summaryrefslogtreecommitdiffstats
path: root/src/plugins/dpdk/hqos
diff options
context:
space:
mode:
Diffstat (limited to 'src/plugins/dpdk/hqos')
-rw-r--r--src/plugins/dpdk/hqos/hqos.c771
-rw-r--r--src/plugins/dpdk/hqos/qos_doc.md411
2 files changed, 0 insertions, 1182 deletions
diff --git a/src/plugins/dpdk/hqos/hqos.c b/src/plugins/dpdk/hqos/hqos.c
deleted file mode 100644
index 1a8dd6d98fe..00000000000
--- a/src/plugins/dpdk/hqos/hqos.c
+++ /dev/null
@@ -1,771 +0,0 @@
-/*
- * Copyright(c) 2016 Intel Corporation. All rights reserved.
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at:
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-#include <stdio.h>
-#include <stdlib.h>
-#include <unistd.h>
-#include <sys/stat.h>
-#include <sys/mount.h>
-#include <string.h>
-#include <fcntl.h>
-
-#include <vppinfra/vec.h>
-#include <vppinfra/error.h>
-#include <vppinfra/format.h>
-#include <vppinfra/bitmap.h>
-
-#include <vnet/vnet.h>
-#include <vnet/ethernet/ethernet.h>
-#include <dpdk/device/dpdk.h>
-
-#include <vlib/pci/pci.h>
-#include <vlibmemory/api.h>
-#include <vlibmemory/vl_memory_msg_enum.h> /* enumerate all vlib messages */
-
-#define vl_typedefs /* define message structures */
-#include <vlibmemory/vl_memory_api_h.h>
-#undef vl_typedefs
-
-/* instantiate all the print functions we know about */
-#define vl_print(handle, ...) vlib_cli_output (handle, __VA_ARGS__)
-#define vl_printfun
-#include <vlibmemory/vl_memory_api_h.h>
-#undef vl_printfun
-
-#include <dpdk/device/dpdk_priv.h>
-
-/***
- *
- * HQoS default configuration values
- *
- ***/
-
-static dpdk_device_config_hqos_t hqos_params_default = {
- .hqos_thread_valid = 0,
-
- .swq_size = 4096,
- .burst_enq = 256,
- .burst_deq = 220,
-
- /*
- * Packet field to identify the subport.
- *
- * Default value: Since only one subport is defined by default (see below:
- * n_subports_per_port = 1), the subport ID is hardcoded to 0.
- */
- .pktfield0_slabpos = 0,
- .pktfield0_slabmask = 0,
-
- /*
- * Packet field to identify the pipe.
- *
- * Default value: Assuming Ethernet/IPv4/UDP packets, UDP payload bits 12 .. 23
- */
- .pktfield1_slabpos = 40,
- .pktfield1_slabmask = 0x0000000FFF000000LLU,
-
- /* Packet field used as index into TC translation table to identify the traffic
- * class and queue.
- *
- * Default value: Assuming Ethernet/IPv4 packets, IPv4 DSCP field
- */
- .pktfield2_slabpos = 8,
- .pktfield2_slabmask = 0x00000000000000FCLLU,
- .tc_table = {
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- },
-
- /* port */
- .port = {
- .name = NULL, /* Set at init */
- .socket = 0, /* Set at init */
- .rate = 1250000000, /* Assuming 10GbE port */
- .mtu = 14 + 1500, /* Assuming Ethernet/IPv4 pkt (Ethernet FCS not included) */
- .frame_overhead = RTE_SCHED_FRAME_OVERHEAD_DEFAULT,
- .n_subports_per_port = 1,
- .n_pipes_per_subport = 4096,
- .qsize = {64, 64, 64, 64},
- .pipe_profiles = NULL, /* Set at config */
- .n_pipe_profiles = 1,
-
-#ifdef RTE_SCHED_RED
- .red_params = {
- /* Traffic Class 0 Colors Green / Yellow / Red */
- [0][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [0][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [0][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
-
- /* Traffic Class 1 - Colors Green / Yellow / Red */
- [1][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [1][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [1][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
-
- /* Traffic Class 2 - Colors Green / Yellow / Red */
- [2][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [2][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [2][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
-
- /* Traffic Class 3 - Colors Green / Yellow / Red */
- [3][0] = {.min_th = 48,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [3][1] = {.min_th = 40,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9},
- [3][2] = {.min_th = 32,.max_th = 64,.maxp_inv =
- 10,.wq_log2 = 9}
- },
-#endif /* RTE_SCHED_RED */
- },
-};
-
-static struct rte_sched_subport_params hqos_subport_params_default = {
- .tb_rate = 1250000000, /* 10GbE line rate (measured in bytes/second) */
- .tb_size = 1000000,
- .tc_rate = {1250000000, 1250000000, 1250000000, 1250000000},
- .tc_period = 10,
-};
-
-static struct rte_sched_pipe_params hqos_pipe_params_default = {
