIP_CKSUM_BAD); ++ /** ++ * data to be shuffled by result of flag mask, shifted down 12. ++ * If RSS(bit12)/VLAN(bit13) are set, ++ * shuffle moves appropriate flags in place. ++ */ ++ const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, ++ 0, 0, 0, 0, ++ 0, 0, 0, 0, ++ PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, ++ PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, ++ PKT_RX_RSS_HASH, 0, ++ /* end up 128-bits */ ++ 0, 0, 0, 0, ++ 0, 0, 0, 0, ++ 0, 0, 0, 0, ++ PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, ++ PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, ++ PKT_RX_RSS_HASH, 0); ++ ++ uint16_t i, received; ++ ++ for (i = 0, received = 0; i < nb_pkts; ++ i += IAVF_DESCS_PER_LOOP_AVX, ++ rxdp += IAVF_DESCS_PER_LOOP_AVX) { ++ /* step 1, copy over 8 mbuf pointers to rx_pkts array */ ++ _mm256_storeu_si256((void *)&rx_pkts[i], ++ _mm256_loadu_si256((void *)&sw_ring[i])); ++#ifdef RTE_ARCH_X86_64 ++ _mm256_storeu_si256 ++ ((void *)&rx_pkts[i + 4], ++ _mm256_loadu_si256((void *)&sw_ring[i + 4])); ++#endif ++ ++ __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; ++ ++ const __m128i raw_desc7 = ++ _mm_load_si128((void *)(rxdp + 7)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc6 = ++ _mm_load_si128((void *)(rxdp + 6)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc5 = ++ _mm_load_si128((void *)(rxdp + 5)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc4 = ++ _mm_load_si128((void *)(rxdp + 4)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc3 = ++ _mm_load_si128((void *)(rxdp + 3)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc2 = ++ _mm_load_si128((void *)(rxdp + 2)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc1 = ++ _mm_load_si128((void *)(rxdp + 1)); ++ rte_compiler_barrier(); ++ const __m128i raw_desc0 = ++ _mm_load_si128((void *)(rxdp + 0)); ++ ++ raw_desc6_7 = ++ _mm256_inserti128_si256 ++ (_mm256_castsi128_si256(raw_desc6), ++ raw_desc7, 1); ++ raw_desc4_5 = ++ _mm256_inserti128_si256 ++ (_mm256_castsi128_si256(raw_desc4), ++ raw_desc5, 1); ++ raw_desc2_3 = ++ _mm256_inserti128_si256 ++ (_mm256_castsi128_si256(raw_desc2), ++ raw_desc3, 1); ++ raw_desc0_1 = ++ _mm256_inserti128_si256 ++ (_mm256_castsi128_si256(raw_desc0), ++ raw_desc1, 1); ++ ++ if (split_packet) { ++ int j; ++ ++ for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) ++ rte_mbuf_prefetch_part2(rx_pkts[i + j]); ++ } ++ ++ /** ++ * convert descriptors 4-7 into mbufs, re-arrange fields. ++ * Then write into the mbuf. ++ */ ++ __m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk); ++ __m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk); ++ ++ mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); ++ mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); ++ /** ++ * to get packet types, ptype is located in bit16-25 ++ * of each 128bits ++ */ ++ const __m256i ptype_mask = ++ _mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M); ++ const __m256i ptypes6_7 = ++ _mm256_and_si256(raw_desc6_7, ptype_mask); ++ const __m256i ptypes4_5 = ++ _mm256_and_si256(raw_desc4_5, ptype_mask); ++ const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); ++ const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); ++ const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); ++ const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); ++ ++ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4); ++ mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0); ++ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4); ++ mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0); ++ /* merge the status bits into one register */ ++ const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7, ++ raw_desc4_5); ++ ++ /** ++ * convert descriptors 0-3 into mbufs, re-arrange fields. ++ * Then write into the mbuf. ++ */ ++ __m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk); ++ __m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk); ++ ++ mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); ++ mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); ++ /** ++ * to get packet types, ptype is located in bit16-25 ++ * of each 128bits ++ */ ++ const __m256i ptypes2_3 = ++ _mm256_and_si256(raw_desc2_3, ptype_mask); ++ const __m256i ptypes0_1 = ++ _mm256_and_si256(raw_desc0_1, ptype_mask); ++ const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); ++ const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); ++ const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); ++ const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); ++ ++ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4); ++ mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0); ++ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4); ++ mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0); ++ /* merge the status bits into one register */ ++ const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3, ++ raw_desc0_1); ++ ++ /** ++ * take the two sets of status bits and merge to one ++ * After merge, the packets status flags are in the ++ * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] ++ */ ++ __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, ++ status0_3); ++ ++ /* now do flag manipulation */ ++ ++ /* get only flag/error bits we want */ ++ const __m256i flag_bits = ++ _mm256_and_si256(status0_7, flags_mask); ++ /** ++ * l3_l4_error flags, shuffle, then shift to correct adjustment ++ * of flags in flags_shuf, and finally mask out extra bits ++ */ ++ __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, ++ _mm256_srli_epi32(flag_bits, 4)); ++ l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); ++ l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); ++ /* set rss and vlan flags */ ++ const __m256i rss_vlan_flag_bits = ++ _mm256_srli_epi32(flag_bits, 12); ++ const __m256i rss_vlan_flags = ++ _mm256_shuffle_epi8(rss_vlan_flags_shuf, ++ rss_vlan_flag_bits); ++ ++ /* merge flags */ ++ const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, ++ rss_vlan_flags); ++ /** ++ * At this point, we have the 8 sets of flags in the low 16-bits ++ * of each 32-bit value in vlan0. ++ * We want to extract these, and merge them with the mbuf init ++ * data so we can do a single write to the mbuf to set the flags ++ * and all the other initialization fields. Extracting the ++ * appropriate flags means that we have to do a shift and blend ++ * for each mbuf before we do the write. However, we can also ++ * add in the previously computed rx_descriptor fields to ++ * make a single 256-bit write per mbuf ++ */ ++ /* check the structure matches expectations */ ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != ++ offsetof(struct rte_mbuf, rearm_data) + 8); ++ RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != ++ RTE_ALIGN(offsetof(struct rte_mbuf, ++ rearm_data), ++ 16)); ++ /* build up data and do writes */ ++ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, ++ rearm6, rearm7; ++ rearm6 = _mm256_blend_epi32(mbuf_init, ++ _mm256_slli_si256(mbuf_flags, 8), ++ 0x04); ++ rearm4 = _mm256_blend_epi32(mbuf_init, ++ _mm256_slli_si256(mbuf_flags, 4), ++ 0x04); ++ rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); ++ rearm0 = _mm256_blend_epi32(mbuf_init, ++ _mm256_srli_si256(mbuf_flags, 4), ++ 0x04); ++ /* permute to add in the rx_descriptor e.g. rss fields */ ++ rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); ++ rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); ++ rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); ++ rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); ++ /* write to mbuf */ ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, ++ rearm6); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, ++ rearm4); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, ++ rearm2); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, ++ rearm0); ++ ++ /* repeat for the odd mbufs */ ++ const __m256i odd_flags = ++ _mm256_castsi128_si256 ++ (_mm256_extracti128_si256(mbuf_flags, 1)); ++ rearm7 = _mm256_blend_epi32(mbuf_init, ++ _mm256_slli_si256(odd_flags, 8), ++ 0x04); ++ rearm5 = _mm256_blend_epi32(mbuf_init, ++ _mm256_slli_si256(odd_flags, 4), ++ 0x04); ++ rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); ++ rearm1 = _mm256_blend_epi32(mbuf_init, ++ _mm256_srli_si256(odd_flags, 4), ++ 0x04); ++ /* since odd mbufs are already in hi 128-bits use blend */ ++ rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); ++ rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); ++ rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); ++ rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); ++ /* again write to mbufs */ ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, ++ rearm7); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, ++ rearm5); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, ++ rearm3); ++ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, ++ rearm1); ++ ++ /* extract and record EOP bit */ ++ if (split_packet) { ++ const __m128i eop_mask = ++ _mm_set1_epi16(1 << ++ IAVF_RX_FLEX_DESC_STATUS0_EOF_S); ++ const __m256i eop_bits256 = _mm256_and_si256(status0_7, ++ eop_check); ++ /* pack status bits into a single 128-bit register */ ++ const __m128i eop_bits = ++ _mm_packus_epi32 ++ (_mm256_castsi256_si128(eop_bits256), ++ _mm256_extractf128_si256(eop_bits256, ++ 1)); ++ /** ++ * flip bits, and mask out the EOP bit, which is now ++ * a split-packet bit i.e. !EOP, rather than EOP one. ++ */ ++ __m128i split_bits = _mm_andnot_si128(eop_bits, ++ eop_mask); ++ /** ++ * eop bits are out of order, so we need to shuffle them ++ * back into order again. In doing so, only use low 8 ++ * bits, which acts like another pack instruction ++ * The original order is (hi->lo): 1,3,5,7,0,2,4,6 ++ * [Since we use epi8, the 16-bit positions are ++ * multiplied by 2 in the eop_shuffle value.] ++ */ ++ __m128i eop_shuffle = ++ _mm_set_epi8(/* zero hi 64b */ ++ 0xFF, 0xFF, 0xFF, 0xFF, ++ 0xFF, 0xFF, 0xFF, 0xFF, ++ /* move values to lo 64b */ ++ 8, 0, 10, 2, ++ 12, 4, 14, 6); ++ split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); ++ *(uint64_t *)split_packet = ++ _mm_cvtsi128_si64(split_bits); ++ split_packet += IAVF_DESCS_PER_LOOP_AVX; ++ } ++ ++ /* perform dd_check */ ++ status0_7 = _mm256_and_si256(status0_7, dd_check); ++ status0_7 = _mm256_packs_epi32(status0_7, ++ _mm256_setzero_si256()); ++ ++ uint64_t burst = __builtin_popcountll ++ (_mm_cvtsi128_si64 ++ (_mm256_extracti128_si256 ++ (status0_7, 1))); ++ burst += __builtin_popcountll ++ (_mm_cvtsi128_si64 ++ (_mm256_castsi256_si128(status0_7))); ++ received += burst; ++ if (burst != IAVF_DESCS_PER_LOOP_AVX) ++ break; ++ } ++ ++ /* update tail pointers */ ++ rxq->rx_tail += received; ++ rxq->rx_tail &= (rxq->nb_rx_desc - 1); ++ if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ ++ rxq->rx_tail--; ++ received--; ++ } ++ rxq->rxrearm_nb += received; ++ return received; ++} ++ + /** + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet +@@ -625,6 +1086,18 @@ iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); + } + ++/** ++ * Notice: ++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet ++ */ ++uint16_t ++iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts) ++{ ++ return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts, ++ nb_pkts, NULL); ++} ++ + /** + * vPMD receive routine that reassembles single burst of 32 scattered packets + * Notice: +@@ -690,6 +1163,75 @@ iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + rx_pkts + retval, nb_pkts); + } + ++/** ++ * vPMD receive routine that reassembles single burst of ++ * 32 scattered packets for flex RxD ++ * Notice: ++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet ++ */ ++static uint16_t ++iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue, ++ struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts) ++{ ++ struct iavf_rx_queue *rxq = rx_queue; ++ uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; ++ ++ /* get some new buffers */ ++ uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq, ++ rx_pkts, nb_pkts, split_flags); ++ if (nb_bufs == 0) ++ return 0; ++ ++ /* happy day case, full burst + no packets to be joined */ ++ const uint64_t *split_fl64 = (uint64_t *)split_flags; ++ ++ if (!rxq->pkt_first_seg && ++ split_fl64[0] == 0 && split_fl64[1] == 0 && ++ split_fl64[2] == 0 && split_fl64[3] == 0) ++ return nb_bufs; ++ ++ /* reassemble any packets that need reassembly*/ ++ unsigned int i = 0; ++ ++ if (!rxq->pkt_first_seg) { ++ /* find the first split flag, and only reassemble then*/ ++ while (i < nb_bufs && !split_flags[i]) ++ i++; ++ if (i == nb_bufs) ++ return nb_bufs; ++ rxq->pkt_first_seg = rx_pkts[i]; ++ } ++ return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, ++ &split_flags[i]); ++} ++ ++/** ++ * vPMD receive routine that reassembles scattered packets for flex RxD. ++ * Main receive routine that can handle arbitrary burst sizes ++ * Notice: ++ * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet ++ */ ++uint16_t ++iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue, ++ struct rte_mbuf **rx_pkts, ++ uint16_t nb_pkts) ++{ ++ uint16_t retval = 0; ++ ++ while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { ++ uint16_t burst = ++ iavf_recv_scattered_burst_vec_avx2_flex_rxd ++ (rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); ++ retval += burst; ++ nb_pkts -= burst; ++ if (burst < IAVF_VPMD_RX_MAX_BURST) ++ return retval; ++ } ++ return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue, ++ rx_pkts + retval, nb_pkts); ++} ++ + static inline void + iavf_vtx1(volatile struct iavf_tx_desc *txdp, + struct rte_mbuf *pkt, uint64_t flags) +-- +2.17.1 + |