aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/avf
diff options
context:
space:
mode:
authorChris Luke <chrisy@flirble.org>2018-06-12 22:45:06 -0400
committerDamjan Marion <dmarion@me.com>2018-06-13 08:01:33 +0000
commit6edd36070cbe5f1fb5e5804edb19f8c395ba07f2 (patch)
tree951fd43b8706ae67ddc0f8741bd1242ed14130bc /src/plugins/avf
parent8a4a8c455aaa95a7ff15d8d46f52b24740d3ce88 (diff)
cli: 'restart' should close open files (VPP-1068)
- On 'restart' close all registered files (except stdio) so that the new process has a clean start; in particular, CLI sockets, API sockets, tun/af_packet etc descriptors all need to close so they're not left open but unused by the new VPP process. To do this we iterate all the files registered for the polling mechanism and close() them.[1] - While we're here, retain the original environment on 'restart'; several things make use of it. [1] An alternative mechanism would be to mark all files with CLOEXEC on opening; I think that is a little fragile for this fairly esoteric use case. Change-Id: I81b4e261c4d3c4e2948981231be899824dd4e69f Signed-off-by: Chris Luke <chrisy@flirble.org>
Diffstat (limited to 'src/plugins/avf')
0 files changed, 0 insertions, 0 deletions
='#n159'>159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>

#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_virtio_net.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>

#include "vhost.h"

#define MAX_PKT_BURST 32
#define VHOST_LOG_PAGE	4096

static inline void __attribute__((always_inline))
vhost_log_page(uint8_t *log_base, uint64_t page)
{
	log_base[page / 8] |= 1 << (page % 8);
}

static inline void __attribute__((always_inline))
vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
{
	uint64_t page;

	if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
		   !dev->log_base || !len))
		return;

	if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
		return;

	/* To make sure guest memory updates are committed before logging */
	rte_smp_wmb();

	page = addr / VHOST_LOG_PAGE;
	while (page * VHOST_LOG_PAGE < addr + len) {
		vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
		page += 1;
	}
}

static inline void __attribute__((always_inline))
vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
		     uint64_t offset, uint64_t len)
{
	vhost_log_write(dev, vq->log_guest_addr + offset, len);
}

static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
{
	return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
}

static inline void __attribute__((always_inline))
do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
			  uint16_t to, uint16_t from, uint16_t size)
{
	rte_memcpy(&vq->used->ring[to],
			&vq->shadow_used_ring[from],
			size * sizeof(struct vring_used_elem));
	vhost_log_used_vring(dev, vq,
			offsetof(struct vring_used, ring[to]),
			size * sizeof(struct vring_used_elem));
}

static inline void __attribute__((always_inline))
flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
	uint16_t used_idx = vq->last_used_idx & (vq->size - 1);

	if (used_idx + vq->shadow_used_idx <= vq->size) {
		do_flush_shadow_used_ring(dev, vq, used_idx, 0,
					  vq->shadow_used_idx);
	} else {
		uint16_t size;

		/* update used ring interval [used_idx, vq->size] */
		size = vq->size - used_idx;
		do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);

		/* update the left half used ring interval [0, left_size] */
		do_flush_shadow_used_ring(dev, vq, 0, size,
					  vq->shadow_used_idx - size);
	}
	vq->last_used_idx += vq->shadow_used_idx;

	rte_smp_wmb();

	*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
	vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
		sizeof(vq->used->idx));
}

static inline void __attribute__((always_inline))
update_shadow_used_ring(struct vhost_virtqueue *vq,
			 uint16_t desc_idx, uint16_t len)
{
	uint16_t i = vq->shadow_used_idx++;

	vq->shadow_used_ring[i].id  = desc_idx;
	vq->shadow_used_ring[i].len = len;
}

static void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
	if (m_buf->ol_flags & PKT_TX_L4_MASK) {
		net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
		net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;

		switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
		case PKT_TX_TCP_CKSUM:
			net_hdr->csum_offset = (offsetof(struct tcp_hdr,
						cksum));
			break;
		case PKT_TX_UDP_CKSUM:
			net_hdr->csum_offset = (offsetof(struct udp_hdr,
						dgram_cksum));
			break;
		case PKT_TX_SCTP_CKSUM:
			net_hdr->csum_offset = (offsetof(struct sctp_hdr,
						cksum));
			break;
		}
	}

