aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/ip/ip6_hop_by_hop.h
diff options
context:
space:
mode:
authorMarco Varlese <marco.varlese@suse.com>2018-10-18 09:19:15 +0200
committerDamjan Marion <dmarion@me.com>2018-10-23 11:56:46 +0000
commitb9a4c445c1d4e9cdab476a8e1fb8a46ff0fc6080 (patch)
tree94379c4146d9f3194260b727730e74c0615d150e /src/vnet/ip/ip6_hop_by_hop.h
parentc3ac3131d4d6f20f28632484c3c3ead50aa11cac (diff)
Release Notes for 18.10
Change-Id: I3500113f30d6d98eae69d39b59b90569c796e011 Signed-off-by: Marco Varlese <marco.varlese@suse.com> (cherry picked from commit 3a9a6f72d18aa72e4038422a4c882927037441e7)
Diffstat (limited to 'src/vnet/ip/ip6_hop_by_hop.h')
0 files changed, 0 insertions, 0 deletions
161'>161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   Copyright 2014 6WIND S.A.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>

#include <sys/queue.h>
#include <sys/stat.h>

#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"

#define IP_DEFTTL  64   /* from RFC 1340. */
#define IP_VERSION 0x40
#define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)

#define GRE_KEY_PRESENT 0x2000
#define GRE_KEY_LEN     4
#define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT

/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
#else
#define _htons(x) (x)
#endif

/* structure that caches offload info for the current packet */
struct testpmd_offload_info {
	uint16_t ethertype;
	uint16_t l2_len;
	uint16_t l3_len;
	uint16_t l4_len;
	uint8_t l4_proto;
	uint8_t is_tunnel;
	uint16_t outer_ethertype;
	uint16_t outer_l2_len;
	uint16_t outer_l3_len;
	uint8_t outer_l4_proto;
	uint16_t tso_segsz;
	uint16_t tunnel_tso_segsz;
	uint32_t pkt_len;
};

/* simplified GRE header */
struct simple_gre_hdr {
	uint16_t flags;
	uint16_t proto;
} __attribute__((__packed__));

static uint16_t
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
{
	if (ethertype == _htons(ETHER_TYPE_IPv4))
		return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
	else /* assume ethertype == ETHER_TYPE_IPv6 */
		return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
}

/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
{
	struct tcp_hdr *tcp_hdr;

	info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
	info->l4_proto = ipv4_hdr->next_proto_id;

	/* only fill l4_len for TCP, it's useful for TSO */
	if (info->l4_proto == IPPROTO_TCP) {
		tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
	} else
		info->l4_len = 0;
}

/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
static void
parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
{
	struct tcp_hdr *tcp_hdr;

	info->l3_len = sizeof(struct ipv6_hdr);
	info->l4_proto = ipv6_hdr->proto;

	/* only fill l4_len for TCP, it's useful for TSO */
	if (info->l4_proto == IPPROTO_TCP) {
		tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
	} else
		info->l4_len = 0;
}

/*
 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
 * header. The l4_len argument is only set in case of TCP (useful for TSO).
 */
static void
parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
{
	struct ipv4_hdr *ipv4_hdr;
	struct ipv6_hdr *ipv6_hdr;

	info->l2_len = sizeof(struct ether_hdr);
	info->ethertype = eth_hdr->ether_type;

	if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
		struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);

		info->l2_len  += sizeof(struct vlan_hdr);
		info->ethertype = vlan_hdr->eth_proto;
	}

	switch (info->ethertype) {
	case _htons(ETHER_TYPE_IPv4):
		ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
		parse_ipv4(ipv4_hdr, info);
		break;
	case _htons(ETHER_TYPE_IPv6):
		ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
		parse_ipv6(ipv6_hdr, info);
		break;
	default:
		info->l4_len = 0;
		info->l3_len = 0;
		info->l4_proto = 0;
		break;
	}
}

/* Parse a vxlan header */
static void
parse_vxlan(struct udp_hdr *udp_hdr,
	    struct testpmd_offload_info *info,
	    uint32_t pkt_type)
{
	struct ether_hdr *eth_hdr;

