aboutsummaryrefslogtreecommitdiffstats
path: root/src/vppinfra/byte_order.h
diff options
context:
space:
mode:
authorDamjan Marion <damarion@cisco.com>2018-10-26 10:29:35 +0200
committerDamjan Marion <dmarion@me.com>2018-10-28 14:58:45 +0000
commit878b65aa6c16b6013e75ea9039b9978c52982e97 (patch)
tree3b0d1412d6e83996741f39cf50bee6699fbbdcff /src/vppinfra/byte_order.h
parent5665cedf57165c05d00f28de06b627047902ffce (diff)
physmem: coverity issues
Change-Id: I34cc55d8292a69fb451ed0031484994f51d3537a Signed-off-by: Damjan Marion <damarion@cisco.com>
Diffstat (limited to 'src/vppinfra/byte_order.h')
0 files changed, 0 insertions, 0 deletions
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


#include <stdio.h>
#include <inttypes.h>
#include <rte_ring.h>
#include <rte_cycles.h>
#include <rte_launch.h>

#include "test.h"

/*
 * Ring
 * ====
 *
 * Measures performance of various operations using rdtsc
 *  * Empty ring dequeue
 *  * Enqueue/dequeue of bursts in 1 threads
 *  * Enqueue/dequeue of bursts in 2 threads
 */

#define RING_NAME "RING_PERF"
#define RING_SIZE 4096
#define MAX_BURST 32

/*
 * the sizes to enqueue and dequeue in testing
 * (marked volatile so they won't be seen as compile-time constants)
 */
static const volatile unsigned bulk_sizes[] = { 8, 32 };

struct lcore_pair {
	unsigned c1, c2;
};

static volatile unsigned lcore_count = 0;

/**** Functions to analyse our core mask to get cores for different tests ***/

static int
get_two_hyperthreads(struct lcore_pair *lcp)
{
	unsigned id1, id2;
	unsigned c1, c2, s1, s2;
	RTE_LCORE_FOREACH(id1) {
		/* inner loop just re-reads all id's. We could skip the first few
		 * elements, but since number of cores is small there is little point
		 */
		RTE_LCORE_FOREACH(id2) {
			if (id1 == id2)
				continue;
			c1 = lcore_config[id1].core_id;
			c2 = lcore_config[id2].core_id;
			s1 = lcore_config[id1].socket_id;
			s2 = lcore_config[id2].socket_id;
			if ((c1 == c2) && (s1 == s2)){
				lcp->c1 = id1;
				lcp->c2 = id2;
				return 0;
			}
		}
	}
	return 1;
}

static int
get_two_cores(struct lcore_pair *lcp)
{
	unsigned id1, id2;
	unsigned c1, c2, s1, s2;
	RTE_LCORE_FOREACH(id1) {
		RTE_LCORE_FOREACH(id2) {
			if (id1 == id2)
				continue;
			c1 = lcore_config[id1].core_id;
			c2 = lcore_config[id2].core_id;
			s1 = lcore_config[id1].socket_id;
			s2 = lcore_config[id2].socket_id;
			if ((c1 != c2) && (s1 == s2)){
				lcp->c1 = id1;
				lcp->c2 = id2;
				return 0;
			}
		}
	}
	return 1;
}

static int
get_two_sockets(struct lcore_pair *lcp)
{
	unsigned id1, id2;
	unsigned s1, s2;
	RTE_LCORE_FOREACH(id1) {
		RTE_LCORE_FOREACH(id2) {
			if (id1 == id2)
				continue;
			s1 = lcore_config[id1].socket_id;
			s2 = lcore_config[id2].socket_id;
			if (s1 != s2){
				lcp->c1 = id1;
				lcp->c2 = id2;
				return 0;
			}
		}
	}
	return 1;
}

/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
static void
test_empty_dequeue(struct rte_ring *r)
{
	const unsigned iter_shift = 26;
	const unsigned iterations = 1<<iter_shift;
	unsigned i = 0;
	void *burst[MAX_BURST];

	const uint64_t sc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
	const uint64_t sc_end = rte_rdtsc();

	const uint64_t mc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
	const uint64_t mc_end = rte_rdtsc();

	printf("SC empty dequeue: %.2F\n",
			(double)(sc_end-sc_start) / iterations);
	printf("MC empty dequeue: %.2F\n",
			(double)(mc_end-mc_start) / iterations);
}

/*
 * for the separate enqueue and dequeue threads they take in one param
 * and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
 */
struct thread_params {
	struct rte_ring *r;
	unsigned size;        /* input value, the burst size */
	double spsc, mpmc;    /* output value, the single or multi timings */
};

/*
 * Function that uses rdtsc to measure timing for ring enqueue. Needs pair
 * thread running dequeue_bulk function
 */
static int
enqueue_bulk(void *p)
{
	const unsigned iter_shift = 23;
	const unsigned iterations = 1<<iter_shift;
	struct thread_params *params = p;
	struct rte_ring *r = params->r;
	const unsigned size = params->size;
	unsigned i;
	void *burst[MAX_BURST] = {0};

	if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
		while(lcore_count != 2)
			rte_pause();

	const uint64_t sp_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
			rte_pause();
	const uint64_t sp_end = rte_rdtsc();

	const uint64_t mp_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
			rte_pause();
	const uint64_t mp_end = rte_rdtsc();

	params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
	params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
	return 0;
}

