summaryrefslogtreecommitdiffstats
path: root/extras/libmemif/src/libmemif.h
diff options
context:
space:
mode:
authorDamjan Marion <damarion@cisco.com>2018-08-29 22:20:45 +0200
committerDamjan Marion <dmarion@me.com>2018-08-30 12:35:28 +0000
commit43b06063015abfa42bc9c5ab925cd6b7ea3cbf42 (patch)
treef7e1acfeae68735929ebaccf5fe1eb1b8f86ee0e /extras/libmemif/src/libmemif.h
parentec2a9bbb89a4ec1ebf8982f1d611179cd84315b8 (diff)
cmake: a bit of packaging work
Change-Id: I40332c2348c4aab873d726532f2ac3c4abde7ec9 Signed-off-by: Damjan Marion <damarion@cisco.com>
Diffstat (limited to 'extras/libmemif/src/libmemif.h')
0 files changed, 0 insertions, 0 deletions
a id='n146' href='#n146'>146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/*	$NetBSD: radix.c,v 1.47 2016/12/12 03:55:57 ozaki-r Exp $	*/

/*
 * Copyright (c) 1988, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)radix.c	8.6 (Berkeley) 10/17/95
 */

/*
 * Routines to build and maintain radix trees for routing lookups.
 */

#include <vnet/util/radix.h>

typedef void (*rn_printer_t)(void *, const char *fmt, ...);

static int max_keylen = 33; // me
struct radix_mask *rn_mkfreelist;
struct radix_node_head *mask_rnhead;
static char *addmask_key;
static const char normal_chars[] =
    {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
static char *rn_zeros, *rn_ones;

#define rn_masktop (mask_rnhead->rnh_treetop)

static int rn_satisfies_leaf(const char *, struct radix_node *, int);
static int rn_lexobetter(const void *, const void *);
static struct radix_mask *rn_new_radix_mask(struct radix_node *,
    struct radix_mask *);
static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
    void *);
static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
    void *);
static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
    const char *);

#define	SUBTREE_OPEN	"[ "
#define	SUBTREE_CLOSE	" ]"

#ifdef RN_DEBUG
static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
#endif /* RN_DEBUG */

#define MIN(x,y) (((x)<(y))?(x):(y))

static struct radix_mask*
rm_alloc (void)
{
    struct radix_mask *rm = clib_mem_alloc(sizeof(struct radix_mask));

    clib_memset(rm, 0, sizeof(*rm));

    return (rm);
}

static void
rm_free (struct radix_mask *rm)
{
    clib_mem_free(rm);
}

#define R_Malloc(p, t, n)                               \
{                                                       \
    p = (t) clib_mem_alloc((unsigned int)(n));          \
    clib_memset(p, 0, n);                                    \
}
#define Free(p) clib_mem_free((p))
#define log(a,b, c...)
#define bool i32

/*
 * The data structure for the keys is a radix tree with one way
 * branching removed.  The index rn_b at an internal node n represents a bit
 * position to be tested.  The tree is arranged so that all descendants
 * of a node n have keys whose bits all agree up to position rn_b - 1.
 * (We say the index of n is rn_b.)
 *
 * There is at least one descendant which has a one bit at position rn_b,
 * and at least one with a zero there.
 *
 * A route is determined by a pair of key and mask.  We require that the
 * bit-wise logical and of the key and mask to be the key.
 * We define the index of a route to associated with the mask to be
 * the first bit number in the mask where 0 occurs (with bit number 0
 * representing the highest order bit).
 *
 * We say a mask is normal if every bit is 0, past the index of the mask.
 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
 * and m is a normal mask, then the route applies to every descendant of n.
 * If the index(m) < rn_b, this implies the trailing last few bits of k
 * before bit b are all 0, (and hence consequently true of every descendant
 * of n), so the route applies to all descendants of the node as well.
 *
 * Similar logic shows that a non-normal mask m such that
 * index(m) <= index(n) could potentially apply to many children of n.
 * Thus, for each non-host route, we attach its mask to a list at an internal
 * node as high in the tree as we can go.
 *
 * The present version of the code makes use of normal routes in short-
 * circuiting an explicit mask and compare operation when testing whether
 * a key satisfies a normal route, and also in remembering the unique leaf
 * that governs a subtree.
 */

struct radix_node *
rn_search(
	const void *v_arg,
	struct radix_node *head)
{
	const u8 * const v = v_arg;
	struct radix_node *x;