- .tb_rate = 305175, /* 10GbE line rate divided by 4K pipes */
- .tb_size = 1000000,
- .tc_rate = {305175, 305175, 305175, 305175},
- .tc_period = 40,
-#ifdef RTE_SCHED_SUBPORT_TC_OV
- .tc_ov_weight = 1,
-#endif
- .wrr_weights = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
-};
-
-/***
- *
- * HQoS configuration
- *
- ***/
-
-int
-dpdk_hqos_validate_mask (u64 mask, u32 n)
-{
- int count = __builtin_popcountll (mask);
- int pos_lead = sizeof (u64) * 8 - count_leading_zeros (mask);
- int pos_trail = count_trailing_zeros (mask);
- int count_expected = __builtin_popcount (n - 1);
-
- /* Handle the exceptions */
- if (n == 0)
- return -1; /* Error */
-
- if ((mask == 0) && (n == 1))
- return 0; /* OK */
-
- if (((mask == 0) && (n != 1)) || ((mask != 0) && (n == 1)))
- return -2; /* Error */
-
- /* Check that mask is contiguous */
- if ((pos_lead - pos_trail) != count)
- return -3; /* Error */
-
- /* Check that mask contains the expected number of bits set */
- if (count != count_expected)
- return -4; /* Error */
-
- return 0; /* OK */
-}
-
-void
-dpdk_device_config_hqos_pipe_profile_default (dpdk_device_config_hqos_t *
- hqos, u32 pipe_profile_id)
-{
- memcpy (&hqos->pipe[pipe_profile_id], &hqos_pipe_params_default,
- sizeof (hqos_pipe_params_default));
-}
-
-void
-dpdk_device_config_hqos_default (dpdk_device_config_hqos_t * hqos)
-{
- struct rte_sched_subport_params *subport_params;
- struct rte_sched_pipe_params *pipe_params;
- u32 *pipe_map;
- u32 i;
-
- memcpy (hqos, &hqos_params_default, sizeof (hqos_params_default));
-
- /* pipe */
- vec_add2 (hqos->pipe, pipe_params, hqos->port.n_pipe_profiles);
-
- for (i = 0; i < vec_len (hqos->pipe); i++)
- memcpy (&pipe_params[i],
- &hqos_pipe_params_default, sizeof (hqos_pipe_params_default));
-
- hqos->port.pipe_profiles = hqos->pipe;
-
- /* subport */
- vec_add2 (hqos->subport, subport_params, hqos->port.n_subports_per_port);
-
- for (i = 0; i < vec_len (hqos->subport); i++)
- memcpy (&subport_params[i],
- &hqos_subport_params_default,
- sizeof (hqos_subport_params_default));
-
- /* pipe profile */
- vec_add2 (hqos->pipe_map,
- pipe_map,
- hqos->port.n_subports_per_port * hqos->port.n_pipes_per_subport);
-
- for (i = 0; i < vec_len (hqos->pipe_map); i++)
- pipe_map[i] = 0;
-}
-
-/***
- *
- * HQoS init
- *
- ***/
-
-clib_error_t *
-dpdk_port_setup_hqos (dpdk_device_t * xd, dpdk_device_config_hqos_t * hqos)
-{
- vlib_thread_main_t *tm = vlib_get_thread_main ();
- char name[32];
- u32 subport_id, i;
- int rv;
-
- /* Detect the set of worker threads */
- int worker_thread_first = 0;
- int worker_thread_count = 0;
-
- uword *p = hash_get_mem (tm->thread_registrations_by_name, "workers");
- vlib_thread_registration_t *tr =
- p ? (vlib_thread_registration_t *) p[0] : 0;
-
- if (tr && tr->count > 0)
- {
- worker_thread_first = tr->first_index;
- worker_thread_count = tr->count;
- }
-
- /* Allocate the per-thread device data array */
- vec_validate_aligned (xd->hqos_wt, tm->n_vlib_mains - 1,
- CLIB_CACHE_LINE_BYTES);
- clib_memset (xd->hqos_wt, 0, tm->n_vlib_mains * sizeof (xd->hqos_wt[0]));
-
- vec_validate_aligned (xd->hqos_ht, 0, CLIB_CACHE_LINE_BYTES);
- clib_memset (xd->hqos_ht, 0, sizeof (xd->hqos_ht[0]));
-
- /* Allocate space for one SWQ per worker thread in the I/O TX thread data structure */
- vec_validate (xd->hqos_ht->swq, worker_thread_count);
-
- /* SWQ */
- for (i = 0; i < worker_thread_count + 1; i++)
- {
- u32 swq_flags = RING_F_SP_ENQ | RING_F_SC_DEQ;
-
- snprintf (name, sizeof (name), "SWQ-worker%u-to-device%u", i,
- xd->port_id);
- xd->hqos_ht->swq[i] =
- rte_ring_create (name, hqos->swq_size, xd->cpu_socket, swq_flags);
- if (xd->hqos_ht->swq[i] == NULL)
- return clib_error_return (0,
- "SWQ-worker%u-to-device%u: rte_ring_create err",
- i, xd->port_id);
- }
-
- /*
- * HQoS
- */
-
- /* HQoS port */
- snprintf (name, sizeof (name), "HQoS%u", xd->port_id);
- hqos->port.name = strdup (name);
- if (hqos->port.name == NULL)
- return clib_error_return (0, "HQoS%u: strdup err", xd->port_id);
-
- hqos->port.socket = rte_eth_dev_socket_id (xd->port_id);
- if (hqos->port.socket == SOCKET_ID_ANY)
- hqos->port.socket = 0;
-
- xd->hqos_ht->hqos = rte_sched_port_config (&hqos->port);
- if (xd->hqos_ht->hqos == NULL)
- return clib_error_return (0, "HQoS%u: rte_sched_port_config err",
- xd->port_id);
-
- /* HQoS subport */