	if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
		if (m_buf->ol_flags & PKT_TX_IPV4)
			net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
		else
			net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
		net_hdr->gso_size = m_buf->tso_segsz;
		net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
					+ m_buf->l4_len;
	}
}

static inline void
copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
		    struct virtio_net_hdr_mrg_rxbuf hdr)
{
	if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
		*(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
	else
		*(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
}

static inline int __attribute__((always_inline))
copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
		  struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
{
	uint32_t desc_avail, desc_offset;
	uint32_t mbuf_avail, mbuf_offset;
	uint32_t cpy_len;
	struct vring_desc *desc;
	uint64_t desc_addr;
	struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
	/* A counter to avoid desc dead loop chain */
	uint16_t nr_desc = 1;

	desc = &descs[desc_idx];
	desc_addr = gpa_to_vva(dev, desc->addr);
	/*
	 * Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
	 * performance issue with some versions of gcc (4.8.4 and 5.3.0) which
	 * otherwise stores offset on the stack instead of in a register.
	 */
	if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
		return -1;

	rte_prefetch0((void *)(uintptr_t)desc_addr);

	virtio_enqueue_offload(m, &virtio_hdr.hdr);
	copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
	vhost_log_write(dev, desc->addr, dev->vhost_hlen);
	PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);

	desc_offset = dev->vhost_hlen;
	desc_avail  = desc->len - dev->vhost_hlen;

	mbuf_avail  = rte_pktmbuf_data_len(m);
	mbuf_offset = 0;
	while (mbuf_avail != 0 || m->next != NULL) {
		/* done with current mbuf, fetch next */
		if (mbuf_avail == 0) {
			m = m->next;

			mbuf_offset = 0;
			mbuf_avail  = rte_pktmbuf_data_len(m);
		}

		/* done with current desc buf, fetch next */
		if (desc_avail == 0) {
			if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
				/* Room in vring buffer is not enough */
				return -1;
			}
			if (unlikely(desc->next >= size || ++nr_desc > size))
				return -1;

			desc = &descs[desc->next];
			desc_addr = gpa_to_vva(dev, desc->addr);
			if (unlikely(!desc_addr))
				return -1;

			desc_offset = 0;
			desc_avail  = desc->len;
		}

		cpy_len = RTE_MIN(desc_avail, mbuf_avail);
		rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
			rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
			cpy_len);
		vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
		PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
			     cpy_len, 0);

		mbuf_avail  -= cpy_len;
		mbuf_offset += cpy_len;
		desc_avail  -= cpy_len;
		desc_offset += cpy_len;
	}

	return 0;
}

/**
 * This function adds buffers to the virtio devices RX virtqueue. Buffers can
 * be received from the physical port or from another virtio device. A packet
 * count is returned to indicate the number of packets that are succesfully
 * added to the RX queue. This function works when the mbuf is scattered, but
 * it doesn't support the mergeable feature.
 */
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
	      struct rte_mbuf **pkts, uint32_t count)
{
	struct vhost_virtqueue *vq;
	uint16_t avail_idx, free_entries, start_idx;
	uint16_t desc_indexes[MAX_PKT_BURST];
	struct vring_desc *descs;
	uint16_t used_idx;
	uint32_t i, sz;

	LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
	if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
		RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
			dev->vid, __func__, queue_id);
		return 0;
	}

	vq = dev->virtqueue[queue_id];
	if (unlikely(vq->enabled == 0))
		return 0;

	avail_idx = *((volatile uint16_t *)&vq->avail->idx);
	start_idx = vq->last_used_idx;
	free_entries = avail_idx - start_idx;
	count = RTE_MIN(count, free_entries);
	count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
	if (count == 0)
		return 0;

	LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
		dev->vid, start_idx, start_idx + count);

