aboutsummaryrefslogtreecommitdiffstats
path: root/docs/gettingstarted/developers/vnet.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/gettingstarted/developers/vnet.md')
-rw-r--r--docs/gettingstarted/developers/vnet.md795
1 files changed, 0 insertions, 795 deletions
diff --git a/docs/gettingstarted/developers/vnet.md b/docs/gettingstarted/developers/vnet.md
deleted file mode 100644
index 09f81e46643..00000000000
--- a/docs/gettingstarted/developers/vnet.md
+++ /dev/null
@@ -1,795 +0,0 @@
-
-VNET (VPP Network Stack)
-========================
-
-The files associated with the VPP network stack layer are located in the
-*./src/vnet* folder. The Network Stack Layer is basically an
-instantiation of the code in the other layers. This layer has a vnet
-library that provides vectorized layer-2 and 3 networking graph nodes, a
-packet generator, and a packet tracer.
-
-In terms of building a packet processing application, vnet provides a
-platform-independent subgraph to which one connects a couple of
-device-driver nodes.
-
-Typical RX connections include "ethernet-input" \[full software
-classification, feeds ipv4-input, ipv6-input, arp-input etc.\] and
-"ipv4-input-no-checksum" \[if hardware can classify, perform ipv4 header
-checksum\].
-
-Effective graph dispatch function coding
-----------------------------------------
-
-Over the 15 years, multiple coding styles have emerged: a
-single/dual/quad loop coding model (with variations) and a
-fully-pipelined coding model.
-
-Single/dual loops
------------------
-
-The single/dual/quad loop model variations conveniently solve problems
-where the number of items to process is not known in advance: typical
-hardware RX-ring processing. This coding style is also very effective
-when a given node will not need to cover a complex set of dependent
-reads.
-
-Here is an quad/single loop which can leverage up-to-avx512 SIMD vector
-units to convert buffer indices to buffer pointers:
-
-```c
- static uword
- simulated_ethernet_interface_tx (vlib_main_t * vm,
- vlib_node_runtime_t *
- node, vlib_frame_t * frame)
- {
- u32 n_left_from, *from;
- u32 next_index = 0;
- u32 n_bytes;
- u32 thread_index = vm->thread_index;
- vnet_main_t *vnm = vnet_get_main ();
- vnet_interface_main_t *im = &vnm->interface_main;
- vlib_buffer_t *bufs[VLIB_FRAME_SIZE], **b;
- u16 nexts[VLIB_FRAME_SIZE], *next;
-
- n_left_from = frame->n_vectors;
- from = vlib_frame_vector_args (frame);
-
- /*
- * Convert up to VLIB_FRAME_SIZE indices in "from" to
- * buffer pointers in bufs[]
- */
- vlib_get_buffers (vm, from, bufs, n_left_from);
- b = bufs;
- next = nexts;
-
- /*
- * While we have at least 4 vector elements (pkts) to process..
- */
- while (n_left_from >= 4)
- {
- /* Prefetch next quad-loop iteration. */
- if (PREDICT_TRUE (n_left_from >= 8))
- {
- vlib_prefetch_buffer_header (b[4], STORE);
- vlib_prefetch_buffer_header (b[5], STORE);
- vlib_prefetch_buffer_header (b[6], STORE);
- vlib_prefetch_buffer_header (b[7], STORE);
- }
-
- /*
- * $$$ Process 4x packets right here...
- * set next[0..3] to send the packets where they need to go
- */
-
- do_something_to (b[0]);
- do_something_to (b[1]);
- do_something_to (b[2]);
- do_something_to (b[3]);
-
- /* Process the next 0..4 packets */
- b += 4;
- next += 4;
- n_left_from -= 4;
- }
- /*
- * Clean up 0...3 remaining packets at the end of the incoming frame
- */
- while (n_left_from > 0)
- {
- /*
- * $$$ Process one packet right here...