	/* check udp destination port, 4789 is the default vxlan port
	 * (rfc7348) or that the rx offload flag is set (i40e only
	 * currently) */
	if (udp_hdr->dst_port != _htons(4789) &&
		RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
		return;

	info->is_tunnel = 1;
	info->outer_ethertype = info->ethertype;
	info->outer_l2_len = info->l2_len;
	info->outer_l3_len = info->l3_len;
	info->outer_l4_proto = info->l4_proto;

	eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
		sizeof(struct udp_hdr) +
		sizeof(struct vxlan_hdr));

	parse_ethernet(eth_hdr, info);
	info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
}

/* Parse a gre header */
static void
parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
{
	struct ether_hdr *eth_hdr;
	struct ipv4_hdr *ipv4_hdr;
	struct ipv6_hdr *ipv6_hdr;
	uint8_t gre_len = 0;

	/* check which fields are supported */
	if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
		return;

	gre_len += sizeof(struct simple_gre_hdr);

	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
		gre_len += GRE_KEY_LEN;

	if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
		info->is_tunnel = 1;
		info->outer_ethertype = info->ethertype;
		info->outer_l2_len = info->l2_len;
		info->outer_l3_len = info->l3_len;
		info->outer_l4_proto = info->l4_proto;

		ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);

		parse_ipv4(ipv4_hdr, info);
		info->ethertype = _htons(ETHER_TYPE_IPv4);
		info->l2_len = 0;

	} else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
		info->is_tunnel = 1;
		info->outer_ethertype = info->ethertype;
		info->outer_l2_len = info->l2_len;
		info->outer_l3_len = info->l3_len;
		info->outer_l4_proto = info->l4_proto;

		ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);

		info->ethertype = _htons(ETHER_TYPE_IPv6);
		parse_ipv6(ipv6_hdr, info);
		info->l2_len = 0;

	} else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
		info->is_tunnel = 1;
		info->outer_ethertype = info->ethertype;
		info->outer_l2_len = info->l2_len;
		info->outer_l3_len = info->l3_len;
		info->outer_l4_proto = info->l4_proto;

		eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);

		parse_ethernet(eth_hdr, info);
	} else
		return;

	info->l2_len += gre_len;
}


/* Parse an encapsulated ip or ipv6 header */
static void
parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
{
	struct ipv4_hdr *ipv4_hdr = encap_ip;
	struct ipv6_hdr *ipv6_hdr = encap_ip;
	uint8_t ip_version;

	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;

	if (ip_version != 4 && ip_version != 6)
		return;

	info->is_tunnel = 1;
	info->outer_ethertype = info->ethertype;
	info->outer_l2_len = info->l2_len;
	info->outer_l3_len = info->l3_len;

	if (ip_version == 4) {
		parse_ipv4(ipv4_hdr, info);
		info->ethertype = _htons(ETHER_TYPE_IPv4);
	} else {
		parse_ipv6(ipv6_hdr, info);
		info->ethertype = _htons(ETHER_TYPE_IPv6);
	}
	info->l2_len = 0;
}

/* if possible, calculate the checksum of a packet in hw or sw,
 * depending on the testpmd command line configuration */
static uint64_t
process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
	uint16_t testpmd_ol_flags)
{
	struct ipv4_hdr *ipv4_hdr = l3_hdr;
	struct udp_hdr *udp_hdr;
	struct tcp_hdr *tcp_hdr;
	struct sctp_hdr *sctp_hdr;
	uint64_t ol_flags = 0;
	uint32_t max_pkt_len, tso_segsz = 0;