- for (subport_id = 0; subport_id < hqos->port.n_subports_per_port;
- subport_id++)
- {
- u32 pipe_id;
-
- rv =
- rte_sched_subport_config (xd->hqos_ht->hqos, subport_id,
- &hqos->subport[subport_id]);
- if (rv)
- return clib_error_return (0,
- "HQoS%u subport %u: rte_sched_subport_config err (%d)",
- xd->port_id, subport_id, rv);
-
- /* HQoS pipe */
- for (pipe_id = 0; pipe_id < hqos->port.n_pipes_per_subport; pipe_id++)
- {
- u32 pos = subport_id * hqos->port.n_pipes_per_subport + pipe_id;
- u32 profile_id = hqos->pipe_map[pos];
-
- rv =
- rte_sched_pipe_config (xd->hqos_ht->hqos, subport_id, pipe_id,
- profile_id);
- if (rv)
- return clib_error_return (0,
- "HQoS%u subport %u pipe %u: rte_sched_pipe_config err (%d)",
- xd->port_id, subport_id, pipe_id, rv);
- }
- }
-
- /* Set up per-thread device data for the I/O TX thread */
- xd->hqos_ht->hqos_burst_enq = hqos->burst_enq;
- xd->hqos_ht->hqos_burst_deq = hqos->burst_deq;
- vec_validate (xd->hqos_ht->pkts_enq, 2 * hqos->burst_enq - 1);
- vec_validate (xd->hqos_ht->pkts_deq, hqos->burst_deq - 1);
- xd->hqos_ht->pkts_enq_len = 0;
- xd->hqos_ht->swq_pos = 0;
- xd->hqos_ht->flush_count = 0;
-
- /* Set up per-thread device data for each worker thread */
- for (i = 0; i < worker_thread_count + 1; i++)
- {
- u32 tid;
- if (i)
- tid = worker_thread_first + (i - 1);
- else
- tid = i;
-
- xd->hqos_wt[tid].swq = xd->hqos_ht->swq[i];
- xd->hqos_wt[tid].hqos_field0_slabpos = hqos->pktfield0_slabpos;
- xd->hqos_wt[tid].hqos_field0_slabmask = hqos->pktfield0_slabmask;
- xd->hqos_wt[tid].hqos_field0_slabshr =
- count_trailing_zeros (hqos->pktfield0_slabmask);
- xd->hqos_wt[tid].hqos_field1_slabpos = hqos->pktfield1_slabpos;
- xd->hqos_wt[tid].hqos_field1_slabmask = hqos->pktfield1_slabmask;
- xd->hqos_wt[tid].hqos_field1_slabshr =
- count_trailing_zeros (hqos->pktfield1_slabmask);
- xd->hqos_wt[tid].hqos_field2_slabpos = hqos->pktfield2_slabpos;
- xd->hqos_wt[tid].hqos_field2_slabmask = hqos->pktfield2_slabmask;
- xd->hqos_wt[tid].hqos_field2_slabshr =
- count_trailing_zeros (hqos->pktfield2_slabmask);
- memcpy (xd->hqos_wt[tid].hqos_tc_table, hqos->tc_table,
- sizeof (hqos->tc_table));
- }
-
- return 0;
-}
-
-/***
- *
- * HQoS run-time
- *
- ***/
-/*
- * dpdk_hqos_thread - Contains the main loop of an HQoS thread.
- *
- * w
- * Information for the current thread
- */
-static_always_inline void
-dpdk_hqos_thread_internal_hqos_dbg_bypass (vlib_main_t * vm)
-{
- dpdk_main_t *dm = &dpdk_main;
- u32 thread_index = vm->thread_index;
- u32 dev_pos;
-
- dev_pos = 0;
- while (1)
- {
- vlib_worker_thread_barrier_check ();
-
- u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]);
- if (dev_pos >= n_devs)
- dev_pos = 0;
-
- dpdk_device_and_queue_t *dq =
- vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos);
- dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device);
-
- dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht;
- u32 device_index = xd->port_id;
- u16 queue_id = dq->queue_id;
-
- struct rte_mbuf **pkts_enq = hqos->pkts_enq;
- u32 pkts_enq_len = hqos->pkts_enq_len;
- u32 swq_pos = hqos->swq_pos;
- u32 n_swq = vec_len (hqos->swq), i;
- u32 flush_count = hqos->flush_count;
-
- for (i = 0; i < n_swq; i++)
- {
- /* Get current SWQ for this device */
- struct rte_ring *swq = hqos->swq[swq_pos];
-
- /* Read SWQ burst to packet buffer of this device */
- pkts_enq_len += rte_ring_sc_dequeue_burst (swq,
- (void **)
- &pkts_enq[pkts_enq_len],
- hqos->hqos_burst_enq, 0);
-
- /* Get next SWQ for this device */
- swq_pos++;
- if (swq_pos >= n_swq)
- swq_pos = 0;
- hqos->swq_pos = swq_pos;
-
- /* HWQ TX enqueue when burst available */
- if (pkts_enq_len >= hqos->hqos_burst_enq)
- {
- u32 n_pkts = rte_eth_tx_burst (device_index,
- (uint16_t) queue_id,
- pkts_enq,
- (uint16_t) pkts_enq_len);
-
- for (; n_pkts < pkts_enq_len; n_pkts++)
- rte_pktmbuf_free (pkts_enq[n_pkts]);
-
- pkts_enq_len = 0;
- flush_count = 0;
- break;
- }
- }
- if (pkts_enq_len)
- {
- flush_count++;
- if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD))
- {
- rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
-
- pkts_enq_len = 0;
- flush_count = 0;
- }
- }
- hqos->pkts_enq_len = pkts_enq_len;
- hqos->flush_count = flush_count;
-
- /* Advance to next device */
- dev_pos++;
- }
-}
-
-static_always_inline void
-dpdk_hqos_thread_internal (vlib_main_t * vm)
-{
- dpdk_main_t *dm = &dpdk_main;