	for (x = head; x->rn_b >= 0;) {
		if (x->rn_bmask & v[x->rn_off])
			x = x->rn_r;
		else
			x = x->rn_l;
	}
	return x;
}

struct radix_node *
rn_search_m(
	const void *v_arg,
	struct radix_node *head,
	const void *m_arg)
{
	struct radix_node *x;
	const u8 * const v = v_arg;
	const u8 * const m = m_arg;

	for (x = head; x->rn_b >= 0;) {
		if ((x->rn_bmask & m[x->rn_off]) &&
		    (x->rn_bmask & v[x->rn_off]))
			x = x->rn_r;
		else
			x = x->rn_l;
	}
	return x;
}

int
rn_refines(
	const void *m_arg,
	const void *n_arg)
{
	const char *m = m_arg;
	const char *n = n_arg;
	const char *lim = n + *(const u8 *)n;
	const char *lim2 = lim;
	int longer = (*(const u8 *)n++) - (int)(*(const u8 *)m++);
	int masks_are_equal = 1;

	if (longer > 0)
		lim -= longer;
	while (n < lim) {
		if (*n & ~(*m))
			return 0;
		if (*n++ != *m++)
			masks_are_equal = 0;
	}
	while (n < lim2)
		if (*n++)
			return 0;
	if (masks_are_equal && (longer < 0))
		for (lim2 = m - longer; m < lim2; )
			if (*m++)
				return 1;
	return !masks_are_equal;
}

struct radix_node *
rn_lookup(
	const void *v_arg,
	const void *m_arg,
	struct radix_node_head *head)
{
	struct radix_node *x;
	const char *netmask = NULL;

	if (m_arg) {
		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
			return NULL;
		netmask = x->rn_key;
	}
	x = rn_match(v_arg, head);
	if (x != NULL && netmask != NULL) {
		while (x != NULL && x->rn_mask != netmask)
			x = x->rn_dupedkey;
	}
	return x;
}

static int
rn_satisfies_leaf(
	const char *trial,
	struct radix_node *leaf,
	int skip)
{
	const char *cp = trial;
	const char *cp2 = leaf->rn_key;
	const char *cp3 = leaf->rn_mask;
	const char *cplim;
	int length = MIN(*(const u8 *)cp, *(const u8 *)cp2);

	if (cp3 == 0)
		cp3 = rn_ones;
	else
		length = MIN(length, *(const u8 *)cp3);
	cplim = cp + length; cp3 += skip; cp2 += skip;
	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
		if ((*cp ^ *cp2) & *cp3)
			return 0;
	return 1;
}

struct radix_node *
rn_match(
	const void *v_arg,
	struct radix_node_head *head)
{
	const char * const v = v_arg;
	struct radix_node *t = head->rnh_treetop;
	struct radix_node *top = t;
	struct radix_node *x;
	struct radix_node *saved_t;
	const char *cp = v;
	const char *cp2;
	const char *cplim;
	int off = t->rn_off;
	int vlen = *(const u8 *)cp;
	int matched_off;
	int test, b, rn_b;