- * set next[0..3] to send the packets where they need to go
- */
- do_something_to (b[0]);
-
- /* Process the next packet */
- b += 1;
- next += 1;
- n_left_from -= 1;
- }
-
- /*
- * Send the packets along their respective next-node graph arcs
- * Considerable locality of reference is expected, most if not all
- * packets in the inbound vector will traverse the same next-node
- * arc
- */
- vlib_buffer_enqueue_to_next (vm, node, from, nexts, frame->n_vectors);
-
- return frame->n_vectors;
- }
-```
-
-Given a packet processing task to implement, it pays to scout around
-looking for similar tasks, and think about using the same coding
-pattern. It is not uncommon to recode a given graph node dispatch function
-several times during performance optimization.
-
-Creating Packets from Scratch
------------------------------
-
-At times, it's necessary to create packets from scratch and send
-them. Tasks like sending keepalives or actively opening connections
-come to mind. Its not difficult, but accurate buffer metadata setup is
-required.
-
-### Allocating Buffers
-
-Use vlib_buffer_alloc, which allocates a set of buffer indices. For
-low-performance applications, it's OK to allocate one buffer at a
-time. Note that vlib_buffer_alloc(...) does NOT initialize buffer
-metadata. See below.
-
-In high-performance cases, allocate a vector of buffer indices,
-and hand them out from the end of the vector; decrement _vec_len(..)
-as buffer indices are allocated. See tcp_alloc_tx_buffers(...) and
-tcp_get_free_buffer_index(...) for an example.
-
-### Buffer Initialization Example
-
-The following example shows the **main points**, but is not to be
-blindly cut-'n-pasted.
-
-```c
- u32 bi0;
- vlib_buffer_t *b0;
- ip4_header_t *ip;
- udp_header_t *udp;
-
- /* Allocate a buffer */
- if (vlib_buffer_alloc (vm, &bi0, 1) != 1)
- return -1;
-
- b0 = vlib_get_buffer (vm, bi0);
-
- /* At this point b0->current_data = 0, b0->current_length = 0 */
-
- /*
- * Copy data into the buffer. This example ASSUMES that data will fit
- * in a single buffer, and is e.g. an ip4 packet.
- */
- if (have_packet_rewrite)
- {
- clib_memcpy (b0->data, data, vec_len (data));
- b0->current_length = vec_len (data);
- }
- else
- {
- /* OR, build a udp-ip packet (for example) */
- ip = vlib_buffer_get_current (b0);
- udp = (udp_header_t *) (ip + 1);
- data_dst = (u8 *) (udp + 1);
-
- ip->ip_version_and_header_length = 0x45;
- ip->ttl = 254;
- ip->protocol = IP_PROTOCOL_UDP;
- ip->length = clib_host_to_net_u16 (sizeof (*ip) + sizeof (*udp) +
- vec_len(udp_data));
- ip->src_address.as_u32 = src_address->as_u32;
- ip->dst_address.as_u32 = dst_address->as_u32;
- udp->src_port = clib_host_to_net_u16 (src_port);
- udp->dst_port = clib_host_to_net_u16 (dst_port);
- udp->length = clib_host_to_net_u16 (vec_len (udp_data));
- clib_memcpy (data_dst, udp_data, vec_len(udp_data));
-
- if (compute_udp_checksum)
- {
- /* RFC 7011 section 10.3.2. */
- udp->checksum = ip4_tcp_udp_compute_checksum (vm, b0, ip);
- if (udp->checksum == 0)
- udp->checksum = 0xffff;
- }
- b0->current_length = vec_len (sizeof (*ip) + sizeof (*udp) +
- vec_len (udp_data));
-
- }
- b0->flags |= VLIB_BUFFER_TOTAL_LENGTH_VALID;
-
- /* sw_if_index 0 is the "local" interface, which always exists */
- vnet_buffer (b0)->sw_if_index[VLIB_RX] = 0;
-
- /* Use the default FIB index for tx lookup. Set non-zero to use another fib */
- vnet_buffer (b0)->sw_if_index[VLIB_TX] = 0;
-
-```
-
-If your use-case calls for large packet transmission, use
-vlib_buffer_chain_append_data_with_alloc(...) to create the requisite
-buffer chain.