	/* Retrieve all of the desc indexes first to avoid caching issues. */
	rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
	for (i = 0; i < count; i++) {
		used_idx = (start_idx + i) & (vq->size - 1);
		desc_indexes[i] = vq->avail->ring[used_idx];
		vq->used->ring[used_idx].id = desc_indexes[i];
		vq->used->ring[used_idx].len = pkts[i]->pkt_len +
					       dev->vhost_hlen;
		vhost_log_used_vring(dev, vq,
			offsetof(struct vring_used, ring[used_idx]),
			sizeof(vq->used->ring[used_idx]));
	}

	rte_prefetch0(&vq->desc[desc_indexes[0]]);
	for (i = 0; i < count; i++) {
		uint16_t desc_idx = desc_indexes[i];
		int err;

		if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
			descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
					vq->desc[desc_idx].addr);
			if (unlikely(!descs)) {
				count = i;
				break;
			}

			desc_idx = 0;
			sz = vq->desc[desc_idx].len / sizeof(*descs);
		} else {
			descs = vq->desc;
			sz = vq->size;
		}

		err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
		if (unlikely(err)) {
			used_idx = (start_idx + i) & (vq->size - 1);
			vq->used->ring[used_idx].len = dev->vhost_hlen;
			vhost_log_used_vring(dev, vq,
				offsetof(struct vring_used, ring[used_idx]),
				sizeof(vq->used->ring[used_idx]));
		}

		if (i + 1 < count)
			rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
	}

	rte_smp_wmb();

	*(volatile uint16_t *)&vq->used->idx += count;
	vq->last_used_idx += count;
	vhost_log_used_vring(dev, vq,
		offsetof(struct vring_used, idx),
		sizeof(vq->used->idx));

	/* flush used->idx update before we read avail->flags. */
	rte_mb();

	/* Kick the guest if necessary. */
	if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
			&& (vq->callfd >= 0))
		eventfd_write(vq->callfd, (eventfd_t)1);
	return count;
}

static inline int __attribute__((always_inline))
fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
			 uint32_t avail_idx, uint32_t *vec_idx,
			 struct buf_vector *buf_vec, uint16_t *desc_chain_head,
			 uint16_t *desc_chain_len)
{
	uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
	uint32_t vec_id = *vec_idx;
	uint32_t len    = 0;
	struct vring_desc *descs = vq->desc;

	*desc_chain_head = idx;

	if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
		descs = (struct vring_desc *)(uintptr_t)
					gpa_to_vva(dev, vq->desc[idx].addr);
		if (unlikely(!descs))
			return -1;

		idx = 0;
	}

	while (1) {
		if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
			return -1;

		len += descs[idx].len;
		buf_vec[vec_id].buf_addr = descs[idx].addr;
		buf_vec[vec_id].buf_len  = descs[idx].len;
		buf_vec[vec_id].desc_idx = idx;
		vec_id++;

		if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
			break;

		idx = descs[idx].next;
	}

	*desc_chain_len = len;
	*vec_idx = vec_id;

	return 0;
}

/*
 * Returns -1 on fail, 0 on success
 */
static inline int
reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
				uint32_t size, struct buf_vector *buf_vec,
				uint16_t *num_buffers, uint16_t avail_head)
{
	uint16_t cur_idx;
	uint32_t vec_idx = 0;
	uint16_t tries = 0;

	uint16_t head_idx = 0;
	uint16_t len = 0;

	*num_buffers = 0;
	cur_idx  = vq->last_avail_idx;

	while (size > 0) {
		if (unlikely(cur_idx == avail_head))
			return -1;

		if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
						&head_idx, &len) < 0))
			return -1;
		len = RTE_MIN(len, size);
		update_shadow_used_ring(vq, head_idx, len);
		size -= len;

		cur_idx++;
		tries++;
		*num_buffers += 1;