/*
 * Function that uses rdtsc to measure timing for ring dequeue. Needs pair
 * thread running enqueue_bulk function
 */
static int
dequeue_bulk(void *p)
{
	const unsigned iter_shift = 23;
	const unsigned iterations = 1<<iter_shift;
	struct thread_params *params = p;
	struct rte_ring *r = params->r;
	const unsigned size = params->size;
	unsigned i;
	void *burst[MAX_BURST] = {0};

	if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
		while(lcore_count != 2)
			rte_pause();

	const uint64_t sc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
			rte_pause();
	const uint64_t sc_end = rte_rdtsc();

	const uint64_t mc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++)
		while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
			rte_pause();
	const uint64_t mc_end = rte_rdtsc();

	params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
	params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
	return 0;
}

/*
 * Function that calls the enqueue and dequeue bulk functions on pairs of cores.
 * used to measure ring perf between hyperthreads, cores and sockets.
 */
static void
run_on_core_pair(struct lcore_pair *cores, struct rte_ring *r,
		lcore_function_t f1, lcore_function_t f2)
{
	struct thread_params param1 = {0}, param2 = {0};
	unsigned i;
	for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
		lcore_count = 0;
		param1.size = param2.size = bulk_sizes[i];
		param1.r = param2.r = r;
		if (cores->c1 == rte_get_master_lcore()) {
			rte_eal_remote_launch(f2, &param2, cores->c2);
			f1(&param1);
			rte_eal_wait_lcore(cores->c2);
		} else {
			rte_eal_remote_launch(f1, &param1, cores->c1);
			rte_eal_remote_launch(f2, &param2, cores->c2);
			rte_eal_wait_lcore(cores->c1);
			rte_eal_wait_lcore(cores->c2);
		}
		printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
				param1.spsc + param2.spsc);
		printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
				param1.mpmc + param2.mpmc);
	}
}

/*
 * Test function that determines how long an enqueue + dequeue of a single item
 * takes on a single lcore. Result is for comparison with the bulk enq+deq.
 */
static void
test_single_enqueue_dequeue(struct rte_ring *r)
{
	const unsigned iter_shift = 24;
	const unsigned iterations = 1<<iter_shift;
	unsigned i = 0;
	void *burst = NULL;

	const uint64_t sc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++) {
		rte_ring_sp_enqueue(r, burst);
		rte_ring_sc_dequeue(r, &burst);
	}
	const uint64_t sc_end = rte_rdtsc();

	const uint64_t mc_start = rte_rdtsc();
	for (i = 0; i < iterations; i++) {
		rte_ring_mp_enqueue(r, burst);
		rte_ring_mc_dequeue(r, &burst);
	}
	const uint64_t mc_end = rte_rdtsc();

	printf("SP/SC single enq/dequeue: %"PRIu64"\n",
			(sc_end-sc_start) >> iter_shift);
	printf("MP/MC single enq/dequeue: %"PRIu64"\n",
			(mc_end-mc_start) >> iter_shift);
}

/*
 * Test that does both enqueue and dequeue on a core using the burst() API calls
 * instead of the bulk() calls used in other tests. Results should be the same
 * as for the bulk function called on a single lcore.
 */
static void
test_burst_enqueue_dequeue(struct rte_ring *r)
{
	const unsigned iter_shift = 23;
	const unsigned iterations = 1<<iter_shift;
	unsigned sz, i = 0;
	void *burst[MAX_BURST] = {0};

	for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
		const uint64_t sc_start = rte_rdtsc();
		for (i = 0; i < iterations; i++) {
			rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
			rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
		}
		const uint64_t sc_end = rte_rdtsc();

		const uint64_t mc_start = rte_rdtsc();
		for (i = 0; i < iterations; i++) {
			rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
			rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
		}
		const uint64_t mc_end = rte_rdtsc();

		uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
		uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];

		printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
				sc_avg);
		printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
				mc_avg);
	}
}

/* Times enqueue and dequeue on a single lcore */
static void
test_bulk_enqueue_dequeue(struct rte_ring *r)
{
	const unsigned iter_shift = 23;
	const unsigned iterations = 1<<iter_shift;
	unsigned sz, i = 0;
	void *burst[MAX_BURST] = {0};

	for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
		const uint64_t sc_start = rte_rdtsc();
		for (i = 0; i < iterations; i++) {
			rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
			rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
		}
		const uint64_t sc_end = rte_rdtsc();

		const uint64_t mc_start = rte_rdtsc();
		for (i = 0; i < iterations; i++) {
			rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
			rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
		}
		const uint64_t mc_end = rte_rdtsc();

		double sc_avg = ((double)(sc_end-sc_start) /
				(iterations * bulk_sizes[sz]));
		double mc_avg = ((double)(mc_end-mc_start) /
				(iterations * bulk_sizes[sz]));

		printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
				sc_avg);
		printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
				mc_avg);
	}
}

static int
test_ring_perf(void)
{
	struct lcore_pair cores;
	struct rte_ring *r = NULL;

	r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
	if (r == NULL)
		return -1;

	printf("### Testing single element and burst enq/deq ###\n");
	test_single_enqueue_dequeue(r);
	test_burst_enqueue_dequeue(r);

	printf("\n### Testing empty dequeue ###\n");
	test_empty_dequeue(r);

	printf("\n### Testing using a single lcore ###\n");
	test_bulk_enqueue_dequeue(r);

	if (get_two_hyperthreads(&cores) == 0) {
		printf("\n### Testing using two hyperthreads ###\n");
		run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
	}
	if (get_two_cores(&cores) == 0) {
		printf("\n### Testing using two physical cores ###\n");
		run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
	}
	if (get_two_sockets(&cores) == 0) {
		printf("\n### Testing using two NUMA nodes ###\n");
		run_on_core_pair(&cores, r, enqueue_bulk, dequeue_bulk);
	}
	rte_ring_free(r);
	return 0;
}

REGISTER_TEST_COMMAND(ring_perf_autotest, test_ring_perf);