	/*
	 * Open code rn_search(v, top) to avoid overhead of extra
	 * subroutine call.
	 */
	for (; t->rn_b >= 0; ) {
		if (t->rn_bmask & cp[t->rn_off])
			t = t->rn_r;
		else
			t = t->rn_l;
	}
	/*
	 * See if we match exactly as a host destination
	 * or at least learn how many bits match, for normal mask finesse.
	 *
	 * It doesn't hurt us to limit how many bytes to check
	 * to the length of the mask, since if it matches we had a genuine
	 * match and the leaf we have is the most specific one anyway;
	 * if it didn't match with a shorter length it would fail
	 * with a long one.  This wins big for class B&C netmasks which
	 * are probably the most common case...
	 */
	if (t->rn_mask)
		vlen = *(const u8 *)t->rn_mask;
	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
	for (; cp < cplim; cp++, cp2++)
		if (*cp != *cp2)
			goto on1;
	/*
	 * This extra grot is in case we are explicitly asked
	 * to look up the default.  Ugh!
	 */
	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
		t = t->rn_dupedkey;
	return t;
on1:
	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
	for (b = 7; (test >>= 1) > 0;)
		b--;
	matched_off = cp - v;
	b += matched_off << 3;
	rn_b = -1 - b;
	/*
	 * If there is a host route in a duped-key chain, it will be first.
	 */
	if ((saved_t = t)->rn_mask == 0)
		t = t->rn_dupedkey;
	for (; t; t = t->rn_dupedkey)
		/*
		 * Even if we don't match exactly as a host,
		 * we may match if the leaf we wound up at is
		 * a route to a net.
		 */
		if (t->rn_flags & RNF_NORMAL) {
			if (rn_b <= t->rn_b)
				return t;
		} else if (rn_satisfies_leaf(v, t, matched_off))
				return t;
	t = saved_t;
	/* start searching up the tree */
	do {
		struct radix_mask *m;
		t = t->rn_p;
		m = t->rn_mklist;
		if (m) {
			/*
			 * If non-contiguous masks ever become important
			 * we can restore the masking and open coding of
			 * the search and satisfaction test and put the
			 * calculation of "off" back before the "do".
			 */
			do {
				if (m->rm_flags & RNF_NORMAL) {
					if (rn_b <= m->rm_b)
						return m->rm_leaf;
				} else {
					off = MIN(t->rn_off, matched_off);
					x = rn_search_m(v, t, m->rm_mask);
					while (x && x->rn_mask != m->rm_mask)
						x = x->rn_dupedkey;
					if (x && rn_satisfies_leaf(v, x, off))
						return x;
				}
				m = m->rm_mklist;
			} while (m);
		}
	} while (t != top);
	return NULL;
}

static void
rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
    const char *delim)
{
	(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
	    delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
	    rn->rn_l, rn->rn_r);
}

#ifdef RN_DEBUG
int	rn_debug =  1;

static void
rn_dbg_print(void *arg, const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	vlog(LOG_DEBUG, fmt, ap);
	va_end(ap);
}

static void
rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
{
	struct radix_node *dup, *rn;
	const char *delim;

	if (printer == NULL)
		return;

	rn = rn_walkfirst(h->rnh_treetop, printer, arg);
	for (;;) {
		/* Process leaves */
		delim = "";
		for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
			if ((dup->rn_flags & RNF_ROOT) != 0)
				continue;
			rn_nodeprint(dup, printer, arg, delim);
			delim = ", ";
		}
		rn = rn_walknext(rn, printer, arg);
		if (rn->rn_flags & RNF_ROOT)
			return;
	}
	/* NOTREACHED */
}

#define	traverse(__head, __rn)	rn_treeprint((__head), rn_dbg_print, (__rn))
#endif /* RN_DEBUG */

struct radix_node *
rn_newpair(
	const void *v,
	int b,
	struct radix_node nodes[2])
{
	struct radix_node *tt = nodes;
	struct radix_node *t = tt + 1;
	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
	t->rn_l = tt; t->rn_off = b >> 3;
	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
	return t;
}

struct radix_node *
rn_insert(
	const void *v_arg,
	struct radix_node_head *head,
	int *dupentry,
	struct radix_node nodes[2])
{
	struct radix_node *top = head->rnh_treetop;
	struct radix_node *t = rn_search(v_arg, top);
	struct radix_node *tt;
	const char *v = v_arg;
	int head_off = top->rn_off;
	int vlen = *((const u8 *)v);
	const char *cp = v + head_off;
	int b;
    	/*
	 * Find first bit at which v and t->rn_key differ
	 */
    {
	const char *cp2 = t->rn_key + head_off;
	const char *cplim = v + vlen;
	int cmp_res;

	while (cp < cplim)
		if (*cp2++ != *cp++)
			goto on1;
	*dupentry = 1;
	return t;
on1:
	*dupentry = 0;
	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
	for (b = (cp - v) << 3; cmp_res; b--)
		cmp_res >>= 1;
    }
    {
	struct radix_node *p, *x = top;
	cp = v;
	do {
		p = x;
		if (cp[x->rn_off] & x->rn_bmask)
			x = x->rn_r;
		else x = x->rn_l;
	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
#ifdef RN_DEBUG
	if (rn_debug)
		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
#endif
	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
	if ((cp[p->rn_off] & p->rn_bmask) == 0)
		p->rn_l = t;
	else
		p->rn_r = t;
	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
		t->rn_r = x;
	} else {
		t->rn_r = tt; t->rn_l = x;
	}
#ifdef RN_DEBUG
	if (rn_debug) {
		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
		    traverse(head, p);
	}
#endif /* RN_DEBUG */
    }
	return tt;
}