		/*
		 * if we tried all available ring items, and still
		 * can't get enough buf, it means something abnormal
		 * happened.
		 */
		if (unlikely(tries >= vq->size))
			return -1;
	}

	return 0;
}

static inline int __attribute__((always_inline))
copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
			    struct buf_vector *buf_vec, uint16_t num_buffers)
{
	struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
	uint32_t vec_idx = 0;
	uint64_t desc_addr;
	uint32_t mbuf_offset, mbuf_avail;
	uint32_t desc_offset, desc_avail;
	uint32_t cpy_len;
	uint64_t hdr_addr, hdr_phys_addr;
	struct rte_mbuf *hdr_mbuf;

	if (unlikely(m == NULL))
		return -1;

	desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
	if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
		return -1;

	hdr_mbuf = m;
	hdr_addr = desc_addr;
	hdr_phys_addr = buf_vec[vec_idx].buf_addr;
	rte_prefetch0((void *)(uintptr_t)hdr_addr);

	virtio_hdr.num_buffers = num_buffers;
	LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
		dev->vid, num_buffers);

	desc_avail  = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
	desc_offset = dev->vhost_hlen;

	mbuf_avail  = rte_pktmbuf_data_len(m);
	mbuf_offset = 0;
	while (mbuf_avail != 0 || m->next != NULL) {
		/* done with current desc buf, get the next one */
		if (desc_avail == 0) {
			vec_idx++;
			desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
			if (unlikely(!desc_addr))
				return -1;

			/* Prefetch buffer address. */
			rte_prefetch0((void *)(uintptr_t)desc_addr);
			desc_offset = 0;
			desc_avail  = buf_vec[vec_idx].buf_len;
		}

		/* done with current mbuf, get the next one */
		if (mbuf_avail == 0) {
			m = m->next;

			mbuf_offset = 0;
			mbuf_avail  = rte_pktmbuf_data_len(m);
		}

		if (hdr_addr) {
			virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
			copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
			vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
			PRINT_PACKET(dev, (uintptr_t)hdr_addr,
				     dev->vhost_hlen, 0);

			hdr_addr = 0;
		}

		cpy_len = RTE_MIN(desc_avail, mbuf_avail);
		rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
			rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
			cpy_len);
		vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
			cpy_len);
		PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
			cpy_len, 0);

		mbuf_avail  -= cpy_len;
		mbuf_offset += cpy_len;
		desc_avail  -= cpy_len;
		desc_offset += cpy_len;
	}

	return 0;
}

static inline uint32_t __attribute__((always_inline))
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
	struct rte_mbuf **pkts, uint32_t count)
{
	struct vhost_virtqueue *vq;
	uint32_t pkt_idx = 0;
	uint16_t num_buffers;
	struct buf_vector buf_vec[BUF_VECTOR_MAX];
	uint16_t avail_head;

	LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
	if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
		RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
			dev->vid, __func__, queue_id);
		return 0;
	}

	vq = dev->virtqueue[queue_id];
	if (unlikely(vq->enabled == 0))
		return 0;

	count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
	if (count == 0)
		return 0;

	rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);

	vq->shadow_used_idx = 0;
	avail_head = *((volatile uint16_t *)&vq->avail->idx);
	for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
		uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;

		if (unlikely(reserve_avail_buf_mergeable(dev, vq,
						pkt_len, buf_vec, &num_buffers,
						avail_head) < 0)) {
			LOG_DEBUG(VHOST_DATA,
				"(%d) failed to get enough desc from vring\n",
				dev->vid);
			vq->shadow_used_idx -= num_buffers;
			break;
		}

		LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
			dev->vid, vq->last_avail_idx,
			vq->last_avail_idx + num_buffers);

		if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
						buf_vec, num_buffers) < 0) {
			vq->shadow_used_idx -= num_buffers;
			break;
		}

		vq->last_avail_idx += num_buffers;
	}

	if (likely(vq->shadow_used_idx)) {
		flush_shadow_used_ring(dev, vq);

		/* flush used->idx update before we read avail->flags. */
		rte_mb();