- u32 thread_index = vm->thread_index;
- u32 dev_pos;
-
- dev_pos = 0;
- while (1)
- {
- vlib_worker_thread_barrier_check ();
-
- u32 n_devs = vec_len (dm->devices_by_hqos_cpu[thread_index]);
- if (PREDICT_FALSE (n_devs == 0))
- {
- dev_pos = 0;
- continue;
- }
- if (dev_pos >= n_devs)
- dev_pos = 0;
-
- dpdk_device_and_queue_t *dq =
- vec_elt_at_index (dm->devices_by_hqos_cpu[thread_index], dev_pos);
- dpdk_device_t *xd = vec_elt_at_index (dm->devices, dq->device);
-
- dpdk_device_hqos_per_hqos_thread_t *hqos = xd->hqos_ht;
- u32 device_index = xd->port_id;
- u16 queue_id = dq->queue_id;
-
- struct rte_mbuf **pkts_enq = hqos->pkts_enq;
- struct rte_mbuf **pkts_deq = hqos->pkts_deq;
- u32 pkts_enq_len = hqos->pkts_enq_len;
- u32 swq_pos = hqos->swq_pos;
- u32 n_swq = vec_len (hqos->swq), i;
- u32 flush_count = hqos->flush_count;
-
- /*
- * SWQ dequeue and HQoS enqueue for current device
- */
- for (i = 0; i < n_swq; i++)
- {
- /* Get current SWQ for this device */
- struct rte_ring *swq = hqos->swq[swq_pos];
-
- /* Read SWQ burst to packet buffer of this device */
- pkts_enq_len += rte_ring_sc_dequeue_burst (swq,
- (void **)
- &pkts_enq[pkts_enq_len],
- hqos->hqos_burst_enq, 0);
-
- /* Get next SWQ for this device */
- swq_pos++;
- if (swq_pos >= n_swq)
- swq_pos = 0;
- hqos->swq_pos = swq_pos;
-
- /* HQoS enqueue when burst available */
- if (pkts_enq_len >= hqos->hqos_burst_enq)
- {
- rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
-
- pkts_enq_len = 0;
- flush_count = 0;
- break;
- }
- }
- if (pkts_enq_len)
- {
- flush_count++;
- if (PREDICT_FALSE (flush_count == HQOS_FLUSH_COUNT_THRESHOLD))
- {
- rte_sched_port_enqueue (hqos->hqos, pkts_enq, pkts_enq_len);
-
- pkts_enq_len = 0;
- flush_count = 0;
- }
- }
- hqos->pkts_enq_len = pkts_enq_len;
- hqos->flush_count = flush_count;
-
- /*
- * HQoS dequeue and HWQ TX enqueue for current device
- */
- {
- u32 pkts_deq_len, n_pkts;
-
- pkts_deq_len = rte_sched_port_dequeue (hqos->hqos,
- pkts_deq,
- hqos->hqos_burst_deq);
-
- for (n_pkts = 0; n_pkts < pkts_deq_len;)
- n_pkts += rte_eth_tx_burst (device_index,
- (uint16_t) queue_id,
- &pkts_deq[n_pkts],
- (uint16_t) (pkts_deq_len - n_pkts));
- }
-
- /* Advance to next device */
- dev_pos++;
- }
-}
-
-void
-dpdk_hqos_thread (vlib_worker_thread_t * w)
-{
- vlib_main_t *vm;
- vlib_thread_main_t *tm = vlib_get_thread_main ();
- dpdk_main_t *dm = &dpdk_main;
-
- vm = vlib_get_main ();
-
- ASSERT (vm->thread_index == vlib_get_thread_index ());
-
- clib_time_init (&vm->clib_time);
- clib_mem_set_heap (w->thread_mheap);
-
- /* Wait until the dpdk init sequence is complete */
- while (tm->worker_thread_release == 0)
- vlib_worker_thread_barrier_check ();
-
- if (vec_len (dm->devices_by_hqos_cpu[vm->thread_index]) == 0)
- return
- clib_error
- ("current I/O TX thread does not have any devices assigned to it");
-
- if (DPDK_HQOS_DBG_BYPASS)
- dpdk_hqos_thread_internal_hqos_dbg_bypass (vm);
- else
- dpdk_hqos_thread_internal (vm);
-}
-
-void
-dpdk_hqos_thread_fn (void *arg)
-{
- vlib_worker_thread_t *w = (vlib_worker_thread_t *) arg;
- vlib_worker_thread_init (w);
- dpdk_hqos_thread (w);
-}
-
-/* *INDENT-OFF* */
-VLIB_REGISTER_THREAD (hqos_thread_reg, static) =
-{
- .name = "hqos-threads",
- .short_name = "hqos-threads",
- .function = dpdk_hqos_thread_fn,
-};
-/* *INDENT-ON* */
-
-/*
- * HQoS run-time code to be called by the worker threads
- */
-#define BITFIELD(byte_array, slab_pos, slab_mask, slab_shr) \
-({ \
- u64 slab = *((u64 *) &byte_array[slab_pos]); \
- u64 val = (rte_be_to_cpu_64(slab) & slab_mask) >> slab_shr; \
- val; \
-})
-
-#define RTE_SCHED_PORT_HIERARCHY(subport, pipe, traffic_class, queue, color) \
- ((((u64) (queue)) & 0x3) | \
- ((((u64) (traffic_class)) & 0x3) << 2) | \
- ((((u64) (color)) & 0x3) << 4) | \
- ((((u64) (subport)) & 0xFFFF) << 16) | \
- ((((u64) (pipe)) & 0xFFFFFFFF) << 32))
-
-void
-dpdk_hqos_metadata_set (dpdk_device_hqos_per_worker_thread_t * hqos,
- struct rte_mbuf **pkts, u32 n_pkts)
-{
- u32 i;
-
- for (i = 0; i < (n_pkts & (~0x3)); i += 4)
- {
- struct rte_mbuf *pkt0 = pkts[i];
- struct rte_mbuf *pkt1 = pkts[i + 1];
- struct rte_mbuf *pkt2 = pkts[i + 2];
- struct rte_mbuf *pkt3 = pkts[i + 3];
-
- u8 *pkt0_data = rte_pktmbuf_mtod (pkt0, u8 *);
- u8 *pkt1_data = rte_pktmbuf_mtod (pkt1, u8 *);
- u8 *pkt2_data = rte_pktmbuf_mtod (pkt2, u8 *);