-
-### Enqueueing packets for lookup and transmission
-
-The simplest way to send a set of packets is to use
-vlib_get_frame_to_node(...) to allocate fresh frame(s) to
-ip4_lookup_node or ip6_lookup_node, add the constructed buffer
-indices, and dispatch the frame using vlib_put_frame_to_node(...).
-
-```c
- vlib_frame_t *f;
- f = vlib_get_frame_to_node (vm, ip4_lookup_node.index);
- f->n_vectors = vec_len(buffer_indices_to_send);
- to_next = vlib_frame_vector_args (f);
-
- for (i = 0; i < vec_len (buffer_indices_to_send); i++)
- to_next[i] = buffer_indices_to_send[i];
-
- vlib_put_frame_to_node (vm, ip4_lookup_node_index, f);
-```
-
-It is inefficient to allocate and schedule single packet frames.
-That's typical in case you need to send one packet per second, but
-should **not** occur in a for-loop!
-
-Packet tracer
--------------
-
-Vlib includes a frame element \[packet\] trace facility, with a simple
-debug CLI interface. The cli is straightforward: "trace add
-input-node-name count" to start capturing packet traces.
-
-To trace 100 packets on a typical x86\_64 system running the dpdk
-plugin: "trace add dpdk-input 100". When using the packet generator:
-"trace add pg-input 100"
-
-To display the packet trace: "show trace"
-
-Each graph node has the opportunity to capture its own trace data. It is
-almost always a good idea to do so. The trace capture APIs are simple.
-
-The packet capture APIs snapshoot binary data, to minimize processing at
-capture time. Each participating graph node initialization provides a
-vppinfra format-style user function to pretty-print data when required
-by the VLIB "show trace" command.
-
-Set the VLIB node registration ".format\_trace" member to the name of
-the per-graph node format function.
-
-Here's a simple example:
-
-```c
- u8 * my_node_format_trace (u8 * s, va_list * args)
- {
- vlib_main_t * vm = va_arg (*args, vlib_main_t *);
- vlib_node_t * node = va_arg (*args, vlib_node_t *);
- my_node_trace_t * t = va_arg (*args, my_trace_t *);
-
- s = format (s, "My trace data was: %d", t-><whatever>);
-
- return s;
- }
-```
-
-The trace framework hands the per-node format function the data it
-captured as the packet whizzed by. The format function pretty-prints the
-data as desired.
-
-Graph Dispatcher Pcap Tracing
------------------------------
-
-The vpp graph dispatcher knows how to capture vectors of packets in pcap
-format as they're dispatched. The pcap captures are as follows:
-
-```
- VPP graph dispatch trace record description:
-
- 0 1 2 3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Major Version | Minor Version | NStrings | ProtoHint |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Buffer index (big endian) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- + VPP graph node name ... ... | NULL octet |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Buffer Metadata ... ... | NULL octet |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Buffer Opaque ... ... | NULL octet |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Buffer Opaque 2 ... ... | NULL octet |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | VPP ASCII packet trace (if NStrings > 4) | NULL octet |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
- | Packet data (up to 16K) |
- +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-```
-
-Graph dispatch records comprise a version stamp, an indication of how
-many NULL-terminated strings will follow the record header and preceed
-packet data, and a protocol hint.
-
-The buffer index is an opaque 32-bit cookie which allows consumers of
-these data to easily filter/track single packets as they traverse the
-forwarding graph.
-
-Multiple records per packet are normal, and to be expected. Packets
-will appear multiple times as they traverse the vpp forwarding
-graph. In this way, vpp graph dispatch traces are significantly
-different from regular network packet captures from an end-station.
-This property complicates stateful packet analysis.
