diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/plugins/crypto_ia32/CMakeLists.txt | 2 | ||||
-rw-r--r-- | src/plugins/crypto_ia32/aes_gcm.c | 776 | ||||
-rw-r--r-- | src/plugins/crypto_ia32/crypto_ia32.h | 3 | ||||
-rw-r--r-- | src/plugins/crypto_ia32/ghash.h | 253 | ||||
-rw-r--r-- | src/plugins/crypto_ia32/main.c | 13 |
5 files changed, 1046 insertions, 1 deletions
diff --git a/src/plugins/crypto_ia32/CMakeLists.txt b/src/plugins/crypto_ia32/CMakeLists.txt index 850eb4dbe88..d619076bc8d 100644 --- a/src/plugins/crypto_ia32/CMakeLists.txt +++ b/src/plugins/crypto_ia32/CMakeLists.txt @@ -27,7 +27,7 @@ foreach(VARIANT ${VARIANTS}) list(GET VARIANT 0 v) list(GET VARIANT 1 f) set(l crypto_ia32_${v}) - add_library(${l} OBJECT aes_cbc.c) + add_library(${l} OBJECT aes_cbc.c aes_gcm.c) set_target_properties(${l} PROPERTIES POSITION_INDEPENDENT_CODE ON) target_compile_options(${l} PUBLIC ${f} -Wall -fno-common) target_sources(crypto_ia32_plugin PRIVATE $<TARGET_OBJECTS:${l}>) diff --git a/src/plugins/crypto_ia32/aes_gcm.c b/src/plugins/crypto_ia32/aes_gcm.c new file mode 100644 index 00000000000..61a04c45b24 --- /dev/null +++ b/src/plugins/crypto_ia32/aes_gcm.c @@ -0,0 +1,776 @@ +/* + *------------------------------------------------------------------ + * Copyright (c) 2019 Cisco and/or its affiliates. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at: + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + *------------------------------------------------------------------ + */ + +#include <vlib/vlib.h> +#include <vnet/plugin/plugin.h> +#include <vnet/crypto/crypto.h> +#include <x86intrin.h> +#include <crypto_ia32/crypto_ia32.h> +#include <crypto_ia32/aesni.h> +#include <crypto_ia32/ghash.h> + +#if __GNUC__ > 4 && !__clang__ && CLIB_DEBUG == 0 +#pragma GCC optimize ("O3") +#endif + +typedef struct +{ + /* pre-calculated hash key values */ + const __m128i Hi[8]; + /* extracted AES key */ + const __m128i Ke[15]; +} aes_gcm_key_data_t; + +static const __m128i last_byte_one = { 0, 1ULL << 56 }; +static const __m128i zero = { 0, 0 }; + +static const u8x16 bswap_mask = { + 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 +}; + +static const u8x16 byte_mask_scale = { + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +}; + +static_always_inline __m128i +aesni_gcm_bswap (__m128i x) +{ + return _mm_shuffle_epi8 (x, (__m128i) bswap_mask); +} + +static_always_inline __m128i +aesni_gcm_byte_mask (__m128i x, u8 n_bytes) +{ + u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); + + return _mm_blendv_epi8 (zero, x, (__m128i) mask); +} + +static_always_inline __m128i +aesni_gcm_load_partial (__m128i * p, int n_bytes) +{ +#ifdef __AVX512F__ + return _mm_mask_loadu_epi8 (zero, (1 << n_bytes) - 1, p); +#else + return aesni_gcm_byte_mask (_mm_loadu_si128 (p), n_bytes); +#endif +} + +static_always_inline void +aesni_gcm_store_partial (void *p, __m128i r, int n_bytes) +{ +#ifdef x__AVX512F__ + _mm_mask_storeu_epi8 (p, (1 << n_bytes) - 1, r); +#else + u8x16 mask = u8x16_is_greater (u8x16_splat (n_bytes), byte_mask_scale); + _mm_maskmoveu_si128 (r, (__m128i) mask, p); +#endif +} + +static_always_inline void +aesni_gcm_load (__m128i * d, __m128i * inv, int n, int n_bytes) +{ + for (int i = 0; i < n - 