- u8 *pkt3_data = rte_pktmbuf_mtod (pkt3, u8 *);
-
- u64 pkt0_subport = BITFIELD (pkt0_data, hqos->hqos_field0_slabpos,
- hqos->hqos_field0_slabmask,
- hqos->hqos_field0_slabshr);
- u64 pkt0_pipe = BITFIELD (pkt0_data, hqos->hqos_field1_slabpos,
- hqos->hqos_field1_slabmask,
- hqos->hqos_field1_slabshr);
- u64 pkt0_dscp = BITFIELD (pkt0_data, hqos->hqos_field2_slabpos,
- hqos->hqos_field2_slabmask,
- hqos->hqos_field2_slabshr);
- u32 pkt0_tc = hqos->hqos_tc_table[pkt0_dscp & 0x3F] >> 2;
- u32 pkt0_tc_q = hqos->hqos_tc_table[pkt0_dscp & 0x3F] & 0x3;
-
- u64 pkt1_subport = BITFIELD (pkt1_data, hqos->hqos_field0_slabpos,
- hqos->hqos_field0_slabmask,
- hqos->hqos_field0_slabshr);
- u64 pkt1_pipe = BITFIELD (pkt1_data, hqos->hqos_field1_slabpos,
- hqos->hqos_field1_slabmask,
- hqos->hqos_field1_slabshr);
- u64 pkt1_dscp = BITFIELD (pkt1_data, hqos->hqos_field2_slabpos,
- hqos->hqos_field2_slabmask,
- hqos->hqos_field2_slabshr);
- u32 pkt1_tc = hqos->hqos_tc_table[pkt1_dscp & 0x3F] >> 2;
- u32 pkt1_tc_q = hqos->hqos_tc_table[pkt1_dscp & 0x3F] & 0x3;
-
- u64 pkt2_subport = BITFIELD (pkt2_data, hqos->hqos_field0_slabpos,
- hqos->hqos_field0_slabmask,
- hqos->hqos_field0_slabshr);
- u64 pkt2_pipe = BITFIELD (pkt2_data, hqos->hqos_field1_slabpos,
- hqos->hqos_field1_slabmask,
- hqos->hqos_field1_slabshr);
- u64 pkt2_dscp = BITFIELD (pkt2_data, hqos->hqos_field2_slabpos,
- hqos->hqos_field2_slabmask,
- hqos->hqos_field2_slabshr);
- u32 pkt2_tc = hqos->hqos_tc_table[pkt2_dscp & 0x3F] >> 2;
- u32 pkt2_tc_q = hqos->hqos_tc_table[pkt2_dscp & 0x3F] & 0x3;
-
- u64 pkt3_subport = BITFIELD (pkt3_data, hqos->hqos_field0_slabpos,
- hqos->hqos_field0_slabmask,
- hqos->hqos_field0_slabshr);
- u64 pkt3_pipe = BITFIELD (pkt3_data, hqos->hqos_field1_slabpos,
- hqos->hqos_field1_slabmask,
- hqos->hqos_field1_slabshr);
- u64 pkt3_dscp = BITFIELD (pkt3_data, hqos->hqos_field2_slabpos,
- hqos->hqos_field2_slabmask,
- hqos->hqos_field2_slabshr);
- u32 pkt3_tc = hqos->hqos_tc_table[pkt3_dscp & 0x3F] >> 2;
- u32 pkt3_tc_q = hqos->hqos_tc_table[pkt3_dscp & 0x3F] & 0x3;
-
- u64 pkt0_sched = RTE_SCHED_PORT_HIERARCHY (pkt0_subport,
- pkt0_pipe,
- pkt0_tc,
- pkt0_tc_q,
- 0);
- u64 pkt1_sched = RTE_SCHED_PORT_HIERARCHY (pkt1_subport,
- pkt1_pipe,
- pkt1_tc,
- pkt1_tc_q,
- 0);
- u64 pkt2_sched = RTE_SCHED_PORT_HIERARCHY (pkt2_subport,
- pkt2_pipe,
- pkt2_tc,
- pkt2_tc_q,
- 0);
- u64 pkt3_sched = RTE_SCHED_PORT_HIERARCHY (pkt3_subport,
- pkt3_pipe,
- pkt3_tc,
- pkt3_tc_q,
- 0);
-
- pkt0->hash.sched.lo = pkt0_sched & 0xFFFFFFFF;
- pkt0->hash.sched.hi = pkt0_sched >> 32;
- pkt1->hash.sched.lo = pkt1_sched & 0xFFFFFFFF;
- pkt1->hash.sched.hi = pkt1_sched >> 32;
- pkt2->hash.sched.lo = pkt2_sched & 0xFFFFFFFF;
- pkt2->hash.sched.hi = pkt2_sched >> 32;
- pkt3->hash.sched.lo = pkt3_sched & 0xFFFFFFFF;
- pkt3->hash.sched.hi = pkt3_sched >> 32;
- }
-
- for (; i < n_pkts; i++)
- {
- struct rte_mbuf *pkt = pkts[i];
-
- u8 *pkt_data = rte_pktmbuf_mtod (pkt, u8 *);
-
- u64 pkt_subport = BITFIELD (pkt_data, hqos->hqos_field0_slabpos,
- hqos->hqos_field0_slabmask,
- hqos->hqos_field0_slabshr);
- u64 pkt_pipe = BITFIELD (pkt_data, hqos->hqos_field1_slabpos,
- hqos->hqos_field1_slabmask,
- hqos->hqos_field1_slabshr);
- u64 pkt_dscp = BITFIELD (pkt_data, hqos->hqos_field2_slabpos,
- hqos->hqos_field2_slabmask,
- hqos->hqos_field2_slabshr);
- u32 pkt_tc = hqos->hqos_tc_table[pkt_dscp & 0x3F] >> 2;
- u32 pkt_tc_q = hqos->hqos_tc_table[pkt_dscp & 0x3F] & 0x3;
-
- u64 pkt_sched = RTE_SCHED_PORT_HIERARCHY (pkt_subport,
- pkt_pipe,
- pkt_tc,
- pkt_tc_q,
- 0);
-
- pkt->hash.sched.lo = pkt_sched & 0xFFFFFFFF;
- pkt->hash.sched.hi = pkt_sched >> 32;
- }
-}
-
-/*
- * fd.io coding-style-patch-verification: ON
- *
- * Local Variables:
- * eval: (c-set-style "gnu")
- * End:
- */
diff --git a/src/plugins/dpdk/hqos/qos_doc.md b/src/plugins/dpdk/hqos/qos_doc.md
deleted file mode 100644
index fe3bb1bcd4b..00000000000
--- a/src/plugins/dpdk/hqos/qos_doc.md
+++ /dev/null
@@ -1,411 +0,0 @@
-# QoS Hierarchical Scheduler {#qos_doc}
-
-The Quality-of-Service (QoS) scheduler performs egress-traffic management by
-prioritizing the transmission of the packets of different type services and
-subscribers based on the Service Level Agreements (SLAs). The QoS scheduler can
-be enabled on one or more NIC output interfaces depending upon the
-requirement.