	/* ensure packet is large enough to require tso */
	if (!info->is_tunnel) {
		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
			info->tso_segsz;
		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
			tso_segsz = info->tso_segsz;
	} else {
		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
			info->l2_len + info->l3_len + info->l4_len +
			info->tunnel_tso_segsz;
		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
			tso_segsz = info->tunnel_tso_segsz;
	}

	if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
		ipv4_hdr = l3_hdr;
		ipv4_hdr->hdr_checksum = 0;

		ol_flags |= PKT_TX_IPV4;
		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
			ol_flags |= PKT_TX_IP_CKSUM;
		} else {
			if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
				ol_flags |= PKT_TX_IP_CKSUM;
			else
				ipv4_hdr->hdr_checksum =
					rte_ipv4_cksum(ipv4_hdr);
		}
	} else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
		ol_flags |= PKT_TX_IPV6;
	else
		return 0; /* packet type not supported, nothing to do */

	if (info->l4_proto == IPPROTO_UDP) {
		udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
		/* do not recalculate udp cksum if it was 0 */
		if (udp_hdr->dgram_cksum != 0) {
			udp_hdr->dgram_cksum = 0;
			if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM)
				ol_flags |= PKT_TX_UDP_CKSUM;
			else {
				udp_hdr->dgram_cksum =
					get_udptcp_checksum(l3_hdr, udp_hdr,
						info->ethertype);
			}
		}
	} else if (info->l4_proto == IPPROTO_TCP) {
		tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
		tcp_hdr->cksum = 0;
		if (tso_segsz)
			ol_flags |= PKT_TX_TCP_SEG;
		else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM)
			ol_flags |= PKT_TX_TCP_CKSUM;
		else {
			tcp_hdr->cksum =
				get_udptcp_checksum(l3_hdr, tcp_hdr,
					info->ethertype);
		}
	} else if (info->l4_proto == IPPROTO_SCTP) {
		sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
		sctp_hdr->cksum = 0;
		/* sctp payload must be a multiple of 4 to be
		 * offloaded */
		if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
			((ipv4_hdr->total_length & 0x3) == 0)) {
			ol_flags |= PKT_TX_SCTP_CKSUM;
		} else {
			/* XXX implement CRC32c, example available in
			 * RFC3309 */
		}
	}

	return ol_flags;
}

/* Calculate the checksum of outer header */
static uint64_t
process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
	uint16_t testpmd_ol_flags, int tso_enabled)
{
	struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
	struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
	struct udp_hdr *udp_hdr;
	uint64_t ol_flags = 0;

	if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
		ipv4_hdr->hdr_checksum = 0;
		ol_flags |= PKT_TX_OUTER_IPV4;

		if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)
			ol_flags |= PKT_TX_OUTER_IP_CKSUM;
		else
			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
	} else
		ol_flags |= PKT_TX_OUTER_IPV6;

	if (info->outer_l4_proto != IPPROTO_UDP)
		return ol_flags;

	udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);

	/* outer UDP checksum is done in software as we have no hardware
	 * supporting it today, and no API for it. In the other side, for
	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
	 * set to zero.
	 *
	 * If a packet will be TSOed into small packets by NIC, we cannot
	 * set/calculate a non-zero checksum, because it will be a wrong
	 * value after the packet be split into several small packets.
	 */
	if (tso_enabled)
		udp_hdr->dgram_cksum = 0;

	/* do not recalculate udp cksum if it was 0 */
	if (udp_hdr->dgram_cksum != 0) {
		udp_hdr->dgram_cksum = 0;
		if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
			udp_hdr->dgram_cksum =
				rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
		else
			udp_hdr->dgram_cksum =
				rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
	}

	return ol_flags;
}

/*
 * Helper function.
 * Performs actual copying.
 * Returns number of segments in the destination mbuf on success,
 * or negative error code on failure.
 */
static int
mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
	uint16_t seglen[], uint8_t nb_seg)
{
	uint32_t dlen, slen, tlen;
	uint32_t i, len;
	const struct rte_mbuf *m;
	const uint8_t *src;
	uint8_t *dst;

	dlen = 0;
	slen = 0;
	tlen = 0;

	dst = NULL;
	src = NULL;

	m = ms;
	i = 0;
	while (ms != NULL && i != nb_seg) {

		if (slen == 0) {
			slen = rte_pktmbuf_data_len(ms);
			src = rte_pktmbuf_mtod(ms, const uint8_t *);
		}