		/* Kick the guest if necessary. */
		if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
				&& (vq->callfd >= 0))
			eventfd_write(vq->callfd, (eventfd_t)1);
	}

	return pkt_idx;
}

uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
	struct rte_mbuf **pkts, uint16_t count)
{
	struct virtio_net *dev = get_device(vid);

	if (!dev)
		return 0;

	if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
		return virtio_dev_merge_rx(dev, queue_id, pkts, count);
	else
		return virtio_dev_rx(dev, queue_id, pkts, count);
}

static inline bool
virtio_net_with_host_offload(struct virtio_net *dev)
{
	if (dev->features &
			(VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
			 VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
			 VIRTIO_NET_F_HOST_UFO))
		return true;

	return false;
}

static void
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
{
	struct ipv4_hdr *ipv4_hdr;
	struct ipv6_hdr *ipv6_hdr;
	void *l3_hdr = NULL;
	struct ether_hdr *eth_hdr;
	uint16_t ethertype;

	eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);

	m->l2_len = sizeof(struct ether_hdr);
	ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);

	if (ethertype == ETHER_TYPE_VLAN) {
		struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);

		m->l2_len += sizeof(struct vlan_hdr);
		ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
	}

	l3_hdr = (char *)eth_hdr + m->l2_len;

	switch (ethertype) {
	case ETHER_TYPE_IPv4:
		ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
		*l4_proto = ipv4_hdr->next_proto_id;
		m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
		*l4_hdr = (char *)l3_hdr + m->l3_len;
		m->ol_flags |= PKT_TX_IPV4;
		break;
	case ETHER_TYPE_IPv6:
		ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
		*l4_proto = ipv6_hdr->proto;
		m->l3_len = sizeof(struct ipv6_hdr);
		*l4_hdr = (char *)l3_hdr + m->l3_len;
		m->ol_flags |= PKT_TX_IPV6;
		break;
	default:
		m->l3_len = 0;
		*l4_proto = 0;
		*l4_hdr = NULL;
		break;
	}
}

static inline void __attribute__((always_inline))
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
{
	uint16_t l4_proto = 0;
	void *l4_hdr = NULL;
	struct tcp_hdr *tcp_hdr = NULL;

	if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
		return;

	parse_ethernet(m, &l4_proto, &l4_hdr);
	if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
		if (hdr->csum_start == (m->l2_len + m->l3_len)) {
			switch (hdr->csum_offset) {
			case (offsetof(struct tcp_hdr, cksum)):
				if (l4_proto == IPPROTO_TCP)
					m->ol_flags |= PKT_TX_TCP_CKSUM;
				break;
			case (offsetof(struct udp_hdr, dgram_cksum)):
				if (l4_proto == IPPROTO_UDP)
					m->ol_flags |= PKT_TX_UDP_CKSUM;
				break;
			case (offsetof(struct sctp_hdr, cksum)):
				if (l4_proto == IPPROTO_SCTP)
					m->ol_flags |= PKT_TX_SCTP_CKSUM;
				break;
			default:
				break;
			}
		}
	}

	if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
		switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
		case VIRTIO_NET_HDR_GSO_TCPV4:
		case VIRTIO_NET_HDR_GSO_TCPV6:
			tcp_hdr = (struct tcp_hdr *)l4_hdr;
			m->ol_flags |= PKT_TX_TCP_SEG;
			m->tso_segsz = hdr->gso_size;
			m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
			break;
		default:
			RTE_LOG(WARNING, VHOST_DATA,
				"unsupported gso type %u.\n", hdr->gso_type);
			break;
		}
	}
}

#define RARP_PKT_SIZE	64

static int
make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
{
	struct ether_hdr *eth_hdr;
	struct arp_hdr  *rarp;

	if (rarp_mbuf->buf_len < 64) {
		RTE_LOG(WARNING, VHOST_DATA,
			"failed to make RARP; mbuf size too small %u (< %d)\n",
			rarp_mbuf->buf_len, RARP_PKT_SIZE);
		return -1;
	}

	/* Ethernet header. */
	eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
	memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
	ether_addr_copy(mac, &eth_hdr->s_addr);
	eth_hdr->ether_type = htons(ETHER_TYPE_RARP);

