diff options
author | Damjan Marion <damarion@cisco.com> | 2023-03-15 11:42:06 +0000 |
---|---|---|
committer | Ole Tr�an <otroan@employees.org> | 2023-03-23 12:04:46 +0000 |
commit | b47376f0b404d2ba5526fba52b171d79b0f352f8 (patch) | |
tree | 5ffcdb47d48f4db0b87483fe6f99a7249831118c /src/vppinfra/crypto/ghash.h | |
parent | 5527a78ed96043d2c26e3271066c50b44dd7fc0b (diff) |
vppinfra: AES-CBC and AES-GCM refactor and optimizations
- crypto code moved to vppinfra for better testing and reuse
- added 256-bit VAES support (Intel Client CPUs)
- added AES_GMAC functions
Change-Id: I960c8e14ca0a0126703e8f1589d86f32e2a98361
Type: improvement
Signed-off-by: Damjan Marion <damarion@cisco.com>
Diffstat (limited to 'src/vppinfra/crypto/ghash.h')
-rw-r--r-- | src/vppinfra/crypto/ghash.h | 515 |
1 files changed, 515 insertions, 0 deletions
diff --git a/src/vppinfra/crypto/ghash.h b/src/vppinfra/crypto/ghash.h new file mode 100644 index 00000000000..bae8badb5fc --- /dev/null +++ b/src/vppinfra/crypto/ghash.h @@ -0,0 +1,515 @@ +/* + *------------------------------------------------------------------ + * Copyright (c) 2019 Cisco and/or its affiliates. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at: + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + *------------------------------------------------------------------ + */ + +/* + *------------------------------------------------------------------ + * Copyright(c) 2018, Intel Corporation All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE, + * DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *------------------------------------------------------------------ + */ + +/* + * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk, + * Vinodh Gopal, James Guilford, Tomasz Kantecki + * + * References: + * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on + * Intel Architecture Processors. August, 2010 + * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on + * Intel Architecture Processors. October, 2012. + * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git + * + * Definitions: + * GF Galois Extension Field GF(2^128) - finite field where elements are + * represented as polynomials with coefficients in GF(2) with the + * highest degree of 127. Polynomials are represented as 128-bit binary + * numbers where each bit represents one coefficient. + * e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011. + * H hash key (128 bit) + * POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1 + * RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1 + * + addition in GF, which equals to XOR operation + * * multiplication in GF + * + * GF multiplication consists of 2 steps: + * - carry-less multiplication of two 128-bit operands into 256-bit result + * - reduction of 256-bit result into 128-bit with modulo POLY + * + * GHash is calculated on 128-bit blocks of data according to the following + * formula: + * GH = (GH + data) * hash_key + * + * To avoid bit-reflection of data, this code uses GF multipication + * with reversed polynomial: + * a * b * x^-127 mod RPOLY + * + * To improve computation speed table Hi is precomputed with powers of H', + * where H' is calculated as H<<1 mod RPOLY. + * This allows us to improve performance by deferring reduction. For example + * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do: + * + * u8x16 Hi[4]; + * ghash_precompute (H, Hi, 4); + * + * ghash_data_t _gd, *gd = &_gd; + * ghash_mul_first (gd, GH ^ b0, Hi[3]); + * ghash_mul_next (gd, b1, Hi[2]); + * ghash_mul_next (gd, b2, Hi[1]); + * ghash_mul_next (gd, b3, Hi[0]); + * ghash_reduce (gd); + * ghash_reduce2 (gd); + * GH = ghash_final (gd); + * + * Reduction step is split into 3 functions so it can be better interleaved + * with other code, (i.e. with AES computation). + */ + +#ifndef __ghash_h__ +#define __ghash_h__ + +static_always_inline u8x16 +gmul_lo_lo (u8x16 a, u8x16 b) +{ +#if defined (__PCLMUL__) + return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00); +#elif defined (__ARM_FEATURE_CRYPTO) + return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), + (poly64_t) vget_low_p64 ((poly64x2_t) b)); +#endif +} + +static_always_inline u8x16 +gmul_hi_lo (u8x16 a, u8x16 b) +{ +#if defined (__PCLMUL__) + return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01); +#elif defined (__ARM_FEATURE_CRYPTO) + return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a), + (poly64_t) vget_low_p64 ((poly64x2_t) b)); +#endif +} + +static_always_inline u8x16 +gmul_lo_hi (u8x16 a, u8x16 b) +{ +#if defined (__PCLMUL__) + return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10); +#elif defined (__ARM_FEATURE_CRYPTO) + return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a), + (poly64_t) vget_high_p64 ((poly64x2_t) b)); +#endif +} + +static_always_inline u8x16 +gmul_hi_hi (u8x16 a, u8x16 b) +{ +#if defined (__PCLMUL__) + return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11); +#elif defined (__ARM_FEATURE_CRYPTO) + return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b); +#endif +} + +typedef struct +{ + u8x16 mid, hi, lo, tmp_lo, tmp_hi; + u8x32 hi2, lo2, mid2, tmp_lo2, tmp_hi2; + u8x64 hi4, lo4, mid4, tmp_lo4, tmp_hi4; + int pending; +} ghash_data_t; + +static const u8x16 ghash_poly = { + 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 +}; + +static const u8x16 ghash_poly2 = { + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2 +}; + +static_always_inline void +ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b) +{ + /* a1 * b1 */ + gd->hi = gmul_hi_hi (a, b); + /* a0 * b0 */ + gd->lo = gmul_lo_lo (a, b); + /* a0 * b1 ^ a1 * b0 */ + gd->mid = gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b); + + /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that + there is no pending data in tmp_lo and tmp_hi */ + gd->pending = 0; +} + +static_always_inline void +ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b) +{ + /* a1 * b1 */ + u8x16 hi = gmul_hi_hi (a, b); + /* a0 * b0 */ + u8x16 lo = gmul_lo_lo (a, b); + + /* this branch will be optimized out by the compiler, and it allows us to + reduce number of XOR operations by using ternary logic */ + if (gd->pending) + { + /* there is peding data from previous invocation so we can XOR */ + gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi); + gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo); + gd->pending = 0; + } + else + { + /* there is no peding data from previous invocation so we postpone XOR */ + gd->tmp_hi = hi; + gd->tmp_lo = lo; + gd->pending = 1; + } + + /* gd->mid ^= a0 * b1 ^ a1 * b0 */ + gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b)); +} + +static_always_inline void +ghash_reduce (ghash_data_t * gd) +{ + u8x16 r; + + /* Final combination: + gd->lo ^= gd->mid << 64 + gd->hi ^= gd->mid >> 64 */ + u8x16 midl = u8x16_word_shift_left (gd->mid, 8); + u8x16 midr = u8x16_word_shift_right (gd->mid, 8); + + if (gd->pending) + { + gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl); + gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr); + } + else + { + gd->lo ^= midl; + gd->hi ^= midr; + } + r = gmul_hi_lo (ghash_poly2, gd->lo); + gd->lo ^= u8x16_word_shift_left (r, 8); +} + +static_always_inline void +ghash_reduce2 (ghash_data_t * gd) +{ + gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo); + gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo); +} + +static_always_inline u8x16 +ghash_final (ghash_data_t * gd) +{ + return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4), + u8x16_word_shift_left (gd->tmp_hi, 4)); +} + +static_always_inline u8x16 +ghash_mul (u8x16 a, u8x16 b) +{ + ghash_data_t _gd, *gd = &_gd; + ghash_mul_first (gd, a, b); + ghash_reduce (gd); + ghash_reduce2 (gd); + return ghash_final (gd); +} + +#if defined(__VPCLMULQDQ__) && defined(__AVX512F__) + +static const u8x64 ghash4_poly2 = { + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, +}; + +static_always_inline u8x64 +gmul4_lo_lo (u8x64 a, u8x64 b) +{ + return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00); +} + +static_always_inline u8x64 +gmul4_hi_lo (u8x64 a, u8x64 b) +{ + return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01); +} + +static_always_inline u8x64 +gmul4_lo_hi (u8x64 a, u8x64 b) +{ + return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10); +} + +static_always_inline u8x64 +gmul4_hi_hi (u8x64 a, u8x64 b) +{ + return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11); +} + +static_always_inline void +ghash4_mul_first (ghash_data_t *gd, u8x64 a, u8x64 b) +{ + gd->hi4 = gmul4_hi_hi (a, b); + gd->lo4 = gmul4_lo_lo (a, b); + gd->mid4 = gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b); + gd->pending = 0; +} + +static_always_inline void +ghash4_mul_next (ghash_data_t *gd, u8x64 a, u8x64 b) +{ + u8x64 hi = gmul4_hi_hi (a, b); + u8x64 lo = gmul4_lo_lo (a, b); + + if (gd->pending) + { + /* there is peding data from previous invocation so we can XOR */ + gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, hi); + gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, lo); + gd->pending = 0; + } + else + { + /* there is no peding data from