1; i++) + d[i] = _mm_loadu_si128 (inv + i); + d[n - 1] = n_bytes ? aesni_gcm_load_partial (inv + n - 1, n_bytes) : + _mm_loadu_si128 (inv + n - 1); +} + +static_always_inline void +aesni_gcm_store (__m128i * d, __m128i * outv, int n, int n_bytes) +{ + for (int i = 0; i < n - 1; i++) + _mm_storeu_si128 (outv + i, d[i]); + if (n_bytes & 0xf) + aesni_gcm_store_partial (outv + n - 1, d[n - 1], n_bytes); + else + _mm_storeu_si128 (outv + n - 1, d[n - 1]); +} + +static_always_inline void +aesni_gcm_enc_first_round (__m128i * r, __m128i * Y, u32 * ctr, __m128i k, + int n_blocks) +{ + u32 i; + + if (PREDICT_TRUE ((u8) ctr[0] < (256 - n_blocks))) + { + for (i = 0; i < n_blocks; i++) + { + Y[0] = _mm_add_epi32 (Y[0], last_byte_one); + r[i] = k ^ Y[0]; + } + ctr[0] += n_blocks; + } + else + { + for (i = 0; i < n_blocks; i++) + { + Y[0] = _mm_insert_epi32 (Y[0], clib_host_to_net_u32 (++ctr[0]), 3); + r[i] = k ^ Y[0]; + } + } +} + +static_always_inline void +aesni_gcm_enc_round (__m128i * r, __m128i k, int n_blocks) +{ + for (int i = 0; i < n_blocks; i++) + r[i] = _mm_aesenc_si128 (r[i], k); +} + +static_always_inline void +aesni_gcm_enc_last_round (__m128i * r, __m128i * d, const __m128i * k, + int rounds, int n_blocks) +{ + + /* additional ronuds for AES-192 and AES-256 */ + for (int i = 10; i < rounds; i++) + aesni_gcm_enc_round (r, k[i], n_blocks); + + for (int i = 0; i < n_blocks; i++) + d[i] ^= _mm_aesenclast_si128 (r[i], k[rounds]); +} + +static_always_inline __m128i +aesni_gcm_ghash_blocks (__m128i T, aes_gcm_key_data_t * kd, + const __m128i * in, int n_blocks) +{ + ghash_data_t _gd, *gd = &_gd; + const __m128i *Hi = kd->Hi + n_blocks - 1; + ghash_mul_first (gd, aesni_gcm_bswap (_mm_loadu_si128 (in)) ^ T, Hi[0]); + for (int i = 1; i < n_blocks; i++) + ghash_mul_next (gd, aesni_gcm_bswap (_mm_loadu_si128 (in + i)), Hi[-i]); + ghash_reduce (gd); + ghash_reduce2 (gd); + return ghash_final (gd); +} + +static_always_inline __m128i +aesni_gcm_ghash (__m128i T, aes_gcm_key_data_t * kd, const __m128i * in, + u32 n_left) +{ + + while (n_left >= 128) + { + T = aesni_gcm_ghash_blocks (T, kd, in, 8); + n_left -= 128; + in += 8; + } + + if (n_left >= 64) + { + T = aesni_gcm_ghash_blocks (T, kd, in, 4); + n_left -= 64; + in += 4; + } + + if (n_left >= 32) + { + T = aesni_gcm_ghash_blocks (T, kd, in, 2); + n_left -= 32; + in += 2; + } + + if (n_left >= 16) + { + T = aesni_gcm_ghash_blocks (T, kd, in, 1); + n_left -= 16; + in += 1; + } + + if (n_left) + { + __m128i r = aesni_gcm_load_partial ((__m128i *) in, n_left); + T = ghash_mul (aesni_gcm_bswap (r) ^ T, kd->Hi[0]); + } + return T; +} + +static_always_inline __m128i +aesni_gcm_calc (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, + __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv, + int rounds, int n, int last_block_bytes, int with_ghash, + int is_encrypt) +{ + __m128i r[n]; + ghash_data_t _gd = { }, *gd = &_gd; + const __m128i *k = kd->Ke; + int hidx = is_encrypt ? 