summaryrefslogtreecommitdiffstats
path: root/build/external/patches
diff options
context:
space:
mode:
Diffstat (limited to 'build/external/patches')
-rw-r--r--build/external/patches/dpdk_22.03/0001-net-iavf-add-basic-neon-rx.patch486
1 files changed, 486 insertions, 0 deletions
diff --git a/build/external/patches/dpdk_22.03/0001-net-iavf-add-basic-neon-rx.patch b/build/external/patches/dpdk_22.03/0001-net-iavf-add-basic-neon-rx.patch
new file mode 100644
index 00000000000..86ad70ef365
--- /dev/null
+++ b/build/external/patches/dpdk_22.03/0001-net-iavf-add-basic-neon-rx.patch
@@ -0,0 +1,486 @@
+From 0581aae1d59fb28ed7ddf8b8dd3700df1b95e051 Mon Sep 17 00:00:00 2001
+From: Kathleen Capella <kathleen.capella@arm.com>
+Date: Fri, 17 Jun 2022 18:21:34 +0000
+Subject: [PATCH] net/iavf: add basic NEON Rx
+
+This patch adds the basic NEON Rx path to the iavf driver. It does not
+include scatter or flex varieties.
+
+Tested on N1SDP platform with Intel XL710 NIC and 40G connection.
+Tested with a single core and testpmd rxonly mode. Saw no significant
+performance difference between scalar and Arm vPMD paths using this test
+in iavf and saw the same results when comparing scalar and Arm vPMD
+path in i40e.
+
+Signed-off-by: Kathleen Capella <kathleen.capella@arm.com>
+Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
+Reviewed-by: Qi Zhang <qi.z.zhang@intel.com>
+---
+ drivers/net/iavf/iavf_rxtx.c | 14 +
+ drivers/net/iavf/iavf_rxtx_vec_neon.c | 415 ++++++++++++++++++++++++++
+ drivers/net/iavf/meson.build | 2 +
+ 3 files changed, 431 insertions(+)
+ create mode 100644 drivers/net/iavf/iavf_rxtx_vec_neon.c
+
+diff --git a/drivers/net/iavf/iavf_rxtx.c b/drivers/net/iavf/iavf_rxtx.c
+index 14d4dbe9670..109ba756f83 100644
+--- a/drivers/net/iavf/iavf_rxtx.c
++++ b/drivers/net/iavf/iavf_rxtx.c
+@@ -3059,7 +3059,23 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
+
+ return;
+ }
++#elif defined RTE_ARCH_ARM
++ int check_ret;
++ int i;
++ struct iavf_rx_queue *rxq;
+
++ check_ret = iavf_rx_vec_dev_check(dev);
++ if (check_ret >= 0 &&
++ rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
++ PMD_DRV_LOG(DEBUG, "Using a Vector Rx callback (port=%d).",
++ dev->data->port_id);
++ for (i = 0; i < dev->data->nb_rx_queues; i++) {
++ rxq = dev->data->rx_queues[i];
++ (void)iavf_rxq_vec_setup(rxq);
++ }
++ dev->rx_pkt_burst = iavf_recv_pkts_vec;
++ return;
++ }
+ #endif
+ if (dev->data->scattered_rx) {
+ PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
+diff --git a/drivers/net/iavf/iavf_rxtx_vec_neon.c b/drivers/net/iavf/iavf_rxtx_vec_neon.c
+new file mode 100644
+index 00000000000..83825aa427a
+--- /dev/null
++++ b/drivers/net/iavf/iavf_rxtx_vec_neon.c
+@@ -0,0 +1,415 @@
++/* SPDX-License-Identifier: BSD-3-Clause
++ * Copyright(c) 2022 Intel Corporation
++ * Copyright(c) 2022 Arm Limited
++ */
++
++#include <stdint.h>
++#include <ethdev_driver.h>
++#include <rte_malloc.h>
++#include <rte_vect.h>
++
++#include "iavf.h"
++#include "iavf_rxtx.h"
++#include "iavf_rxtx_vec_common.h"
++
++static inline void
++iavf_rxq_rearm(struct iavf_rx_queue *rxq)
++{
++ int i;
++ uint16_t rx_id;
++ volatile union iavf_rx_desc *rxdp;
++ struct rte_mbuf **rxep = &rxq->sw_ring[rxq->rxrearm_start];
++ struct rte_mbuf *mb0, *mb1;
++ uint64x2_t dma_addr0, dma_addr1;
++ uint64x2_t zero = vdupq_n_u64(0);
++ uint64_t paddr;
++
++ rxdp = rxq->rx_ring + rxq->rxrearm_start;
++
++ /* Pull 'n' more MBUFs into the software ring */
++ if (unlikely(rte_mempool_get_bulk(rxq->mp,
++ (void *)rxep,
++ IAVF_RXQ_REARM_THRESH) < 0)) {
++ if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
++ rxq->nb_rx_desc) {
++ for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
++ rxep[i] = &rxq->fake_mbuf;
++ vst1q_u64((uint64_t *)&rxdp[i].read, zero);
++ }
++ }
++ rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
++ IAVF_RXQ_REARM_THRESH;
++ return;
++ }
++
++ /* Initialize the mbufs in vector, process 2 mbufs in one loop */
++ for (i = 0; i < IAVF_RXQ_REARM_THRESH; i += 2, rxep += 2) {
++ mb0 = rxep[0];
++ mb1 = rxep[1];
++
++ paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
++ dma_addr0 = vdupq_n_u64(paddr);
++
++ /* flush desc with pa dma_addr */
++ vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
++
++ paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
++ dma_addr1 = vdupq_n_u64(paddr);
++ vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
++ }
++
++ rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
++ if (rxq->rxrearm_start >= rxq->nb_rx_desc)
++ rxq->rxrearm_start = 0;
++
++ rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
++
++ rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
++ (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
++
++ rte_io_wmb();
++ /* Update the tail pointer on the NIC */
++ IAVF_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
++}
++
++static inline void
++desc_to_olflags_v(struct iavf_rx_queue *rxq, volatile union iavf_rx_desc *rxdp,
++ uint64x2_t descs[4], struct rte_mbuf **rx_pkts)
++{
++ RTE_SET_USED(rxdp);
++
++ uint32x4_t vlan0, vlan1, rss, l3_l4e;
++ const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
++ uint64x2_t rearm0, rearm1, rearm2, rearm3;
++
++ /* mask everything except RSS, flow director and VLAN flags
++ * bit2 is for VLAN tag, bit11 for flow director indication
++ * bit13:12 for RSS indication.
++ */
++ const uint32x4_t rss_vlan_msk = {
++ 0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
++
++ const uint32x4_t cksum_mask = {
++ RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
++ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
++ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
++ RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
++ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
++ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
++ RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
++ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
++ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
++ RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
++ RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
++ RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
++
++ /* map rss and vlan type to rss hash and vlan flag */
++ const uint8x16_t vlan_flags = {
++ 0, 0, 0, 0,
++ RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
++ 0, 0, 0, 0,
++ 0, 0, 0, 0};
++
++ const uint8x16_t rss_flags = {
++ 0, RTE_MBUF_F_RX_FDIR, 0, 0,
++ 0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
++ 0, 0, 0, 0,
++ 0, 0, 0, 0};
++
++ const uint8x16_t l3_l4e_flags = {
++ (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
++ RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
++ (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
++ (RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
++ (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
++ (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
++ (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
++ RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
++ (RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
++ RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
++ 0, 0, 0, 0, 0, 0, 0, 0};
++
++ vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
++ vreinterpretq_u32_u64(descs[2])).val[1];
++ vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
++ vreinterpretq_u32_u64(descs[3])).val[1];
++ vlan0 = vzipq_u32(vlan0, vlan1).val[0];
++
++ vlan1 = vandq_u32(vlan0, rss_vlan_msk);
++ vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
++ vreinterpretq_u8_u32(vlan1)));
++
++ const uint32x4_t desc_fltstat = vshrq_n_u32(vlan1, 11);
++ rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
++ vreinterpretq_u8_u32(desc_fltstat)));
++
++ l3_l4e = vshrq_n_u32(vlan1, 22);
++ l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
++ vreinterpretq_u8_u32(l3_l4e)));
++ /* then we shift left 1 bit */
++ l3_l4e = vshlq_n_u32(l3_l4e, 1);
++ /* we need to mask out the redundant bits */
++ l3_l4e = vandq_u32(l3_l4e, cksum_mask);
++
++ vlan0 = vorrq_u32(vlan0, rss);
++ vlan0 = vorrq_u32(vlan0, l3_l4e);
++
++ rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
++ rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
++ rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
++ rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
++
++ vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
++ vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
++ vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
++ vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
++}
++
++#define PKTLEN_SHIFT 10
++#define IAVF_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
++
++static inline void
++desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