struct radix_node *
rn_addmask(
	const void *n_arg,
	int search,
	int skip)
{
	const char *netmask = n_arg;
	const char *cp;
	const char *cplim;
	struct radix_node *x;
	struct radix_node *saved_x;
	int b = 0, mlen, j;
	int maskduplicated, m0, isnormal;
	static int last_zeroed = 0;

	if ((mlen = *(const u8 *)netmask) > max_keylen)
		mlen = max_keylen;
	if (skip == 0)
		skip = 1;
	if (mlen <= skip)
		return mask_rnhead->rnh_nodes;
	if (skip > 1)
		memmove(addmask_key + 1, rn_ones + 1, skip - 1);
	if ((m0 = mlen) > skip)
		memmove(addmask_key + skip, netmask + skip, mlen - skip);
	/*
	 * Trim trailing zeroes.
	 */
	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
		cp--;
	mlen = cp - addmask_key;
	if (mlen <= skip) {
		if (m0 >= last_zeroed)
			last_zeroed = mlen;
		return mask_rnhead->rnh_nodes;
	}
	if (m0 < last_zeroed)
		clib_memset(addmask_key + m0, 0, last_zeroed - m0);
	*addmask_key = last_zeroed = mlen;
	x = rn_search(addmask_key, rn_masktop);
	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
		x = 0;
	if (x || search)
		return x;
	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
	if ((saved_x = x) == NULL)
		return NULL;
	clib_memset(x, 0, max_keylen + 2 * sizeof (*x));
	cp = netmask = (void *)(x + 2);
	memmove(x + 2, addmask_key, mlen);
	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
	if (maskduplicated) {
                log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
		Free(saved_x);
		return x;
	}
	/*
	 * Calculate index of mask, and check for normalcy.
	 */
	cplim = netmask + mlen; isnormal = 1;
	for (cp = netmask + skip; (cp < cplim) && *(const u8 *)cp == 0xff;)
		cp++;
	if (cp != cplim) {
		for (j = 0x80; (j & *cp) != 0; j >>= 1)
			b++;
		if (*cp != normal_chars[b] || cp != (cplim - 1))
			isnormal = 0;
	}
	b += (cp - netmask) << 3;
	x->rn_b = -1 - b;
	if (isnormal)
		x->rn_flags |= RNF_NORMAL;
	return x;
}

static int	/* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(
	const void *m_arg,
	const void *n_arg)
{
	const u8 *mp = m_arg;
	const u8 *np = n_arg;
	const u8 *lim;

	if (*mp > *np)
		return 1;  /* not really, but need to check longer one first */
	if (*mp == *np)
		for (lim = mp + *mp; mp < lim;)
			if (*mp++ > *np++)
				return 1;
	return 0;
}

static struct radix_mask *
rn_new_radix_mask(
	struct radix_node *tt,
	struct radix_mask *next)
{
	struct radix_mask *m;

	m = rm_alloc();
	if (m == NULL) {
		log(LOG_ERR, "Mask for route not entered\n");
		return NULL;
	}
	clib_memset(m, 0, sizeof(*m));
	m->rm_b = tt->rn_b;
	m->rm_flags = tt->rn_flags;
	if (tt->rn_flags & RNF_NORMAL)
		m->rm_leaf = tt;
	else
		m->rm_mask = tt->rn_mask;
	m->rm_mklist = next;
	tt->rn_mklist = m;
	return m;
}

struct radix_node *
rn_addroute(
	const void *v_arg,
	const void *n_arg,
	struct radix_node_head *head,
	struct radix_node treenodes[2])
{
	const char *v = v_arg, *netmask = n_arg;
	struct radix_node *t, *x = NULL, *tt;
	struct radix_node *saved_tt, *top = head->rnh_treetop;
	short b = 0, b_leaf = 0;
	int keyduplicated;
	const char *mmask;
	struct radix_mask *m, **mp;