-
-
-## Overview
-
-The QoS scheduler supports a number of scheduling and shaping levels which
-construct hierarchical-tree. The first level in the hierarchy is port (i.e.
-the physical interface) that constitutes the root node of the tree. The
-subsequent level is subport which represents the group of the
-users/subscribers. The individual user/subscriber is represented by the pipe
-at the next level. Each user can have different traffic type based on the
-criteria of specific loss rate, jitter, and latency. These traffic types are
-represented at the traffic-class level in the form of different traffic-
-classes. The last level contains number of queues which are grouped together
-to host the packets of the specific class type traffic.
-
-The QoS scheduler implementation requires flow classification, enqueue and
-dequeue operations. The flow classification is mandatory stage for HQoS where
-incoming packets are classified by mapping the packet fields information to
-5-tuple (HQoS subport, pipe, traffic class, queue within traffic class, and
-color) and storing that information in mbuf sched field. The enqueue operation
-uses this information to determine the queue for storing the packet, and at
-this stage, if the specific queue is full, QoS drops the packet. The dequeue
-operation consists of scheduling the packet based on its length and available
-credits, and handing over the scheduled packet to the output interface.
-
-For more information on QoS Scheduler, please refer DPDK Programmer's Guide-
-http://dpdk.org/doc/guides/prog_guide/qos_framework.html
-
-
-### QoS Scheduler Parameters
-
-Following illustrates the default HQoS configuration for each 10GbE output
-port:
-
-Single subport (subport 0):
- - Subport rate set to 100% of port rate
- - Each of the 4 traffic classes has rate set to 100% of port rate
-
-4K pipes per subport 0 (pipes 0 .. 4095) with identical configuration:
- - Pipe rate set to 1/4K of port rate
- - Each of the 4 traffic classes has rate set to 100% of pipe rate
- - Within each traffic class, the byte-level WRR weights for the 4 queues are set to 1:1:1:1
-
-
-#### Port configuration
-
-```
-port {
- rate 1250000000 /* Assuming 10GbE port */
- frame_overhead 24 /* Overhead fields per Ethernet frame:
- * 7B (Preamble) +
- * 1B (Start of Frame Delimiter (SFD)) +
- * 4B (Frame Check Sequence (FCS)) +
- * 12B (Inter Frame Gap (IFG))
- */
- mtu 1522 /* Assuming Ethernet/IPv4 pkt (FCS not included) */
- n_subports_per_port 1 /* Number of subports per output interface */
- n_pipes_per_subport 4096 /* Number of pipes (users/subscribers) */
- queue_sizes 64 64 64 64 /* Packet queue size for each traffic class.
- * All queues within the same pipe traffic class
- * have the same size. Queues from different
- * pipes serving the same traffic class have
- * the same size. */
-}
-```
-
-
-#### Subport configuration
-
-```
-subport 0 {
- tb_rate 1250000000 /* Subport level token bucket rate (bytes per second) */
- tb_size 1000000 /* Subport level token bucket size (bytes) */
- tc0_rate 1250000000 /* Subport level token bucket rate for traffic class 0 (bytes per second) */
- tc1_rate 1250000000 /* Subport level token bucket rate for traffic class 1 (bytes per second) */
- tc2_rate 1250000000 /* Subport level token bucket rate for traffic class 2 (bytes per second) */
- tc3_rate 1250000000 /* Subport level token bucket rate for traffic class 3 (bytes per second) */
- tc_period 10 /* Time interval for refilling the token bucket associated with traffic class (Milliseconds) */
- pipe 0 4095 profile 0 /* pipes (users/subscribers) configured with pipe profile 0 */
-}
-```
-
-
-#### Pipe configuration
-
-```
-pipe_profile 0 {
- tb_rate 305175 /* Pipe level token bucket rate (bytes per second) */
- tb_size 1000000 /* Pipe level token bucket size (bytes) */
- tc0_rate 305175 /* Pipe level token bucket rate for traffic class 0 (bytes per second) */
- tc1_rate 305175 /* Pipe level token bucket rate for traffic class 1 (bytes per second) */
- tc2_rate 305175 /* Pipe level token bucket rate for traffic class 2 (bytes per second) */
- tc3_rate 305175 /* Pipe level token bucket rate for traffic class 3 (bytes per second) */
- tc_period 40 /* Time interval for refilling the token bucket associated with traffic class at pipe level (Milliseconds) */
- tc3_oversubscription_weight 1 /* Weight traffic class 3 oversubscription */
- tc0_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 0 */
- tc1_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 1 */
- tc2_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 2 */
- tc3_wrr_weights 1 1 1 1 /* Pipe queues WRR weights for traffic class 3 */
-}
-```
-
-
-#### Random Early Detection (RED) parameters per traffic class and color (Green / Yellow / Red)
-
-```
-red {
- tc0_wred_min 48 40 32 /* Minimum threshold for traffic class 0 queue (min_th) in number of packets */
- tc0_wred_max 64 64 64 /* Maximum threshold for traffic class 0 queue (max_th) in number of packets */
- tc0_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 0 queue (maxp = 1 / maxp_inv) */