4 : n, didx = 0; + + _mm_prefetch (inv + 4, _MM_HINT_T0); + + /* AES rounds 0 and 1 */ + aesni_gcm_enc_first_round (r, Y, ctr, k[0], n); + aesni_gcm_enc_round (r, k[1], n); + + /* load data - decrypt round */ + if (is_encrypt == 0) + aesni_gcm_load (d, inv, n, last_block_bytes); + + /* GHASH multiply block 1 */ + if (with_ghash) + ghash_mul_first (gd, aesni_gcm_bswap (d[didx++]) ^ T, kd->Hi[--hidx]); + + /* AES rounds 2 and 3 */ + aesni_gcm_enc_round (r, k[2], n); + aesni_gcm_enc_round (r, k[3], n); + + /* GHASH multiply block 2 */ + if (with_ghash && hidx) + ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); + + /* AES rounds 4 and 5 */ + aesni_gcm_enc_round (r, k[4], n); + aesni_gcm_enc_round (r, k[5], n); + + /* GHASH multiply block 3 */ + if (with_ghash && hidx) + ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); + + /* AES rounds 6 and 7 */ + aesni_gcm_enc_round (r, k[6], n); + aesni_gcm_enc_round (r, k[7], n); + + /* GHASH multiply block 4 */ + if (with_ghash && hidx) + ghash_mul_next (gd, aesni_gcm_bswap (d[didx++]), kd->Hi[--hidx]); + + /* AES rounds 8 and 9 */ + aesni_gcm_enc_round (r, k[8], n); + aesni_gcm_enc_round (r, k[9], n); + + /* GHASH reduce 1st step */ + if (with_ghash) + ghash_reduce (gd); + + /* load data - encrypt round */ + if (is_encrypt) + aesni_gcm_load (d, inv, n, last_block_bytes); + + /* GHASH reduce 2nd step */ + if (with_ghash) + ghash_reduce2 (gd); + + /* AES last round(s) */ + aesni_gcm_enc_last_round (r, d, k, rounds, n); + + /* store data */ + aesni_gcm_store (d, outv, n, last_block_bytes); + + /* GHASH final step */ + if (with_ghash) + T = ghash_final (gd); + + return T; +} + +static_always_inline __m128i +aesni_gcm_calc_double (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, + __m128i * Y, u32 * ctr, __m128i * inv, __m128i * outv, + int rounds, int is_encrypt) +{ + __m128i r[4]; + ghash_data_t _gd, *gd = &_gd; + const __m128i *k = kd->Ke; + + /* AES rounds 0 and 1 */ + aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4); + aesni_gcm_enc_round (r, k[1], 4); + + /* load 4 blocks of data - decrypt round */ + if (is_encrypt == 0) + aesni_gcm_load (d, inv, 4, 0); + + /* GHASH multiply block 0 */ + ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[7]); + + /* AES rounds 2 and 3 */ + aesni_gcm_enc_round (r, k[2], 4); + aesni_gcm_enc_round (r, k[3], 4); + + /* GHASH multiply block 1 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[6]); + + /* AES rounds 4 and 5 */ + aesni_gcm_enc_round (r, k[4], 4); + aesni_gcm_enc_round (r, k[5], 4); + + /* GHASH multiply block 2 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[5]); + + /* AES rounds 6 and 7 */ + aesni_gcm_enc_round (r, k[6], 4); + aesni_gcm_enc_round (r, k[7], 4); + + /* GHASH multiply block 3 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[4]); + + /* AES rounds 8 and 9 */ + aesni_gcm_enc_round (r, k[8], 4); + aesni_gcm_enc_round (r, k[9], 4); + + /* load 4 blocks of data - encrypt round */ + if (is_encrypt) + aesni_gcm_load (d, inv, 4, 0); + + /* AES last round(s) */ + aesni_gcm_enc_last_round (r, d, k, rounds, 4); + + /* store 4 blocks of data */ + aesni_gcm_store (d, outv, 4, 0); + + /* load next 4 blocks of data data - decrypt round */ + if (is_encrypt == 0) + aesni_gcm_load (d, inv + 4, 4, 0); + + /* GHASH multiply block 4 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[0]), kd->Hi[3]); + + /* AES rounds 0, 1 and 2 */ + aesni_gcm_enc_first_round (r, Y, ctr, k[0], 4); + aesni_gcm_enc_round (r, k[1], 4); + aesni_gcm_enc_round (r, k[2], 