-
-Restricting stateful analysis to records from a single vpp graph node
-such as "ethernet-input" seems likely to improve the situation.
-
-As of this writing: major version = 1, minor version = 0. Nstrings
-SHOULD be 4 or 5. Consumers SHOULD be wary values less than 4 or
-greater than 5. They MAY attempt to display the claimed number of
-strings, or they MAY treat the condition as an error.
-
-Here is the current set of protocol hints:
-
-```c
- typedef enum
- {
- VLIB_NODE_PROTO_HINT_NONE = 0,
- VLIB_NODE_PROTO_HINT_ETHERNET,
- VLIB_NODE_PROTO_HINT_IP4,
- VLIB_NODE_PROTO_HINT_IP6,
- VLIB_NODE_PROTO_HINT_TCP,
- VLIB_NODE_PROTO_HINT_UDP,
- VLIB_NODE_N_PROTO_HINTS,
- } vlib_node_proto_hint_t;
-```
-
-Example: VLIB_NODE_PROTO_HINT_IP6 means that the first octet of packet
-data SHOULD be 0x60, and should begin an ipv6 packet header.
-
-Downstream consumers of these data SHOULD pay attention to the
-protocol hint. They MUST tolerate inaccurate hints, which MAY occur
-from time to time.
-
-### Dispatch Pcap Trace Debug CLI
-
-To start a dispatch trace capture of up to 10,000 trace records:
-
-```
- pcap dispatch trace on max 10000 file dispatch.pcap
-```
-
-To start a dispatch trace which will also include standard vpp packet
-tracing for packets which originate in dpdk-input:
-
-```
- pcap dispatch trace on max 10000 file dispatch.pcap buffer-trace dpdk-input 1000
-```
-To save the pcap trace, e.g. in /tmp/dispatch.pcap:
-
-```
- pcap dispatch trace off
-```
-
-### Wireshark dissection of dispatch pcap traces
-
-It almost goes without saying that we built a companion wireshark
-dissector to display these traces. As of this writing, we have
-upstreamed the wireshark dissector.
-
-Since it will be a while before wireshark/master/latest makes it into
-all of the popular Linux distros, please see the "How to build a vpp
-dispatch trace aware Wireshark" page for build info.
-
-Here is a sample packet dissection, with some fields omitted for
-clarity. The point is that the wireshark dissector accurately
-displays **all** of the vpp buffer metadata, and the name of the graph
-node in question.
-
-```
- Frame 1: 2216 bytes on wire (17728 bits), 2216 bytes captured (17728 bits)
- Encapsulation type: USER 13 (58)
- [Protocols in frame: vpp:vpp-metadata:vpp-opaque:vpp-opaque2:eth:ethertype:ip:tcp:data]
- VPP Dispatch Trace
- BufferIndex: 0x00036663
- NodeName: ethernet-input
- VPP Buffer Metadata
- Metadata: flags:
- Metadata: current_data: 0, current_length: 102
- Metadata: current_config_index: 0, flow_id: 0, next_buffer: 0
- Metadata: error: 0, n_add_refs: 0, buffer_pool_index: 0
- Metadata: trace_index: 0, recycle_count: 0, len_not_first_buf: 0
- Metadata: free_list_index: 0
- Metadata:
- VPP Buffer Opaque
- Opaque: raw: 00000007 ffffffff 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
- Opaque: sw_if_index[VLIB_RX]: 7, sw_if_index[VLIB_TX]: -1
- Opaque: L2 offset 0, L3 offset 0, L4 offset 0, feature arc index 0