- tc0_wred_weight 9 9 9 /* Traffic Class 0 queue weight */
- tc1_wred_min 48 40 32 /* Minimum threshold for traffic class 1 queue (min_th) in number of packets */
- tc1_wred_max 64 64 64 /* Maximum threshold for traffic class 1 queue (max_th) in number of packets */
- tc1_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 1 queue (maxp = 1 / maxp_inv) */
- tc1_wred_weight 9 9 9 /* Traffic Class 1 queue weight */
- tc2_wred_min 48 40 32 /* Minimum threshold for traffic class 2 queue (min_th) in number of packets */
- tc2_wred_max 64 64 64 /* Maximum threshold for traffic class 2 queue (max_th) in number of packets */
- tc2_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 2 queue (maxp = 1 / maxp_inv) */
- tc2_wred_weight 9 9 9 /* Traffic Class 2 queue weight */
- tc3_wred_min 48 40 32 /* Minimum threshold for traffic class 3 queue (min_th) in number of packets */
- tc3_wred_max 64 64 64 /* Maximum threshold for traffic class 3 queue (max_th) in number of packets */
- tc3_wred_inv_prob 10 10 10 /* Inverse of packet marking probability for traffic class 3 queue (maxp = 1 / maxp_inv) */
- tc3_wred_weight 9 9 9 /* Traffic Class 3 queue weight */
-}
-```
-
-
-### DPDK QoS Scheduler Integration in VPP
-
-The Hierarchical Quality-of-Service (HQoS) scheduler object could be seen as
-part of the logical NIC output interface. To enable HQoS on specific output
-interface, vpp startup.conf file has to be configured accordingly. The output
-interface that requires HQoS, should have "hqos" parameter specified in dpdk
-section. Another optional parameter "hqos-thread" has been defined which can
-be used to associate the output interface with specific hqos thread. In cpu
-section of the config file, "corelist-hqos-threads" is introduced to assign
-logical cpu cores to run the HQoS threads. A HQoS thread can run multiple HQoS
-objects each associated with different output interfaces. All worker threads
-instead of writing packets to NIC TX queue directly, write the packets to a
-software queues. The hqos_threads read the software queues, and enqueue the
-packets to HQoS objects, as well as dequeue packets from HQOS objects and
-write them to NIC output interfaces. The worker threads need to be able to
-send the packets to any output interface, therefore, each HQoS object
-associated with NIC output interface should have software queues equal to
-worker threads count.
-
-Following illustrates the sample startup configuration file with 4x worker
-threads feeding 2x hqos threads that handle each QoS scheduler for 1x output
-interface.
-
-```
-dpdk {
- socket-mem 16384,16384
-
- dev 0000:02:00.0 {
- num-rx-queues 2
- hqos
- }
- dev 0000:06:00.0 {
- num-rx-queues 2
- hqos
- }
-
- num-mbufs 1000000
-}
-
-cpu {
- main-core 0
- corelist-workers 1, 2, 3, 4
- corelist-hqos-threads 5, 6
-}
-```
-
-
-### QoS scheduler CLI Commands
-
-Each QoS scheduler instance is initialised with default parameters required to
-configure hqos port, subport, pipe and queues. Some of the parameters can be
-re-configured in run-time through CLI commands.
-
-
-#### Configuration
-
-Following commands can be used to configure QoS scheduler parameters.
-
-The command below can be used to set the subport level parameters such as
-token bucket rate (bytes per seconds), token bucket size (bytes), traffic
-class rates (bytes per seconds) and token update period (Milliseconds).
-
-```
-set dpdk interface hqos subport <interface> subport <subport_id> [rate <n>]
- [bktsize <n>] [tc0 <n>] [tc1 <n>] [tc2 <n>] [tc3 <n>] [period <n>]
-```
-
-For setting the pipe profile, following command can be used.
-
-```
-set dpdk interface hqos pipe <interface> subport <subport_id> pipe <pipe_id>
- profile <profile_id>
-```
-
-To assign QoS scheduler instance to the specific thread, following command can
-be used.
-
-```
-set dpdk interface hqos placement <interface> thread <n>
-```
-
-The command below is used to set the packet fields required for classifying
-the incoming packet. As a result of classification process, packet field
-information will be mapped to 5 tuples (subport, pipe, traffic class, pipe,
-color) and stored in packet mbuf.
-
-```
-set dpdk interface hqos pktfield <interface> id subport|pipe|tc offset <n>
- mask <hex-mask>
-```
-
-The DSCP table entries used for identifying the traffic class and queue can be set using the command below;
-
-```
-set dpdk interface hqos tctbl <interface> entry <map_val> tc <tc_id> queue <queue_id>
-```
-
-
-#### Show Command
-
-The QoS Scheduler configuration can displayed using the command below.
-
-```
- vpp# show dpdk interface hqos TenGigabitEthernet2/0/0
- Thread:
- Input SWQ size = 4096 packets
- Enqueue burst size = 256 packets
- Dequeue burst size = 220 packets
- Packet field 0: slab position = 0, slab bitmask = 0x0000000000000000 (subport)
- Packet field 1: slab position = 40, slab bitmask = 0x0000000fff000000 (pipe)
- Packet field 2: slab position = 8, slab bitmask = 0x00000000000000fc (tc)
- Packet field 2 tc translation table: ([Mapped Value Range]: tc/queue tc/queue ...)