++ uint32_t *__rte_restrict ptype_tbl)
++{
++ int i;
++ uint8_t ptype;
++ uint8x16_t tmp;
++
++ for (i = 0; i < 4; i++) {
++ tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
++ ptype = vgetq_lane_u8(tmp, 8);
++ rx_pkts[i]->packet_type = ptype_tbl[ptype];
++ }
++}
++
++/**
++ * vPMD raw receive routine, only accept(nb_pkts >= IAVF_VPMD_DESCS_PER_LOOP)
++ *
++ * Notice:
++ * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
++ * - floor align nb_pkts to a IAVF_VPMD_DESCS_PER_LOOP power-of-two
++ */
++static inline uint16_t
++_recv_raw_pkts_vec(struct iavf_rx_queue *__rte_restrict rxq,
++ struct rte_mbuf **__rte_restrict rx_pkts,
++ uint16_t nb_pkts, uint8_t *split_packet)
++{
++ RTE_SET_USED(split_packet);
++
++ volatile union iavf_rx_desc *rxdp;
++ struct rte_mbuf **sw_ring;
++ uint16_t nb_pkts_recd;
++ int pos;
++ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
++
++ /* mask to shuffle from desc. to mbuf */
++ uint8x16_t shuf_msk = {
++ 0xFF, 0xFF, /* pkt_type set as unknown */
++ 0xFF, 0xFF, /* pkt_type set as unknown */
++ 14, 15, /* octet 15~14, low 16 bits pkt_len */
++ 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
++ 14, 15, /* octet 15~14, 16 bits data_len */
++ 2, 3, /* octet 2~3, low 16 bits vlan_macip */
++ 4, 5, 6, 7 /* octet 4~7, 32bits rss */
++ };
++
++ uint16x8_t crc_adjust = {
++ 0, 0, /* ignore pkt_type field */
++ rxq->crc_len, /* sub crc on pkt_len */
++ 0, /* ignore high-16bits of pkt_len */
++ rxq->crc_len, /* sub crc on data_len */
++ 0, 0, 0 /* ignore non-length fields */
++ };
++ /* nb_pkts has to be floor-aligned to IAVF_VPMD_DESCS_PER_LOOP */
++ nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_VPMD_DESCS_PER_LOOP);
++
++ rxdp = rxq->rx_ring + rxq->rx_tail;
++
++ rte_prefetch_non_temporal(rxdp);
++
++ /* See if we need to rearm the RX queue - gives the prefetch a bit
++ * of time to act
++ */
++ if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
++ iavf_rxq_rearm(rxq);
++
++ /* Before we start moving massive data around, check to see if
++ * there is actually a packet available
++ */
++ if (!(rxdp->wb.qword1.status_error_len &
++ rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
++ return 0;
++
++ /* Cache is empty -> need to scan the buffer rings, but first move
++ * the next 'n' mbufs into the cache
++ */
++ sw_ring = &rxq->sw_ring[rxq->rx_tail];
++ /* A. load 4 packet in one loop
++ * [A*. mask out 4 unused dirty field in desc]
++ * B. copy 4 mbuf point from swring to rx_pkts
++ * C. calc the number of DD bits among the 4 packets
++ * [C*. extract the end-of-packet bit, if requested]
++ * D. fill info. from desc to mbuf
++ */
++
++ for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
++ pos += IAVF_VPMD_DESCS_PER_LOOP,
++ rxdp += IAVF_VPMD_DESCS_PER_LOOP) {
++ uint64x2_t descs[IAVF_VPMD_DESCS_PER_LOOP];
++ uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
++ uint16x8x2_t sterr_tmp1, sterr_tmp2;
++ uint64x2_t mbp1, mbp2;
++ uint16x8_t staterr;
++ uint16x8_t tmp;
++ uint64_t stat;
++
++ int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
++
++ /* A.1 load desc[3-0] */
++ descs[3] = vld1q_u64((uint64_t *)(rxdp + 3));
++ descs[2] = vld1q_u64((uint64_t *)(rxdp + 2));
++ descs[1] = vld1q_u64((uint64_t *)(rxdp + 1));
++ descs[0] = vld1q_u64((uint64_t *)(rxdp));
++
++ /* Use acquire fence to order loads of descriptor qwords */
++ rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
++ /* A.2 reload qword0 to make it ordered after qword1 load */
++ descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0);
++ descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0);
++ descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0);
++ descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0);
++
++ /* B.1 load 4 mbuf point */
++ mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
++ mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
++
++ /* B.2 copy 4 mbuf point into rx_pkts */
++ vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
++ vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
++
++ /* pkts shift the pktlen field to be 16-bit aligned*/
++ uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
++ len_shl);
++ descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
++ (vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
++ vreinterpretq_u16_u64(descs[3]),
++ 7));
++ uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
++ len_shl);
++ descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
++ (vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
++ vreinterpretq_u16_u64(descs[2]),
++ 7));
++ uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
++ len_shl);
++ descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
++ (vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
++ vreinterpretq_u16_u64(descs[1]),
++ 7));
++ uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
++ len_shl);
++ descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
++ (vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
++ vreinterpretq_u16_u64(descs[0]),
++ 7));
++ desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
++
++ /* D.1 pkts convert format from desc to pktmbuf */
++ pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
++ pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
++ pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
++ pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
++
++ /* D.2 pkts set in_port/nb_seg and remove crc */
++ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
++ pkt_mb4 = vreinterpretq_u8_u16(tmp);
++ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
++ pkt_mb3 = vreinterpretq_u8_u16(tmp);
++ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
++ pkt_mb2 = vreinterpretq_u8_u16(tmp);
++ tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
++ pkt_mb1 = vreinterpretq_u8_u16(tmp);
++
++ /* D.3 copy final data to rx_pkts */
++ vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
++ pkt_mb4);
++ vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
++ pkt_mb3);
++ vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
++ pkt_mb2);
++ vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
++ pkt_mb1);
++
++ desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
++
++ if (likely(pos + IAVF_VPMD_DESCS_PER_LOOP < nb_pkts))
++ rte_prefetch_non_temporal(rxdp + IAVF_VPMD_DESCS_PER_LOOP);
++
++ /* C.1 4=>2 filter staterr info only */
++ sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
++ vreinterpretq_u16_u64(descs[3]));
++ sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
++ vreinterpretq_u16_u64(descs[2]));
++
++ /* C.2 get 4 pkts staterr value */
++ staterr = vzipq_u16(sterr_tmp1.val[1],
++ sterr_tmp2.val[1]).val[0];
++
++ staterr = vshlq_n_u16(staterr, IAVF_UINT16_BIT - 1);
++ staterr = vreinterpretq_u16_s16(
++ vshrq_n_s16(vreinterpretq_s16_u16(staterr),
++ IAVF_UINT16_BIT - 1));
++ stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
++
++ /* C.4 calc available number of desc */
++ if (unlikely(stat == 0)) {
++ nb_pkts_recd += IAVF_VPMD_DESCS_PER_LOOP;
++ } else {
++ nb_pkts_recd += __builtin_ctzl(stat) / IAVF_UINT16_BIT;
++ break;
++ }
++ }
++
++ /* Update our internal tail pointer */
++ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
++ rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
++ rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
++ return nb_pkts_recd;
++}
++
++/*
++ * Notice:
++ * - nb_pkts < IAVF_VPMD_DESCS_PER_LOOP, just return no packet
++ * - nb_pkts > IAVF_VPMD_RX_BURST, only scan IAVF_VPMD_RX_BURST
++ * numbers of DD bits
++ */
++uint16_t
++iavf_recv_pkts_vec(void *__rte_restrict rx_queue,
++ struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
++{
++ return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
++}
++
++static void __rte_cold
++iavf_rx_queue_release_mbufs_neon(struct iavf_rx_queue *rxq)
++{
++ _iavf_rx_queue_release_mbufs_vec(rxq);
++}
++
++static const struct iavf_rxq_ops neon_vec_rxq_ops = {
++ .release_mbufs = iavf_rx_queue_release_mbufs_neon,
++};
++
++int __rte_cold
++iavf_rxq_vec_setup(struct iavf_rx_queue *rxq)
++{
++ rxq->ops = &neon_vec_rxq_ops;
++ return iavf_rxq_vec_setup_default(rxq);
++}
++
++int __rte_cold
++iavf_rx_vec_dev_check(struct rte_eth_dev *dev)
++{
++ return iavf_rx_vec_dev_check_default(dev);
++}
+diff --git a/drivers/net/iavf/meson.build b/drivers/net/iavf/meson.build
+index 5eb230f6870..2da37de6629 100644
+--- a/drivers/net/iavf/meson.build
++++ b/drivers/net/iavf/meson.build
+@@ -65,6 +65,8 @@ if arch_subdir == 'x86'
+ c_args: avx512_args)
+ objs += iavf_avx512_lib.extract_objects('iavf_rxtx_vec_avx512.c')
+ endif
++elif arch_subdir == 'arm'
++ sources += files('iavf_rxtx_vec_neon.c')
+ endif
+
+ headers = files('rte_pmd_iavf.h')