- Opaque: ip.adj_index[VLIB_RX]: 0, ip.adj_index[VLIB_TX]: 0
- Opaque: ip.flow_hash: 0x0, ip.save_protocol: 0x0, ip.fib_index: 0
- Opaque: ip.save_rewrite_length: 0, ip.rpf_id: 0
- Opaque: ip.icmp.type: 0 ip.icmp.code: 0, ip.icmp.data: 0x0
- Opaque: ip.reass.next_index: 0, ip.reass.estimated_mtu: 0
- Opaque: ip.reass.fragment_first: 0 ip.reass.fragment_last: 0
- Opaque: ip.reass.range_first: 0 ip.reass.range_last: 0
- Opaque: ip.reass.next_range_bi: 0x0, ip.reass.ip6_frag_hdr_offset: 0
- Opaque: mpls.ttl: 0, mpls.exp: 0, mpls.first: 0, mpls.save_rewrite_length: 0, mpls.bier.n_bytes: 0
- Opaque: l2.feature_bitmap: 00000000, l2.bd_index: 0, l2.l2_len: 0, l2.shg: 0, l2.l2fib_sn: 0, l2.bd_age: 0
- Opaque: l2.feature_bitmap_input: none configured, L2.feature_bitmap_output: none configured
- Opaque: l2t.next_index: 0, l2t.session_index: 0
- Opaque: l2_classify.table_index: 0, l2_classify.opaque_index: 0, l2_classify.hash: 0x0
- Opaque: policer.index: 0
- Opaque: ipsec.flags: 0x0, ipsec.sad_index: 0
- Opaque: map.mtu: 0
- Opaque: map_t.v6.saddr: 0x0, map_t.v6.daddr: 0x0, map_t.v6.frag_offset: 0, map_t.v6.l4_offset: 0
- Opaque: map_t.v6.l4_protocol: 0, map_t.checksum_offset: 0, map_t.mtu: 0
- Opaque: ip_frag.mtu: 0, ip_frag.next_index: 0, ip_frag.flags: 0x0
- Opaque: cop.current_config_index: 0
- Opaque: lisp.overlay_afi: 0
- Opaque: tcp.connection_index: 0, tcp.seq_number: 0, tcp.seq_end: 0, tcp.ack_number: 0, tcp.hdr_offset: 0, tcp.data_offset: 0
- Opaque: tcp.data_len: 0, tcp.flags: 0x0
- Opaque: sctp.connection_index: 0, sctp.sid: 0, sctp.ssn: 0, sctp.tsn: 0, sctp.hdr_offset: 0
- Opaque: sctp.data_offset: 0, sctp.data_len: 0, sctp.subconn_idx: 0, sctp.flags: 0x0
- Opaque: snat.flags: 0x0
- Opaque:
- VPP Buffer Opaque2
- Opaque2: raw: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
- Opaque2: qos.bits: 0, qos.source: 0
- Opaque2: loop_counter: 0
- Opaque2: gbp.flags: 0, gbp.src_epg: 0
- Opaque2: pg_replay_timestamp: 0
- Opaque2:
- Ethernet II, Src: 06:d6:01:41:3b:92 (06:d6:01:41:3b:92), Dst: IntelCor_3d:f6 Transmission Control Protocol, Src Port: 22432, Dst Port: 54084, Seq: 1, Ack: 1, Len: 36
- Source Port: 22432
- Destination Port: 54084
- TCP payload (36 bytes)
- Data (36 bytes)
-
- 0000 cf aa 8b f5 53 14 d4 c7 29 75 3e 56 63 93 9d 11 ....S...)u>Vc...
- 0010 e5 f2 92 27 86 56 4c 21 ce c5 23 46 d7 eb ec 0d ...'.VL!..#F....
- 0020 a8 98 36 5a ..6Z
- Data: cfaa8bf55314d4c729753e5663939d11e5f2922786564c21…
- [Length: 36]
-```
-
-It's a matter of a couple of mouse-clicks in Wireshark to filter the
-trace to a specific buffer index. With that specific kind of filtration,
-one can watch a packet walk through the forwarding graph; noting any/all
-metadata changes, header checksum changes, and so forth.
-
-This should be of significant value when developing new vpp graph
-nodes. If new code mispositions b->current_data, it will be completely
-obvious from looking at the dispatch trace in wireshark.