- [ 0 .. 15]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3
- [16 .. 31]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3
- [32 .. 47]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3
- [48 .. 63]: 0/0 0/1 0/2 0/3 1/0 1/1 1/2 1/3 2/0 2/1 2/2 2/3 3/0 3/1 3/2 3/3
- Port:
- Rate = 1250000000 bytes/second
- MTU = 1514 bytes
- Frame overhead = 24 bytes
- Number of subports = 1
- Number of pipes per subport = 4096
- Packet queue size: TC0 = 64, TC1 = 64, TC2 = 64, TC3 = 64 packets
- Number of pipe profiles = 1
- Subport 0:
- Rate = 120000000 bytes/second
- Token bucket size = 1000000 bytes
- Traffic class rate: TC0 = 120000000, TC1 = 120000000, TC2 = 120000000, TC3 = 120000000 bytes/second
- TC period = 10 milliseconds
- Pipe profile 0:
- Rate = 305175 bytes/second
- Token bucket size = 1000000 bytes
- Traffic class rate: TC0 = 305175, TC1 = 305175, TC2 = 305175, TC3 = 305175 bytes/second
- TC period = 40 milliseconds
- TC0 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1
- TC1 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1
- TC2 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1
- TC3 WRR weights: Q0 = 1, Q1 = 1, Q2 = 1, Q3 = 1
-```
-
-The QoS Scheduler placement over the logical cpu cores can be displayed using
-below command.
-
-```
- vpp# show dpdk interface hqos placement
- Thread 5 (vpp_hqos-threads_0 at lcore 5):
- TenGigabitEthernet2/0/0 queue 0
- Thread 6 (vpp_hqos-threads_1 at lcore 6):
- TenGigabitEthernet4/0/1 queue 0
-```
-
-
-### QoS Scheduler Binary APIs
-
-This section explains the available binary APIs for configuring QoS scheduler
-parameters in run-time.
-
-The following API can be used to set the pipe profile of a pipe that belongs
-to a given subport:
-
-```
-sw_interface_set_dpdk_hqos_pipe rx <intfc> | sw_if_index <id>
- subport <subport-id> pipe <pipe-id> profile <profile-id>
-```
-
-The data structures used for set the pipe profile parameter are as follows;
-
-```
- /** \\brief DPDK interface HQoS pipe profile set request
- @param client_index - opaque cookie to identify the sender
- @param context - sender context, to match reply w/ request
- @param sw_if_index - the interface
- @param subport - subport ID
- @param pipe - pipe ID within its subport
- @param profile - pipe profile ID
- */
- define sw_interface_set_dpdk_hqos_pipe {
- u32 client_index;
- u32 context;
- u32 sw_if_index;
- u32 subport;
- u32 pipe;
- u32 profile;
- };
-
- /** \\brief DPDK interface HQoS pipe profile set reply
- @param context - sender context, to match reply w/ request
- @param retval - request return code
- */
- define sw_interface_set_dpdk_hqos_pipe_reply {
- u32 context;
- i32 retval;
- };
-```
-
-The following API can be used to set the subport level parameters, for
-example- token bucket rate (bytes per seconds), token bucket size (bytes),
-traffic class rate (bytes per seconds) and tokens update period.
-
-```
-sw_interface_set_dpdk_hqos_subport rx <intfc> | sw_if_index <id>
- subport <subport-id> [rate <n>] [bktsize <n>]
- [tc0 <n>] [tc1 <n>] [tc2 <n>] [tc3 <n>] [period <n>]
-```
-
-The data structures used for set the subport level parameter are as follows;
-
-```
- /** \\brief DPDK interface HQoS subport parameters set request
- @param client_index - opaque cookie to identify the sender
- @param context - sender context, to match reply w/ request
- @param sw_if_index - the interface
- @param subport - subport ID
- @param tb_rate - subport token bucket rate (measured in bytes/second)
- @param tb_size - subport token bucket size (measured in credits)
- @param tc_rate - subport traffic class 0 .. 3 rates (measured in bytes/second)
- @param tc_period - enforcement period for rates (measured in milliseconds)
- */
- define sw_interface_set_dpdk_hqos_subport {
- u32 client_index;
- u32 context;
- u32 sw_if_index;
- u32 subport;
- u32 tb_rate;
- u32 tb_size;
- u32 tc_rate[4];
- u32 tc_period;
- };
-
- /** \\brief DPDK interface HQoS subport parameters set reply
- @param context - sender context, to match reply w/ request
- @param retval - request return code
- */
- define sw_interface_set_dpdk_hqos_subport_reply {
- u32 context;
- i32 retval;
- };
-```
-
-The following API can be used set the DSCP table entry. The DSCP table have
-64 entries to map the packet DSCP field onto traffic class and hqos input
-queue.
-
-```
-sw_interface_set_dpdk_hqos_tctbl rx <intfc> | sw_if_index <id>
- entry <n> tc <n> queue <n>
-```
-
-The data structures used for setting DSCP table entries are given below.
-
-```
- /** \\brief DPDK interface HQoS tctbl entry set request
- @param client_index - opaque cookie to identify the sender
- @param context - sender context, to match reply w/ request
- @param sw_if_index - the interface
- @param entry - entry index ID
- @param tc - traffic class (0 .. 3)
- @param queue - traffic class queue (0 .. 3)
- */
- define sw_interface_set_dpdk_hqos_tctbl {
- u32 client_index;
- u32 context;
- u32 sw_if_index;
- u32 entry;
- u32 tc;
- u32 queue;
- };
-
- /** \\brief DPDK interface HQoS tctbl entry set reply
- @param context - sender context, to match reply w/ request
- @param retval - request return code
- */
- define sw_interface_set_dpdk_hqos_tctbl_reply {
- u32 context;
- i32 retval;
- };
-```