	/*
	 * In dealing with non-contiguous masks, there may be
	 * many different routes which have the same mask.
	 * We will find it useful to have a unique pointer to
	 * the mask to speed avoiding duplicate references at
	 * nodes and possibly save time in calculating indices.
	 */
	if (netmask != NULL) {
		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
			return NULL;
		b_leaf = x->rn_b;
		b = -1 - x->rn_b;
		netmask = x->rn_key;
	}
	/*
	 * Deal with duplicated keys: attach node to previous instance
	 */
	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
	if (keyduplicated) {
		for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
			if (tt->rn_mask == netmask)
				return NULL;
			if (netmask == NULL ||
			    (tt->rn_mask != NULL &&
			     (b_leaf < tt->rn_b || /* index(netmask) > node */
			       rn_refines(netmask, tt->rn_mask) ||
			       rn_lexobetter(netmask, tt->rn_mask))))
				break;
		}
		/*
		 * If the mask is not duplicated, we wouldn't
		 * find it among possible duplicate key entries
		 * anyway, so the above test doesn't hurt.
		 *
		 * We sort the masks for a duplicated key the same way as
		 * in a masklist -- most specific to least specific.
		 * This may require the unfortunate nuisance of relocating
		 * the head of the list.
		 *
		 * We also reverse, or doubly link the list through the
		 * parent pointer.
		 */
		if (tt == saved_tt) {
			struct	radix_node *xx = x;
			/* link in at head of list */
			(tt = treenodes)->rn_dupedkey = t;
			tt->rn_flags = t->rn_flags;
			tt->rn_p = x = t->rn_p;
			t->rn_p = tt;
			if (x->rn_l == t)
				x->rn_l = tt;
			else
				x->rn_r = tt;
			saved_tt = tt;
			x = xx;
		} else {
			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
			t->rn_dupedkey = tt;
			tt->rn_p = t;
			if (tt->rn_dupedkey)
				tt->rn_dupedkey->rn_p = tt;
		}
		tt->rn_key = v;
		tt->rn_b = -1;
		tt->rn_flags = RNF_ACTIVE;
	}
	/*
	 * Put mask in tree.
	 */
	if (netmask != NULL) {
		tt->rn_mask = netmask;
		tt->rn_b = x->rn_b;
		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
	}
	t = saved_tt->rn_p;
	if (keyduplicated)
		goto on2;
	b_leaf = -1 - t->rn_b;
	if (t->rn_r == saved_tt)
		x = t->rn_l;
	else
		x = t->rn_r;
	/* Promote general routes from below */
	if (x->rn_b < 0) {
		for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
			if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
			    x->rn_mklist == NULL) {
				*mp = m = rn_new_radix_mask(x, NULL);
				if (m != NULL)
					mp = &m->rm_mklist;
			}
		}
	} else if (x->rn_mklist != NULL) {
		/*
		 * Skip over masks whose index is > that of new node
		 */
		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
			if (m->rm_b >= b_leaf)
				break;
		t->rn_mklist = m;
		*mp = NULL;
	}
on2:
	/* Add new route to highest possible ancestor's list */
	if (netmask == NULL || b > t->rn_b)
		return tt; /* can't lift at all */
	b_leaf = tt->rn_b;
	do {
		x = t;
		t = t->rn_p;
	} while (b <= t->rn_b && x != top);
	/*
	 * Search through routes associated with node to
	 * insert new route according to index.
	 * Need same criteria as when sorting dupedkeys to avoid
	 * double loop on deletion.
	 */
	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
		if (m->rm_b < b_leaf)
			continue;
		if (m->rm_b > b_leaf)
			break;
		if (m->rm_flags & RNF_NORMAL) {
			mmask = m->rm_leaf->rn_mask;
			if (tt->rn_flags & RNF_NORMAL) {
				log(LOG_ERR, "Non-unique normal route,"
				    " mask not entered\n");
				return tt;
			}
		} else
			mmask = m->rm_mask;
		if (mmask == netmask) {
			m->rm_refs++;
			tt->rn_mklist = m;
			return tt;
		}
		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
			break;
	}
	*mp = rn_new_radix_mask(tt, *mp);
	return tt;
}

struct radix_node *
rn_delete1(
	const void *v_arg,
	const void *netmask_arg,
	struct radix_node_head *head,
	struct radix_node *rn)
{
	struct radix_node *t, *p, *x, *tt;
	struct radix_mask *m, *saved_m, **mp;
	struct radix_node *dupedkey, *saved_tt, *top;
	const char *v, *netmask;
	int b, head_off, vlen;