4); + + /* GHASH multiply block 5 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[2]); + + /* AES rounds 3 and 4 */ + aesni_gcm_enc_round (r, k[3], 4); + aesni_gcm_enc_round (r, k[4], 4); + + /* GHASH multiply block 6 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[1]); + + /* AES rounds 5 and 6 */ + aesni_gcm_enc_round (r, k[5], 4); + aesni_gcm_enc_round (r, k[6], 4); + + /* GHASH multiply block 7 */ + ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[0]); + + /* AES rounds 7 and 8 */ + aesni_gcm_enc_round (r, k[7], 4); + aesni_gcm_enc_round (r, k[8], 4); + + /* GHASH reduce 1st step */ + ghash_reduce (gd); + + /* AES round 9 */ + aesni_gcm_enc_round (r, k[9], 4); + + /* load data - encrypt round */ + if (is_encrypt) + aesni_gcm_load (d, inv + 4, 4, 0); + + /* GHASH reduce 2nd step */ + ghash_reduce2 (gd); + + /* AES last round(s) */ + aesni_gcm_enc_last_round (r, d, k, rounds, 4); + + /* store data */ + aesni_gcm_store (d, outv + 4, 4, 0); + + /* GHASH final step */ + return ghash_final (gd); +} + +static_always_inline __m128i +aesni_gcm_ghash_last (__m128i T, aes_gcm_key_data_t * kd, __m128i * d, + int n_blocks, int n_bytes) +{ + ghash_data_t _gd, *gd = &_gd; + + if (n_bytes) + d[n_blocks - 1] = aesni_gcm_byte_mask (d[n_blocks - 1], n_bytes); + + ghash_mul_first (gd, aesni_gcm_bswap (d[0]) ^ T, kd->Hi[n_blocks - 1]); + if (n_blocks > 1) + ghash_mul_next (gd, aesni_gcm_bswap (d[1]), kd->Hi[n_blocks - 2]); + if (n_blocks > 2) + ghash_mul_next (gd, aesni_gcm_bswap (d[2]), kd->Hi[n_blocks - 3]); + if (n_blocks > 3) + ghash_mul_next (gd, aesni_gcm_bswap (d[3]), kd->Hi[n_blocks - 4]); + ghash_reduce (gd); + ghash_reduce2 (gd); + return ghash_final (gd); +} + + +static_always_inline __m128i +aesni_gcm_enc (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in, + const u8 * out, u32 n_left, int rounds) +{ + __m128i *inv = (__m128i *) in, *outv = (__m128i *) out; + __m128i d[4]; + u32 ctr = 1; + + if (n_left == 0) + return T; + + if (n_left < 64) + { + if (n_left > 48) + { + n_left &= 0x0f; + aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left, + /* with_ghash */ 0, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 4, n_left); + } + else if (n_left > 32) + { + n_left &= 0x0f; + aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left, + /* with_ghash */ 0, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 3, n_left); + } + else if (n_left > 16) + { + n_left &= 0x0f; + aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left, + /* with_ghash */ 0, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 2, n_left); + } + else + { + n_left &= 0x0f; + aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, + /* with_ghash */ 0, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 1, n_left); + } + } + + aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, + /* with_ghash */ 0, /* is_encrypt */ 1); + + /* next */ + n_left -= 64; + outv += 4; + inv += 4; + + while (n_left >= 128) + { + T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds, + /* is_encrypt */ 1); + + /* next */ + n_left -= 128; + outv += 8; + inv += 8; + } + + if (n_left >= 64) + { + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, + /* with_ghash */ 1, /* is_encrypt */ 1); + + /* next */ + n_left -= 