-
-## pcap rx, tx, and drop tracing
-
-vpp also supports rx, tx, and drop packet capture in pcap format,
-through the "pcap trace" debug CLI command.
-
-This command is used to start or stop a packet capture, or show the
-status of packet capture. Each of "pcap trace rx", "pcap trace tx",
-and "pcap trace drop" is implemented. Supply one or more of "rx",
-"tx", and "drop" to enable multiple simultaneous capture types.
-
-These commands have the following optional parameters:
-
-- <b>rx</b> - trace received packets.
-
-- <b>tx</b> - trace transmitted packets.
-
-- <b>drop</b> - trace dropped packets.
-
-- <b>max _nnnn_</b> - file size, number of packet captures. Once
- <nnnn> packets have been received, the trace buffer buffer is flushed
- to the indicated file. Defaults to 1000. Can only be updated if packet
- capture is off.
-
-- <b>max-bytes-per-pkt _nnnn_</b> - maximum number of bytes to trace
- on a per-packet basis. Must be >32 and less than 9000. Default value:
- 512.
-
-- <b>filter</b> - Use the pcap rx / tx / drop trace filter, which must
- be configured. Use <b>classify filter pcap...</b> to configure the
- filter. The filter will only be executed if the per-interface or
- any-interface tests fail.
-
-- <b>intfc _interface_ | _any_</b> - Used to specify a given interface,
- or use '<em>any</em>' to run packet capture on all interfaces.
- '<em>any</em>' is the default if not provided. Settings from a previous
- packet capture are preserved, so '<em>any</em>' can be used to reset
- the interface setting.
-
-- <b>file _filename_</b> - Used to specify the output filename. The
- file will be placed in the '<em>/tmp</em>' directory. If _filename_
- already exists, file will be overwritten. If no filename is
- provided, '<em>/tmp/rx.pcap or tx.pcap</em>' will be used, depending
- on capture direction. Can only be updated when pcap capture is off.
-
-- <b>status</b> - Displays the current status and configured
- attributes associated with a packet capture. If packet capture is in
- progress, '<em>status</em>' also will return the number of packets
- currently in the buffer. Any additional attributes entered on
- command line with a '<em>status</em>' request will be ignored.
-
-- <b>filter</b> - Capture packets which match the current packet
- trace filter set. See next section. Configure the capture filter
- first.
-
-## packet trace capture filtering
-
-The "classify filter pcap | <interface-name> | trace" debug CLI command
-constructs an arbitrary set of packet classifier tables for use with
-"pcap rx | tx | drop trace," and with the vpp packet tracer on a
-per-interface or system-wide basis.
-
-Packets which match a rule in the classifier table chain will be
-traced. The tables are automatically ordered so that matches in the
-most specific table are tried first.
-
-It's reasonably likely that folks will configure a single table with
-one or two matches. As a result, we configure 8 hash buckets and 128K
-of match rule space by default. One can override the defaults by
-specifying "buckets <nnn>" and "memory-size <xxx>" as desired.
-
-To build up complex filter chains, repeatedly issue the classify
-filter debug CLI command. Each command must specify the desired mask
-and match values. If a classifier table with a suitable mask already
-exists, the CLI command adds a match rule to the existing table. If
-not, the CLI command add a new table and the indicated mask rule
-
-### Configure a simple pcap classify filter
-
-```
- classify filter pcap mask l3 ip4 src match l3 ip4 src 192.168.1.11
- pcap trace rx max 100 filter
-```
-
-### Configure a simple per-interface capture filter
-
-```
- classify filter GigabitEthernet3/0/0 mask l3 ip4 src match l3 ip4 src 192.168.1.11"
- pcap trace rx max 100 intfc GigabitEthernet3/0/0
-```
-
-Note that per-interface capture filters are _always_ applied.