	v = v_arg;
	netmask = netmask_arg;
	x = head->rnh_treetop;
	tt = rn_search(v, x);
	head_off = x->rn_off;
	vlen =  *(const u8 *)v;
	saved_tt = tt;
	top = x;
	if (tt == NULL ||
	    memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
		return NULL;
	/*
	 * Delete our route from mask lists.
	 */
	if (netmask != NULL) {
		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
			return NULL;
		netmask = x->rn_key;
		while (tt->rn_mask != netmask)
			if ((tt = tt->rn_dupedkey) == NULL)
				return NULL;
	}
	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
		goto on1;
	if (tt->rn_flags & RNF_NORMAL) {
		if (m->rm_leaf != tt || m->rm_refs > 0) {
			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
			return NULL;  /* dangling ref could cause disaster */
		}
	} else {
		if (m->rm_mask != tt->rn_mask) {
			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
			goto on1;
		}
		if (--m->rm_refs >= 0)
			goto on1;
	}
	b = -1 - tt->rn_b;
	t = saved_tt->rn_p;
	if (b > t->rn_b)
		goto on1; /* Wasn't lifted at all */
	do {
		x = t;
		t = t->rn_p;
	} while (b <= t->rn_b && x != top);
	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
		if (m == saved_m) {
			*mp = m->rm_mklist;
			rm_free(m);
			break;
		}
	}
	if (m == NULL) {
		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
		if (tt->rn_flags & RNF_NORMAL)
			return NULL; /* Dangling ref to us */
	}
on1:
	/*
	 * Eliminate us from tree
	 */
	if (tt->rn_flags & RNF_ROOT)
		return NULL;
#ifdef RN_DEBUG
	if (rn_debug)
		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
#endif
	t = tt->rn_p;
	dupedkey = saved_tt->rn_dupedkey;
	if (dupedkey != NULL) {
		/*
		 * Here, tt is the deletion target, and
		 * saved_tt is the head of the dupedkey chain.
		 */
		if (tt == saved_tt) {
			x = dupedkey;
			x->rn_p = t;
			if (t->rn_l == tt)
				t->rn_l = x;
			else
				t->rn_r = x;
		} else {
			/* find node in front of tt on the chain */
			for (x = p = saved_tt;
			     p != NULL && p->rn_dupedkey != tt;)
				p = p->rn_dupedkey;
			if (p != NULL) {
				p->rn_dupedkey = tt->rn_dupedkey;
				if (tt->rn_dupedkey != NULL)
					tt->rn_dupedkey->rn_p = p;
			} else
				log(LOG_ERR, "rn_delete: couldn't find us\n");
		}
		t = tt + 1;
		if  (t->rn_flags & RNF_ACTIVE) {
			*++x = *t;
			p = t->rn_p;
			if (p->rn_l == t)
				p->rn_l = x;
			else
				p->rn_r = x;
			x->rn_l->rn_p = x;
			x->rn_r->rn_p = x;
		}
		goto out;
	}
	if (t->rn_l == tt)
		x = t->rn_r;
	else
		x = t->rn_l;
	p = t->rn_p;
	if (p->rn_r == t)
		p->rn_r = x;
	else
		p->rn_l = x;
	x->rn_p = p;
	/*
	 * Demote routes attached to us.
	 */
	if (t->rn_mklist == NULL)
		;
	else if (x->rn_b >= 0) {
		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
			;
		*mp = t->rn_mklist;
	} else {
		/* If there are any key,mask pairs in a sibling
		   duped-key chain, some subset will appear sorted
		   in the same order attached to our mklist */
		for (m = t->rn_mklist;
		     m != NULL && x != NULL;
		     x = x->rn_dupedkey) {
			if (m == x->rn_mklist) {
				struct radix_mask *mm = m->rm_mklist;
				x->rn_mklist = NULL;
				if (--(m->rm_refs) < 0)
					rm_free(m);
				m = mm;
			}
		}
		if (m != NULL) {
			log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
			    m, x);
		}
	}
	/*
	 * We may be holding an active internal node in the tree.
	 */
	x = tt + 1;
	if (t != x) {
		*t = *x;
		t->rn_l->rn_p = t;
		t->rn_r->rn_p = t;
		p = x->rn_p;
		if (p->rn_l == x)
			p->rn_l = t;
		else
			p->rn_r = t;
	}
out:
#ifdef RN_DEBUG
	if (rn_debug) {
		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
		    traverse(head, tt);
	}
#endif /* RN_DEBUG */
	tt->rn_flags &= ~RNF_ACTIVE;
	tt[1].rn_flags &= ~RNF_ACTIVE;
	return tt;
}