64; + outv += 4; + inv += 4; + } + + if (n_left == 0) + return aesni_gcm_ghash_last (T, kd, d, 4, 0); + + if (n_left > 48) + { + n_left &= 0x0f; + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, n_left, + /* with_ghash */ 1, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 4, n_left); + } + + if (n_left > 32) + { + n_left &= 0x0f; + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, n_left, + /* with_ghash */ 1, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 3, n_left); + } + + if (n_left > 16) + { + n_left &= 0x0f; + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, n_left, + /* with_ghash */ 1, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 2, n_left); + } + + n_left &= 0x0f; + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, + /* with_ghash */ 1, /* is_encrypt */ 1); + return aesni_gcm_ghash_last (T, kd, d, 1, n_left); +} + +static_always_inline __m128i +aesni_gcm_dec (__m128i T, aes_gcm_key_data_t * kd, __m128i Y, const u8 * in, + const u8 * out, u32 n_left, int rounds) +{ + __m128i *inv = (__m128i *) in, *outv = (__m128i *) out; + __m128i d[8]; + u32 ctr = 1; + + while (n_left >= 128) + { + T = aesni_gcm_calc_double (T, kd, d, &Y, &ctr, inv, outv, rounds, + /* is_encrypt */ 0); + + /* next */ + n_left -= 128; + outv += 8; + inv += 8; + } + + if (n_left >= 64) + { + T = aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, 0, 1, 0); + + /* next */ + n_left -= 64; + outv += 4; + inv += 4; + } + + if (n_left == 0) + return T; + + if (n_left > 48) + return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 4, + n_left - 48, + /* with_ghash */ 1, /* is_encrypt */ 0); + + if (n_left > 32) + return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 3, + n_left - 32, + /* with_ghash */ 1, /* is_encrypt */ 0); + + if (n_left > 16) + return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 2, + n_left - 16, + /* with_ghash */ 1, /* is_encrypt */ 0); + + return aesni_gcm_calc (T, kd, d, &Y, &ctr, inv, outv, rounds, 1, n_left, + /* with_ghash */ 1, /* is_encrypt */ 0); +} + +static_always_inline int +aes_gcm (const u8 * in, u8 * out, const u8 * addt, const u8 * iv, u8 * tag, + u32 data_bytes, u32 aad_bytes, u8 tag_len, aes_gcm_key_data_t * kd, + int aes_rounds, int is_encrypt) +{ + int i; + __m128i r, Y0, T = { }; + ghash_data_t _gd, *gd = &_gd; + + _mm_prefetch (iv, _MM_HINT_T0); + _mm_prefetch (in, _MM_HINT_T0); + _mm_prefetch (in + CLIB_CACHE_LINE_BYTES, _MM_HINT_T0); + + /* calculate ghash for AAD - optimized for ipsec common cases */ + if (aad_bytes == 8) + T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 8); + else if (aad_bytes == 12) + T = aesni_gcm_ghash (T, kd, (__m128i *) addt, 12); + else + T = aesni_gcm_ghash (T, kd, (__m128i *) addt, aad_bytes); + + /* initalize counter */ + Y0 = _mm_loadu_si128 ((__m128i *) iv); + Y0 = _mm_insert_epi32 (Y0, clib_host_to_net_u32 (1), 3); + + /* ghash and encrypt/edcrypt */ + if (is_encrypt) + T = aesni_gcm_enc (T, kd, Y0, in, out, data_bytes, aes_rounds); + else + T = aesni_gcm_dec (T, kd, Y0, in, out, data_bytes, aes_rounds); + + _mm_prefetch (tag, _MM_HINT_T0); + + /* Finalize ghash */ + r[0] = data_bytes; + r[1] = aad_bytes; + + /* bytes to bits */ + r <<= 3; + + /* interleaved computation of final ghash and