		if (dlen == 0) {
			dlen = RTE_MIN(seglen[i], slen);
			md[i]->data_len = dlen;
			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
		}

		len = RTE_MIN(slen, dlen);
		memcpy(dst, src, len);
		tlen += len;
		slen -= len;
		dlen -= len;
		src += len;
		dst += len;

		if (slen == 0)
			ms = ms->next;
		if (dlen == 0)
			i++;
	}

	if (ms != NULL)
		return -ENOBUFS;
	else if (tlen != m->pkt_len)
		return -EINVAL;

	md[0]->nb_segs = nb_seg;
	md[0]->pkt_len = tlen;
	md[0]->vlan_tci = m->vlan_tci;
	md[0]->vlan_tci_outer = m->vlan_tci_outer;
	md[0]->ol_flags = m->ol_flags;
	md[0]->tx_offload = m->tx_offload;

	return nb_seg;
}

/*
 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
 * Copy packet contents and offload information into then new segmented mbuf.
 */
static struct rte_mbuf *
pkt_copy_split(const struct rte_mbuf *pkt)
{
	int32_t n, rc;
	uint32_t i, len, nb_seg;
	struct rte_mempool *mp;
	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];

	mp = current_fwd_lcore()->mbp;

	if (tx_pkt_split == TX_PKT_SPLIT_RND)
		nb_seg = random() % tx_pkt_nb_segs + 1;
	else
		nb_seg = tx_pkt_nb_segs;

	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));

	/* calculate number of segments to use and their length. */
	len = 0;
	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
		len += seglen[i];
		md[i] = NULL;
	}

	n = pkt->pkt_len - len;

	/* update size of the last segment to fit rest of the packet */
	if (n >= 0) {
		seglen[i - 1] += n;
		len += n;
	}

	nb_seg = i;
	while (i != 0) {
		p = rte_pktmbuf_alloc(mp);
		if (p == NULL) {
			RTE_LOG(ERR, USER1,
				"failed to allocate %u-th of %u mbuf "
				"from mempool: %s\n",
				nb_seg - i, nb_seg, mp->name);
			break;
		}

		md[--i] = p;
		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
			RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: "
				"expected seglen: %u, "
				"actual mbuf tailroom: %u\n",
				mp->name, i, seglen[i],
				rte_pktmbuf_tailroom(md[i]));
			break;
		}
	}

	/* all mbufs successfully allocated, do copy */
	if (i == 0) {
		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
		if (rc < 0)
			RTE_LOG(ERR, USER1,
				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
				"into %u segments failed with error code: %d\n",
				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);

		/* figure out how many mbufs to free. */
		i = RTE_MAX(rc, 0);
	}

	/* free unused mbufs */
	for (; i != nb_seg; i++) {
		rte_pktmbuf_free_seg(md[i]);
		md[i] = NULL;
	}

	return md[0];
}

/*
 * Receive a burst of packets, and for each packet:
 *  - parse packet, and try to recognize a supported packet type (1)
 *  - if it's not a supported packet type, don't touch the packet, else:
 *  - reprocess the checksum of all supported layers. This is done in SW
 *    or HW, depending on testpmd command line configuration
 *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
 *    segmentation offload (this implies HW TCP checksum)
 * Then transmit packets on the output port.
 *
 * (1) Supported packets are:
 *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
 *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
 *           UDP|TCP|SCTP
 *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
 *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
 *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
 *
 * The testpmd command line for this forward engine sets the flags
 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
 * wether a checksum must be calculated in software or in hardware. The
 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
 * OUTER_IP is only useful for tunnel packets.
 */
static void
pkt_burst_checksum_forward(struct fwd_stream *fs)
{
	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
	struct rte_port *txp;
	struct rte_mbuf *m, *p;
	struct ether_hdr *eth_hdr;
	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
	uint16_t nb_rx;
	uint16_t nb_tx;
	uint16_t nb_prep;
	uint16_t i;
	uint64_t rx_ol_flags, tx_ol_flags;
	uint16_t testpmd_ol_flags;
	uint32_t retry;
	uint32_t rx_bad_ip_csum;
	uint32_t rx_bad_l4_csum;
	struct testpmd_offload_info info;

