aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/map/map_doc.md
diff options
context:
space:
mode:
authorOle Troan <ot@cisco.com>2018-06-22 11:32:12 +0200
committerFlorin Coras <florin.coras@gmail.com>2018-06-25 20:19:40 +0000
commit381e9a90748bb659f56081123052e3e95501a4b4 (patch)
treefbc166ecf8637b8b9ea262f3ac4181396149d534 /src/vnet/map/map_doc.md
parente4d5a652a392c9f74501da5778a7fe161b183476 (diff)
MAP: Move MAP-E/T to a plugin.
Only remaining traces of MAP in the src/vnet is now in buffer.h. Awaiting a new buffer opaque API (hint, hint). Change-Id: Ie165561484731f1d7ed6e0f604b43624e06db3f0 Signed-off-by: Ole Troan <ot@cisco.com>
Diffstat (limited to 'src/vnet/map/map_doc.md')
-rw-r--r--src/vnet/map/map_doc.md69
1 files changed, 0 insertions, 69 deletions
diff --git a/src/vnet/map/map_doc.md b/src/vnet/map/map_doc.md
deleted file mode 100644
index 17f3c51174b..00000000000
--- a/src/vnet/map/map_doc.md
+++ /dev/null
@@ -1,69 +0,0 @@
-# VPP MAP and Lw4o6 implementation {#map_doc}
-
-This is a memo intended to contain documentation of the VPP MAP and Lw4o6 implementations.
-Everything that is not directly obvious should come here.
-
-
-
-## MAP-E Virtual Reassembly
-
-The MAP-E implementation supports handling of IPv4 fragments as well as IPv4-in-IPv6 inner and outer fragments. This is called virtual reassembly because the fragments are not actually reassembled. Instead, some meta-data are kept about the first fragment and reused for subsequent fragments.
-
-Fragment caching and handling is not always necessary. It is performed when:
-* An IPv4 fragment is received and the destination IPv4 address is shared.
-* An IPv6 packet is received with an inner IPv4 fragment, the IPv4 source address is shared, and 'security-check fragments' is on.
-* An IPv6 fragment is received.
-
-There are 3 dedicated nodes:
-* ip4-map-reass
-* ip6-map-ip4-reass
-* ip6-map-ip6-reass
-
-ip4-map sends all fragments to ip4-map-reass.
-ip6-map sends all inner-fragments to ip6-map-ip4-reass.
-ip6-map sends all outer-fragments to ip6-map-ip6-reass.
-
-IPv4 (resp. IPv6) virtual reassembly makes use of a hash table in order to store IPv4 (resp. IPv6) reassembly structures. The hash-key is based on the IPv4-src:IPv4-dst:Frag-ID:Protocol tuple (resp. IPv6-src:IPv6-dst:Frag-ID tuple, as the protocol is IPv4-in-IPv6). Therefore, each packet reassembly makes use of exactly one reassembly structure. When such a structure is allocated, it is timestamped with the current time. Finally, those structures are capable of storing a limited number of buffer indexes.
-
-An IPv4 (resp. IPv6) reassembly structure can cache up to MAP_IP4_REASS_MAX_FRAGMENTS_PER_REASSEMBLY (resp. MAP_IP6_REASS_MAX_FRAGMENTS_PER_REASSEMBLY) buffers. Buffers are cached until the first fragment is received.
-
-#### Virtual Reassembly configuration
-
-IPv4 and IPv6 virtual reassembly support the following configuration:
- map params reassembly [ip4 | ip6] [lifetime <lifetime-ms>] [pool-size <pool-size>] [buffers <buffers>] [ht-ratio <ht-ratio>]
-
-lifetime:
- The time in milliseconds a reassembly structure is considered valid. The longer, the more reliable is reassembly, but the more likely it is to exhaust the pool of reassembly structures. IPv4 standard suggests a lifetime of 15 seconds. IPv6 specifies a lifetime of 60 people. Those values are not realistic for high-throughput cases.
-
-buffers:
- The upper limit of buffers that are allowed to be cached. It can be used to protect against fragmentation attacks which would aim to exhaust the global buffers pool.
-
-pool-size:
- The number of reassembly structures that can be allocated. As each structure can store a small fixed number of fragments, it also sets an upper-bound of 'pool-size * MAP_IPX_REASS_MAX_FRAGMENTS_PER_REASSEMBLY' buffers that can be cached in total.
-
-ht-ratio:
- The amount of buckets in the hash-table is pool-size * ht-ratio.
-
-
-Any time pool-size and ht-ratio is modified, the hash-table is destroyed and created again, which means all current state is lost.
-
-
-##### Additional considerations
-
-Reassembly at high rate is expensive in terms of buffers. There is a trade-off between the lifetime and number of allocated buffers. Reducing the lifetime helps, but at the cost of loosing state for fragments that are wide appart.
-
-Let:
-R be the packet rate at which fragments are received.
-F be the number of fragments per packet.
-
-Assuming the first fragment is always received last. We should have:
-buffers > lifetime * R / F * (F - 1)
-pool-size > lifetime * R/F
-
-This is a worst case. Receiving the first fragment earlier helps reducing the number of required buffers. Also, an optimization is implemented (MAP_IP6_REASS_COUNT_BYTES and MAP_IP4_REASS_COUNT_BYTES) which counts the number of transmitted bytes and remembers the total number of bytes which should be transmitted based on the last fragment, and therefore helps reducing 'pool-size'.
-
-But the formula shows that it is challenging to forward a significant amount of fragmented packets at high rates. For instance, with a lifetime of 1 second, 5Mpps packet rate would require buffering up to 2.5 millions fragments.
-
-If you want to do that, be prepared to configure a lot of fragments.
-
-