struct radix_node *
rn_delete(
	const void *v_arg,
	const void *netmask_arg,
	struct radix_node_head *head)
{
	return rn_delete1(v_arg, netmask_arg, head, NULL);
}

static struct radix_node *
rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
{
	/* If at right child go back up, otherwise, go right */
	while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
		if (printer != NULL)
			(*printer)(arg, SUBTREE_CLOSE);
		rn = rn->rn_p;
	}
	if (printer)
		rn_nodeprint(rn->rn_p, printer, arg, "");
	/* Find the next *leaf* since next node might vanish, too */
	for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
		if (printer != NULL)
			(*printer)(arg, SUBTREE_OPEN);
		rn = rn->rn_l;
	}
	return rn;
}

static struct radix_node *
rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
{
	/* First time through node, go left */
	while (rn->rn_b >= 0) {
		if (printer != NULL)
			(*printer)(arg, SUBTREE_OPEN);
		rn = rn->rn_l;
	}
	return rn;
}

int
rn_walktree(
	struct radix_node_head *h,
	int (*f)(struct radix_node *, void *),
	void *w)
{
	int error;
	struct radix_node *base, *next, *rn;
	/*
	 * This gets complicated because we may delete the node
	 * while applying the function f to it, so we need to calculate
	 * the successor node in advance.
	 */
	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
	for (;;) {
		base = rn;
		next = rn_walknext(rn, NULL, NULL);
		/* Process leaves */
		while ((rn = base) != NULL) {
			base = rn->rn_dupedkey;
			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
				return error;
		}
		rn = next;
		if (rn->rn_flags & RNF_ROOT)
			return 0;
	}
	/* NOTREACHED */
}

struct radix_node *
rn_search_matched(struct radix_node_head *h,
    int (*matcher)(struct radix_node *, void *), void *w)
{
	bool matched;
	struct radix_node *base, *next, *rn;
	/*
	 * This gets complicated because we may delete the node
	 * while applying the function f to it, so we need to calculate
	 * the successor node in advance.
	 */
	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
	for (;;) {
		base = rn;
		next = rn_walknext(rn, NULL, NULL);
		/* Process leaves */
		while ((rn = base) != NULL) {
			base = rn->rn_dupedkey;
			if (!(rn->rn_flags & RNF_ROOT)) {
				matched = (*matcher)(rn, w);
				if (matched)
					return rn;
			}
		}
		rn = next;
		if (rn->rn_flags & RNF_ROOT)
			return NULL;
	}
	/* NOTREACHED */
}

int
rn_inithead(void **head, int off)
{
	struct radix_node_head *rnh;

	if (*head != NULL)
		return 1;
	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
	if (rnh == NULL)
		return 0;
	*head = rnh;
	return rn_inithead0(rnh, off);
}

int
rn_inithead0(struct radix_node_head *rnh, int off)
{
	struct radix_node *t;
	struct radix_node *tt;
	struct radix_node *ttt;

	clib_memset(rnh, 0, sizeof(*rnh));
	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
	ttt = rnh->rnh_nodes + 2;
	t->rn_r = ttt;
	t->rn_p = t;
	tt = t->rn_l;
	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
	tt->rn_b = -1 - off;
	*ttt = *tt;
	ttt->rn_key = rn_ones;
	rnh->rnh_addaddr = rn_addroute;
	rnh->rnh_deladdr = rn_delete;
	rnh->rnh_matchaddr = rn_match;
	rnh->rnh_lookup = rn_lookup;
	rnh->rnh_treetop = t;
	return 1;
}

static clib_error_t *
rn_module_init (vlib_main_t * vm)
{
	char *cp, *cplim;

	R_Malloc(rn_zeros, char *, 3 * max_keylen);
	if (rn_zeros == NULL)
            return (clib_error_return (0, "RN Zeros..."));

	clib_memset(rn_zeros, 0, 3 * max_keylen);
	rn_ones = cp = rn_zeros + max_keylen;
	addmask_key = cplim = rn_ones + max_keylen;
	while (cp < cplim)
		*cp++ = -1;
	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
            return (clib_error_return (0, "RN Init 2"));

        return (NULL);
}

VLIB_INIT_FUNCTION(rn_module_init);