#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
	uint64_t start_tsc;
	uint64_t end_tsc;
	uint64_t core_cycles;
#endif

#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
	start_tsc = rte_rdtsc();
#endif

	/* receive a burst of packet */
	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
				 nb_pkt_per_burst);
	if (unlikely(nb_rx == 0))
		return;

#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
	fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
	fs->rx_packets += nb_rx;
	rx_bad_ip_csum = 0;
	rx_bad_l4_csum = 0;

	txp = &ports[fs->tx_port];
	testpmd_ol_flags = txp->tx_ol_flags;
	memset(&info, 0, sizeof(info));
	info.tso_segsz = txp->tso_segsz;
	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;

	for (i = 0; i < nb_rx; i++) {
		if (likely(i < nb_rx - 1))
			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
						       void *));

		m = pkts_burst[i];
		info.is_tunnel = 0;
		info.pkt_len = rte_pktmbuf_pkt_len(m);
		tx_ol_flags = 0;
		rx_ol_flags = m->ol_flags;

		/* Update the L3/L4 checksum error packet statistics */
		if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
			rx_bad_ip_csum += 1;
		if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
			rx_bad_l4_csum += 1;

		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
		 * and inner headers */

		eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
		ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
				&eth_hdr->d_addr);
		ether_addr_copy(&ports[fs->tx_port].eth_addr,
				&eth_hdr->s_addr);
		parse_ethernet(eth_hdr, &info);
		l3_hdr = (char *)eth_hdr + info.l2_len;

		/* check if it's a supported tunnel */
		if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) {
			if (info.l4_proto == IPPROTO_UDP) {
				struct udp_hdr *udp_hdr;

				udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
					info.l3_len);
				parse_vxlan(udp_hdr, &info, m->packet_type);
				if (info.is_tunnel)
					tx_ol_flags |= PKT_TX_TUNNEL_VXLAN;
			} else if (info.l4_proto == IPPROTO_GRE) {
				struct simple_gre_hdr *gre_hdr;

				gre_hdr = (struct simple_gre_hdr *)
					((char *)l3_hdr + info.l3_len);
				parse_gre(gre_hdr, &info);
				if (info.is_tunnel)
					tx_ol_flags |= PKT_TX_TUNNEL_GRE;
			} else if (info.l4_proto == IPPROTO_IPIP) {
				void *encap_ip_hdr;

				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
				parse_encap_ip(encap_ip_hdr, &info);
				if (info.is_tunnel)
					tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
			}
		}

		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
		if (info.is_tunnel) {
			outer_l3_hdr = l3_hdr;
			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
		}

		/* step 2: depending on user command line configuration,
		 * recompute checksum either in software or flag the
		 * mbuf to offload the calculation to the NIC. If TSO
		 * is configured, prepare the mbuf for TCP segmentation. */

		/* process checksums of inner headers first */
		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
			testpmd_ol_flags);

		/* Then process outer headers if any. Note that the software
		 * checksum will be wrong if one of the inner checksums is
		 * processed in hardware. */
		if (info.is_tunnel == 1) {
			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
					testpmd_ol_flags,
					!!(tx_ol_flags & PKT_TX_TCP_SEG));
		}

		/* step 3: fill the mbuf meta data (flags and header lengths) */

		if (info.is_tunnel == 1) {
			if (info.tunnel_tso_segsz ||
			    (testpmd_ol_flags &
			    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) ||
			    (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
				m->outer_l2_len = info.outer_l2_len;
				m->outer_l3_len = info.outer_l3_len;
				m->l2_len = info.l2_len;
				m->l3_len = info.l3_len;
				m->l4_len = info.l4_len;
				m->tso_segsz = info.tunnel_tso_segsz;
			}
			else {
				/* if there is a outer UDP cksum
				   processed in sw and the inner in hw,
				   the outer checksum will be wrong as
				   the payload will be modified by the
				   hardware */
				m->l2_len = info.outer_l2_len +
					info.outer_l3_len + info.l2_len;
				m->l3_len = info.l3_len;
				m->l4_len = info.l4_len;
			}
		} else {
			/* this is only useful if an offload flag is
			 * set, but it does not hurt to fill it in any
			 * case */
			m->l2_len = info.l2_len;
			m->l3_len = info.l3_len;
			m->l4_len = info.l4_len;
			m->tso_segsz = info.tso_segsz;
		}
		m->ol_flags = tx_ol_flags;