-
-### Clear per-interface capture filters
-
-```
- classify filter GigabitEthernet3/0/0 del
-```
-
-### Configure another fairly simple pcap classify filter
-
-```
- classify filter pcap mask l3 ip4 src dst match l3 ip4 src 192.168.1.10 dst 192.168.2.10
- pcap trace tx max 100 filter
-```
-
-### Configure a vpp packet tracer filter
-
-```
- classify filter trace mask l3 ip4 src dst match l3 ip4 src 192.168.1.10 dst 192.168.2.10
- trace add dpdk-input 100 filter
-```
-
-### Clear all current classifier filters
-
-```
- classify filter [pcap | <interface> | trace] del
-```
-
-### To inspect the classifier tables
-
-```
- show classify table [verbose]
-```
-
-The verbose form displays all of the match rules, with hit-counters.
-
-### Terse description of the "mask <xxx>" syntax:
-
-```
- l2 src dst proto tag1 tag2 ignore-tag1 ignore-tag2 cos1 cos2 dot1q dot1ad
- l3 ip4 <ip4-mask> ip6 <ip6-mask>
- <ip4-mask> version hdr_length src[/width] dst[/width]
- tos length fragment_id ttl protocol checksum
- <ip6-mask> version traffic-class flow-label src dst proto
- payload_length hop_limit protocol
- l4 tcp <tcp-mask> udp <udp_mask> src_port dst_port
- <tcp-mask> src dst # ports
- <udp-mask> src_port dst_port
-```
-
-To construct **matches**, add the values to match after the indicated
-keywords in the mask syntax. For example: "... mask l3 ip4 src" ->
-"... match l3 ip4 src 192.168.1.11"
-
-## VPP Packet Generator
-
-We use the VPP packet generator to inject packets into the forwarding
-graph. The packet generator can replay pcap traces, and generate packets
-out of whole cloth at respectably high performance.
-
-The VPP pg enables quite a variety of use-cases, ranging from functional
-testing of new data-plane nodes to regression testing to performance
-tuning.
-
-## PG setup scripts
-
-PG setup scripts describe traffic in detail, and leverage vpp debug
-CLI mechanisms. It's reasonably unusual to construct a pg setup script
-which doesn't include a certain amount of interface and FIB configuration.
-
-For example:
-
-```
- loop create
- set int ip address loop0 192.168.1.1/24
- set int state loop0 up
-
- packet-generator new {
- name pg0
- limit 100
- rate 1e6
- size 300-300
- interface loop0
- node ethernet-input
- data { IP4: 1.2.3 -> 4.5.6
- UDP: 192.168.1.10 - 192.168.1.254 -> 192.168.2.10
- UDP: 1234 -> 2345
- incrementing 286
- }
- }
-```
-
-A packet generator stream definition includes two major sections:
-- Stream Parameter Setup
-- Packet Data
-
-### Stream Parameter Setup
-
-Given the example above, let's look at how to set up stream
-parameters:
-
-- **name pg0** - Name of the stream, in this case "pg0"
-
-- **limit 1000** - Number of packets to send when the stream is
-enabled. "limit 0" means send packets continuously.
-
-- **maxframe \<nnn\>** - Maximum frame size. Handy for injecting
-multiple frames no larger than \<nnn\>. Useful for checking dual /
-quad loop codes
-
-- **rate 1e6** - Packet injection rate, in this case 1 MPPS. When not
-specified, the packet generator injects packets as fast as possible
-
-- **size 300-300** - Packet size range, in this case send 300-byte packets
-
-- **interface loop0** - Packets appear as if they were received on the
-specified interface. This datum is used in multiple ways: to select
-graph arc feature configuration, to select IP FIBs. Configure
-features e.g. on loop0 to exercise those features.
-
-- **tx-interface \<name\>** - Packets will be transmitted on the
-indicated interface. Typically required only when injecting packets
-into post-IP-rewrite graph nodes.