previous invocation so we postpone XOR */ + gd->tmp_hi4 = hi; + gd->tmp_lo4 = lo; + gd->pending = 1; + } + gd->mid4 = u8x64_xor3 (gd->mid4, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b)); +} + +static_always_inline void +ghash4_reduce (ghash_data_t *gd) +{ + u8x64 r; + + /* Final combination: + gd->lo4 ^= gd->mid4 << 64 + gd->hi4 ^= gd->mid4 >> 64 */ + + u8x64 midl = u8x64_word_shift_left (gd->mid4, 8); + u8x64 midr = u8x64_word_shift_right (gd->mid4, 8); + + if (gd->pending) + { + gd->lo4 = u8x64_xor3 (gd->lo4, gd->tmp_lo4, midl); + gd->hi4 = u8x64_xor3 (gd->hi4, gd->tmp_hi4, midr); + } + else + { + gd->lo4 ^= midl; + gd->hi4 ^= midr; + } + + r = gmul4_hi_lo (ghash4_poly2, gd->lo4); + gd->lo4 ^= u8x64_word_shift_left (r, 8); +} + +static_always_inline void +ghash4_reduce2 (ghash_data_t *gd) +{ + gd->tmp_lo4 = gmul4_lo_lo (ghash4_poly2, gd->lo4); + gd->tmp_hi4 = gmul4_lo_hi (ghash4_poly2, gd->lo4); +} + +static_always_inline u8x16 +ghash4_final (ghash_data_t *gd) +{ + u8x64 r; + u8x32 t; + + r = u8x64_xor3 (gd->hi4, u8x64_word_shift_right (gd->tmp_lo4, 4), + u8x64_word_shift_left (gd->tmp_hi4, 4)); + + /* horizontal XOR of 4 128-bit lanes */ + t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r); + return u8x32_extract_hi (t) ^ u8x32_extract_lo (t); +} +#endif + +#if defined(__VPCLMULQDQ__) + +static const u8x32 ghash2_poly2 = { + 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, + 0x00, 0x00, 0x00, 0x00, 0xc2, 0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2, +}; + +static_always_inline u8x32 +gmul2_lo_lo (u8x32 a, u8x32 b) +{ + return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x00); +} + +static_always_inline u8x32 +gmul2_hi_lo (u8x32 a, u8x32 b) +{ + return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x01); +} + +static_always_inline u8x32 +gmul2_lo_hi (u8x32 a, u8x32 b) +{ + return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x10); +} + +static_always_inline u8x32 +gmul2_hi_hi (u8x32 a, u8x32 b) +{ + return (u8x32) _mm256_clmulepi64_epi128 ((__m256i) a, (__m256i) b, 0x11); +} + +static_always_inline void +ghash2_mul_first (ghash_data_t *gd, u8x32 a, u8x32 b) +{ + gd->hi2 = gmul2_hi_hi (a, b); + gd->lo2 = gmul2_lo_lo (a, b); + gd->mid2 = gmul2_hi_lo (a, b) ^ gmul2_lo_hi (a, b); + gd->pending = 0; +} + +static_always_inline void +ghash2_mul_next (ghash_data_t *gd, u8x32 a, u8x32 b) +{ + u8x32 hi = gmul2_hi_hi (a, b); + u8x32 lo = gmul2_lo_lo (a, b); + + if (gd->pending) + { + /* there is peding data from previous invocation so we can XOR */ + gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, hi); + gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, lo); + gd->pending = 0; + } + else + { + /* there is no peding data from previous invocation so we postpone XOR */ + gd->tmp_hi2 = hi; + gd->tmp_lo2 = lo; + gd->pending = 1; + } + gd->mid2 = u8x32_xor3 (gd->mid2, gmul2_hi_lo (a, b), gmul2_lo_hi (a, b)); +} + +static_always_inline void +ghash2_reduce (ghash_data_t *gd) +{ + u8x32 r; + + /* Final combination: + gd->lo2 ^= gd->mid2 << 64 + gd->hi2 ^= gd->mid2 >> 64 */ + + u8x32 midl = u8x32_word_shift_left (gd->mid2, 8); + u8x32 midr = u8x32_word_shift_right (gd->mid2, 8); + + if (gd->pending) + { + gd->lo2 = u8x32_xor3 (gd->lo2, gd->tmp_lo2, midl); + gd->hi2 = u8x32_xor3 (gd->hi2, gd->tmp_hi2, midr); + } + else + { + gd->lo2 ^= midl; + gd->hi2 ^= midr; + } + + r = gmul2_hi_lo (ghash2_poly2, gd->lo2); + gd->lo2 ^= u8x32_word_shift_left (r, 8); +} + +static_always_inline void +ghash2_reduce2 (ghash_data_t *gd) +{ + gd->tmp_lo2 = gmul2_lo_lo (ghash2_poly2, gd->lo2); + gd->tmp_hi2 = gmul2_lo_hi (ghash2_poly2, gd->lo2); +} + +static_always_inline u8x16 +ghash2_final (ghash_data_t *gd) +{ + u8x32 r; + + r = u8x32_xor3 (gd->hi2, u8x32_word_shift_right (gd->tmp_lo2, 4), + u8x32_word_shift_left (gd->tmp_hi2, 4)); + + /* horizontal XOR of 2 128-bit lanes */ + return u8x32_extract_hi (r) ^ u8x32_extract_lo (r); +} +#endif + +static_always_inline void +ghash_precompute (u8x16 H, u8x16 * Hi, int n) +{ + u8x16 r8; + u32x4 r32; + /* calcullate H<<1 mod poly from the hash key */ + r8 = (u8x16) ((u64x2) H >> 63); + H = (u8x16) ((u64x2) H << 1); + H |= u8x16_word_shift_left (r8, 8); + r32 = (u32x4) u8x16_word_shift_right (r8, 8); +#ifdef __SSE2__ + r32 = u32x4_shuffle (r32, 0, 1, 2, 0); +#else + r32[3] = r32[0]; +#endif + r32 = r32 == (u32x4) {1, 0, 0, 1}; + Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly); + + /* calculate H^(i + 1) */ + for (int i = n - 2; i >= 0; i--) + Hi[i] = ghash_mul (H, Hi[i + 1]); +} + +#endif /* __ghash_h__ */ + |