		/* Do split & copy for the packet. */
		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
			p = pkt_copy_split(m);
			if (p != NULL) {
				rte_pktmbuf_free(m);
				m = p;
				pkts_burst[i] = m;
			}
		}

		/* if verbose mode is enabled, dump debug info */
		if (verbose_level > 0) {
			char buf[256];

			printf("-----------------\n");
			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
				fs->rx_port, m, m->pkt_len, m->nb_segs);
			/* dump rx parsed packet info */
			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
				"l4_proto=%d l4_len=%d flags=%s\n",
				info.l2_len, rte_be_to_cpu_16(info.ethertype),
				info.l3_len, info.l4_proto, info.l4_len, buf);
			if (rx_ol_flags & PKT_RX_LRO)
				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
			if (info.is_tunnel == 1)
				printf("rx: outer_l2_len=%d outer_ethertype=%x "
					"outer_l3_len=%d\n", info.outer_l2_len,
					rte_be_to_cpu_16(info.outer_ethertype),
					info.outer_l3_len);
			/* dump tx packet info */
			if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
						TESTPMD_TX_OFFLOAD_UDP_CKSUM |
						TESTPMD_TX_OFFLOAD_TCP_CKSUM |
						TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
				info.tso_segsz != 0)
				printf("tx: m->l2_len=%d m->l3_len=%d "
					"m->l4_len=%d\n",
					m->l2_len, m->l3_len, m->l4_len);
			if (info.is_tunnel == 1) {
				if ((testpmd_ol_flags &
				    TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) ||
				    (tx_ol_flags & PKT_TX_OUTER_IPV6))
					printf("tx: m->outer_l2_len=%d "
						"m->outer_l3_len=%d\n",
						m->outer_l2_len,
						m->outer_l3_len);
				if (info.tunnel_tso_segsz != 0 &&
						(m->ol_flags & PKT_TX_TCP_SEG))
					printf("tx: m->tso_segsz=%d\n",
						m->tso_segsz);
			} else if (info.tso_segsz != 0 &&
					(m->ol_flags & PKT_TX_TCP_SEG))
				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
			printf("tx: flags=%s", buf);
			printf("\n");
		}
	}

	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
			pkts_burst, nb_rx);
	if (nb_prep != nb_rx)
		printf("Preparing packet burst to transmit failed: %s\n",
				rte_strerror(rte_errno));

	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
			nb_prep);

	/*
	 * Retry if necessary
	 */
	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
		retry = 0;
		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
			rte_delay_us(burst_tx_delay_time);
			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
					&pkts_burst[nb_tx], nb_rx - nb_tx);
		}
	}
	fs->tx_packets += nb_tx;
	fs->rx_bad_ip_csum += rx_bad_ip_csum;
	fs->rx_bad_l4_csum += rx_bad_l4_csum;

#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
	fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
	if (unlikely(nb_tx < nb_rx)) {
		fs->fwd_dropped += (nb_rx - nb_tx);
		do {
			rte_pktmbuf_free(pkts_burst[nb_tx]);
		} while (++nb_tx < nb_rx);
	}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
	end_tsc = rte_rdtsc();
	core_cycles = (end_tsc - start_tsc);
	fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}

struct fwd_engine csum_fwd_engine = {
	.fwd_mode_name  = "csum",
	.port_fwd_begin = NULL,
	.port_fwd_end   = NULL,
	.packet_fwd     = pkt_burst_checksum_forward,
};