-
-- **pcap \<filename\>** - Replay packets from the indicated pcap
-capture file. "make test" makes extensive use of this feature:
-generate packets using scapy, save them in a .pcap file, then inject
-them into the vpp graph via a vpp pg "pcap \<filename\>" stream
-definition
-
-- **worker \<nn\>** - Generate packets for the stream using the
-indicated vpp worker thread. The vpp pg generates and injects O(10
-MPPS / core). Use multiple stream definitions and worker threads to
-generate and inject enough traffic to easily fill a 40 gbit pipe with
-small packets.
-
-### Data definition
-
-Packet generator data definitions make use of a layered implementation
-strategy. Networking layers are specified in order, and the notation can
-seem a bit counter-intuitive. In the example above, the data
-definition stanza constructs a set of L2-L4 headers layers, and
-uses an incrementing fill pattern to round out the requested 300-byte
-packets.
-
-- **IP4: 1.2.3 -> 4.5.6** - Construct an L2 (MAC) header with the ip4
-ethertype (0x800), src MAC address of 00:01:00:02:00:03 and dst MAC
-address of 00:04:00:05:00:06. Mac addresses may be specified in either
-_xxxx.xxxx.xxxx_ format or _xx:xx:xx:xx:xx:xx_ format.
-
-- **UDP: 192.168.1.10 - 192.168.1.254 -> 192.168.2.10** - Construct an
-incrementing set of L3 (IPv4) headers for successive packets with
-source addresses ranging from .10 to .254. All packets in the stream
-have a constant dest address of 192.168.2.10. Set the protocol field
-to 17, UDP.
-
-- **UDP: 1234 -> 2345** - Set the UDP source and destination ports to
-1234 and 2345, respectively
-
-- **incrementing 256** - Insert up to 256 incrementing data bytes.
-
-Obvious variations involve "s/IP4/IP6/" in the above, along with
-changing from IPv4 to IPv6 address notation.
-
-The vpp pg can set any / all IPv4 header fields, including tos, packet
-length, mf / df / fragment id and offset, ttl, protocol, checksum, and
-src/dst addresses. Take a look at ../src/vnet/ip/ip[46]_pg.c for
-details.
-
-If all else fails, specify the entire packet data in hex:
-
-- **hex 0xabcd...** - copy hex data verbatim into the packet
-
-When replaying pcap files ("**pcap \<filename\>**"), do not specify a
-data stanza.
-
-### Diagnosing "packet-generator new" parse failures
-
-If you want to inject packets into a brand-new graph node, remember
-to tell the packet generator debug CLI how to parse the packet
-data stanza.
-
-If the node expects L2 Ethernet MAC headers, specify ".unformat_buffer
-= unformat_ethernet_header":
-
-```
- /* *INDENT-OFF* */
- VLIB_REGISTER_NODE (ethernet_input_node) =
- {
- <snip>
- .unformat_buffer = unformat_ethernet_header,
- <snip>
- };
-```
-
-Beyond that, it may be necessary to set breakpoints in
-.../src/vnet/pg/cli.c. Debug image suggested.
-
-When debugging new nodes, it may be far simpler to directly inject
-ethernet frames - and add a corresponding vlib_buffer_advance in the
-new node - than to modify the packet generator.
-
-## Debug CLI
-
-The descriptions above describe the "packet-generator new" debug CLI in
-detail.
-
-Additional debug CLI commands include:
-
-```
- vpp# packet-generator enable [<stream-name>]
-```
-
-which enables the named stream, or all streams.
-
-```
- vpp# packet-generator disable [<stream-name>]
-```
-
-disables the named stream, or all streams.
-
-
-```
- vpp# packet-generator delete <stream-name>
-```
-
-Deletes the named stream.
-
-```
- vpp# packet-generator configure <stream-name> [limit <nnn>]
- [rate <f64-pps>] [size <nn>-<nn>]
-```
-
-Changes stream parameters without having to recreate the entire stream
-definition. Note that re-issuing a "packet-generator new" command will
-correctly recreate the named stream.