	/* RARP header. */
	rarp = (struct arp_hdr *)(eth_hdr + 1);
	rarp->arp_hrd = htons(ARP_HRD_ETHER);
	rarp->arp_pro = htons(ETHER_TYPE_IPv4);
	rarp->arp_hln = ETHER_ADDR_LEN;
	rarp->arp_pln = 4;
	rarp->arp_op  = htons(ARP_OP_REVREQUEST);

	ether_addr_copy(mac, &rarp->arp_data.arp_sha);
	ether_addr_copy(mac, &rarp->arp_data.arp_tha);
	memset(&rarp->arp_data.arp_sip, 0x00, 4);
	memset(&rarp->arp_data.arp_tip, 0x00, 4);

	rarp_mbuf->pkt_len  = rarp_mbuf->data_len = RARP_PKT_SIZE;

	return 0;
}

static inline void __attribute__((always_inline))
put_zmbuf(struct zcopy_mbuf *zmbuf)
{
	zmbuf->in_use = 0;
}

static inline int __attribute__((always_inline))
copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
		  uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
		  struct rte_mempool *mbuf_pool)
{
	struct vring_desc *desc;
	uint64_t desc_addr;
	uint32_t desc_avail, desc_offset;
	uint32_t mbuf_avail, mbuf_offset;
	uint32_t cpy_len;
	struct rte_mbuf *cur = m, *prev = m;
	struct virtio_net_hdr *hdr = NULL;
	/* A counter to avoid desc dead loop chain */
	uint32_t nr_desc = 1;

	desc = &descs[desc_idx];
	if (unlikely((desc->len < dev->vhost_hlen)) ||
			(desc->flags & VRING_DESC_F_INDIRECT))
		return -1;

	desc_addr = gpa_to_vva(dev, desc->addr);
	if (unlikely(!desc_addr))
		return -1;

	if (virtio_net_with_host_offload(dev)) {
		hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
		rte_prefetch0(hdr);
	}

	/*
	 * A virtio driver normally uses at least 2 desc buffers
	 * for Tx: the first for storing the header, and others
	 * for storing the data.
	 */
	if (likely((desc->len == dev->vhost_hlen) &&
		   (desc->flags & VRING_DESC_F_NEXT) != 0)) {
		desc = &descs[desc->next];
		if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
			return -1;

		desc_addr = gpa_to_vva(dev, desc->addr);
		if (unlikely(!desc_addr))
			return -1;

		desc_offset = 0;
		desc_avail  = desc->len;
		nr_desc    += 1;
	} else {
		desc_avail  = desc->len - dev->vhost_hlen;
		desc_offset = dev->vhost_hlen;
	}

	rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));

	PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);

	mbuf_offset = 0;
	mbuf_avail  = m->buf_len - RTE_PKTMBUF_HEADROOM;
	while (1) {
		uint64_t hpa;

		cpy_len = RTE_MIN(desc_avail, mbuf_avail);

		/*
		 * A desc buf might across two host physical pages that are
		 * not continuous. In such case (gpa_to_hpa returns 0), data
		 * will be copied even though zero copy is enabled.
		 */
		if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
					desc->addr + desc_offset, cpy_len)))) {
			cur->data_len = cpy_len;
			cur->data_off = 0;
			cur->buf_addr = (void *)(uintptr_t)desc_addr;
			cur->buf_physaddr = hpa;

			/*
			 * In zero copy mode, one mbuf can only reference data
			 * for one or partial of one desc buff.
			 */
			mbuf_avail = cpy_len;
		} else {
			rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
							   mbuf_offset),
				(void *)((uintptr_t)(desc_addr + desc_offset)),
				cpy_len);
		}

		mbuf_avail  -= cpy_len;
		mbuf_offset += cpy_len;
		desc_avail  -= cpy_len;
		desc_offset += cpy_len;

		/* This desc reaches to its end, get the next one */
		if (desc_avail == 0) {
			if ((desc->flags & VRING_DESC_F_NEXT) == 0)
				break;

			if (unlikely(desc->next >= max_desc ||
				     ++nr_desc > max_desc))
				return -1;
			desc = &descs[desc->next];
			if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
				return -1;

			desc_addr = gpa_to_vva(dev, desc->addr);
			if (unlikely(!desc_addr))
				return -1;

			rte_prefetch0((void *)(uintptr_t)desc_addr);

			desc_offset = 0;
			desc_avail  = desc->len;

			PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
		}

		/*
		 * This mbuf reaches to its end, get a new one
		 * to hold more data.
		 */
		if (mbuf_avail == 0) {
			cur = rte_pktmbuf_alloc(mbuf_pool);
			if (unlikely(cur == NULL)) {
				RTE_LOG(ERR, VHOST_DATA, "Failed to "
					"allocate memory for mbuf.\n");
				return -1;
			}
			if (unlikely(dev->dequeue_zero_copy))
				rte_mbuf_refcnt_update(cur, 1);

			prev->next = cur;
			prev->data_len = mbuf_offset;
			m->nb_segs += 1;
			m->pkt_len += mbuf_offset;
			prev = cur;

			mbuf_offset = 0;
			mbuf_avail  = cur->buf_len - RTE_PKTMBUF_HEADROOM;
		}
	}

	prev->data_len = mbuf_offset;
	m->pkt_len    += mbuf_offset;

	if (hdr)
		vhost_dequeue_offload(hdr, m);

	return 0;
}

static inline void __attribute__((always_inline))
update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
		 uint32_t used_idx, uint32_t desc_idx)
{
	vq->used->ring[used_idx].id  = desc_idx;
	vq->used->ring[used_idx].len = 0;
	vhost_log_used_vring(dev, vq,
			offsetof(struct vring_used, ring[used_idx]),
			sizeof(vq->used->ring[used_idx]));
}

static inline void __attribute__((always_inline))
update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
		uint32_t count)
{
	if (unlikely(count == 0))
		return;

	rte_smp_wmb();
	rte_smp_rmb();

	vq->used->idx += count;
	vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
			sizeof(vq->used->idx));

	/* Kick guest if required. */
	if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
			&& (vq->callfd >= 0))
		eventfd_write(vq->callfd, (eventfd_t)1);
}

static inline struct zcopy_mbuf *__attribute__((always_inline))
get_zmbuf(struct vhost_virtqueue *vq)
{
	uint16_t i;
	uint16_t last;
	int tries = 0;

	/* search [last_zmbuf_idx, zmbuf_size) */
	i = vq->last_zmbuf_idx;
	last = vq->zmbuf_size;

again:
	for (; i < last; i++) {
		if (vq->zmbufs[i].in_use == 0) {
			vq->last_zmbuf_idx = i + 1;
			vq->zmbufs[i].in_use = 1;
			return &vq->zmbufs[i];
		}
	}

	tries++;
	if (tries == 1) {
		/* search [0, last_zmbuf_idx) */
		i = 0;
		last = vq->last_zmbuf_idx;
		goto again;
	}

	return NULL;
}

static inline bool __attribute__((always_inline))
mbuf_is_consumed(struct rte_mbuf *m)
{
	while (m) {
		if (rte_mbuf_refcnt_read(m) > 1)
			return false;
		m = m->next;
	}

	return true;
}

uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
	struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
	struct virtio_net *dev;
	struct rte_mbuf *rarp_mbuf = NULL;
	struct vhost_virtqueue *vq;
	uint32_t desc_indexes[MAX_PKT_BURST];
	uint32_t used_idx;
	uint32_t i = 0;
	uint16_t free_entries;
	uint16_t avail_idx;

	dev = get_device(vid);
	if (!dev)
		return 0;

	if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
		RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
			dev->vid, __func__, queue_id);
		return 0;
	}

	vq = dev->virtqueue[queue_id];
	if (unlikely(vq->enabled == 0))
		return 0;

	if (unlikely(dev->dequeue_zero_copy)) {
		struct zcopy_mbuf *zmbuf, *next;
		int nr_updated = 0;

		for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
		     zmbuf != NULL; zmbuf = next) {
			next = TAILQ_NEXT(zmbuf, next);

			if (mbuf_is_consumed(zmbuf->mbuf)) {
				used_idx = vq->last_used_idx++ & (vq->size - 1);
				update_used_ring(dev, vq, used_idx,
						 zmbuf->desc_idx);
				nr_updated += 1;

				TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
				rte_pktmbuf_free(zmbuf->mbuf);
				put_zmbuf(zmbuf);
				vq->nr_zmbuf -= 1;
			}
		}

		update_used_idx(dev, vq, nr_updated);
	}

	/*
	 * Construct a RARP broadcast packet, and inject it to the "pkts"
	 * array, to looks like that guest actually send such packet.
	 *
	 * Check user_send_rarp() for more information.
	 *
	 * broadcast_rarp shares a cacheline in the virtio_net structure
	 * with some fields that are accessed during enqueue and
	 * rte_atomic16_cmpset() causes a write if using cmpxchg. This could
	 * result in false sharing between enqueue and dequeue.
	 *
	 * Prevent unnecessary false sharing by reading broadcast_rarp first
	 * and only performing cmpset if the read indicates it is likely to
	 * be set.
	 */

	if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
			rte_atomic16_cmpset((volatile uint16_t *)
				&dev->broadcast_rarp.cnt, 1, 0))) {

		rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
		if (rarp_mbuf == NULL) {
			RTE_LOG(ERR, VHOST_DATA,
				"Failed to allocate memory for mbuf.\n");
			return 0;
		}

		if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
			rte_pktmbuf_free(rarp_mbuf);
			rarp_mbuf = NULL;
		} else {
			count -= 1;
		}
	}

	free_entries = *((volatile uint16_t *)&vq->avail->idx) -
			vq->last_avail_idx;
	if (free_entries == 0)
		goto out;

	LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);

	/* Prefetch available and used ring */
	avail_idx = vq->last_avail_idx & (vq->size - 1);
	used_idx  = vq->last_used_idx  & (vq->size - 1);
	rte_prefetch0(&vq->avail->ring[avail_idx]);
	rte_prefetch0(&vq->used->ring[used_idx]);

	count = RTE_MIN(count, MAX_PKT_BURST);
	count = RTE_MIN(count, free_entries);
	LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
			dev->vid, count);

	/* Retrieve all of the head indexes first to avoid caching issues. */
	for (i = 0; i < count; i++) {
		avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
		used_idx  = (vq->last_used_idx  + i) & (vq->size - 1);
		desc_indexes[i] = vq->avail->ring[avail_idx];

		if (likely(dev->dequeue_zero_copy == 0))
			update_used_ring(dev, vq, used_idx, desc_indexes[i]);
	}

	/* Prefetch descriptor index. */
	rte_prefetch0(&vq->desc[desc_indexes[0]]);
	for (i = 0; i < count; i++) {
		struct vring_desc *desc;
		uint16_t sz, idx;
		int err;

		if (likely(i + 1 < count))
			rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);

		if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
			desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
					vq->desc[desc_indexes[i]].addr);
			if (unlikely(!desc))
				break;

			rte_prefetch0(desc);
			sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
			idx = 0;
		} else {
			desc = vq->desc;
			sz = vq->size;
			idx = desc_indexes[i];
		}

		pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
		if (unlikely(pkts[i] == NULL)) {
			RTE_LOG(ERR, VHOST_DATA,
				"Failed to allocate memory for mbuf.\n");
			break;
		}

		err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
		if (unlikely(err)) {
			rte_pktmbuf_free(pkts[i]);
			break;
		}

		if (unlikely(dev->dequeue_zero_copy)) {
			struct zcopy_mbuf *zmbuf;

			zmbuf = get_zmbuf(vq);
			if (!zmbuf) {
				rte_pktmbuf_free(pkts[i]);
				break;
			}
			zmbuf->mbuf = pkts[i];
			zmbuf->desc_idx = desc_indexes[i];

			/*
			 * Pin lock the mbuf; we will check later to see
			 * whether the mbuf is freed (when we are the last
			 * user) or not. If that's the case, we then could
			 * update the used ring safely.
			 */
			rte_mbuf_refcnt_update(pkts[i], 1);

			vq->nr_zmbuf += 1;
			TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
		}
	}
	vq->last_avail_idx += i;

	if (likely(dev->dequeue_zero_copy == 0)) {
		vq->last_used_idx += i;
		update_used_idx(dev, vq, i);
	}

out:
	if (unlikely(rarp_mbuf != NULL)) {
		/*
		 * Inject it to the head of "pkts" array, so that switch's mac
		 * learning table will get updated first.
		 */
		memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
		pkts[0] = rarp_mbuf;
		i += 1;
	}

	return i;
}