E(Y0, k) */ + ghash_mul_first (gd, r ^ T, kd->Hi[0]); + r = kd->Ke[0] ^ Y0; + for (i = 1; i < 5; i += 1) + r = _mm_aesenc_si128 (r, kd->Ke[i]); + ghash_reduce (gd); + ghash_reduce2 (gd); + for (; i < 9; i += 1) + r = _mm_aesenc_si128 (r, kd->Ke[i]); + T = ghash_final (gd); + for (; i < aes_rounds; i += 1) + r = _mm_aesenc_si128 (r, kd->Ke[i]); + r = _mm_aesenclast_si128 (r, kd->Ke[aes_rounds]); + T = aesni_gcm_bswap (T) ^ r; + + /* tag_len 16 -> 0 */ + tag_len &= 0xf; + + if (is_encrypt) + { + /* store tag */ + if (tag_len) + aesni_gcm_store_partial ((__m128i *) tag, T, (1 << tag_len) - 1); + else + _mm_storeu_si128 ((__m128i *) tag, T); + } + else + { + /* check tag */ + u16 tag_mask = tag_len ? (1 << tag_len) - 1 : 0xffff; + r = _mm_loadu_si128 ((__m128i *) tag); + if (_mm_movemask_epi8 (r == T) != tag_mask) + return 0; + } + return 1; +} + +static_always_inline u32 +aesni_ops_enc_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], + u32 n_ops, aesni_key_size_t ks) +{ + crypto_ia32_main_t *cm = &crypto_ia32_main; + vnet_crypto_op_t *op = ops[0]; + aes_gcm_key_data_t *kd; + u32 n_left = n_ops; + + +next: + kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; + aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, op->aad_len, + op->tag_len, kd, AESNI_KEY_ROUNDS (ks), /* is_encrypt */ 1); + op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; + + if (--n_left) + { + op += 1; + goto next; + } + + return n_ops; +} + +static_always_inline u32 +aesni_ops_dec_aes_gcm (vlib_main_t * vm, vnet_crypto_op_t * ops[], + u32 n_ops, aesni_key_size_t ks) +{ + crypto_ia32_main_t *cm = &crypto_ia32_main; + vnet_crypto_op_t *op = ops[0]; + aes_gcm_key_data_t *kd; + u32 n_left = n_ops; + int rv; + +next: + kd = (aes_gcm_key_data_t *) cm->key_data[op->key_index]; + rv = aes_gcm (op->src, op->dst, op->aad, op->iv, op->tag, op->len, + op->aad_len, op->tag_len, kd, AESNI_KEY_ROUNDS (ks), + /* is_encrypt */ 0); + + if (rv) + { + op->status = VNET_CRYPTO_OP_STATUS_COMPLETED; + } + else + { + op->status = VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC; + n_ops--; + } + + if (--n_left) + { + op += 1; + goto next; + } + + return n_ops; +} + +static_always_inline void * +aesni_gcm_key_exp (vnet_crypto_key_t * key, aesni_key_size_t ks) +{ + aes_gcm_key_data_t *kd; + __m128i H; + int i; + + kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES); + + /* expand AES key */ + aes_key_expand ((__m128i *) kd->Ke, key->data, ks); + + /* pre-calculate H */ + H = kd->Ke[0]; + for (i = 1; i < AESNI_KEY_ROUNDS (ks); i += 1) + H = _mm_aesenc_si128 (H, kd->Ke[i]); + H = _mm_aesenclast_si128 (H, kd->Ke[i]); + H = aesni_gcm_bswap (H); + ghash_precompute (H, (__m128i *) kd->Hi, 8); + return kd; +} + +#define foreach_aesni_gcm_handler_type _(128) _(192) _(256) + +#define _(x) \ +static u32 aesni_ops_dec_aes_gcm_##x \ +(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ +{ return aesni_ops_dec_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); } \ +static u32 aesni_ops_enc_aes_gcm_##x \ +(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \ +{ return aesni_ops_enc_aes_gcm (vm, ops, n_ops, AESNI_KEY_##x); } \ +static void * aesni_gcm_key_exp_##x (vnet_crypto_key_t *key) \ +{ return aesni_gcm_key_exp (key, AESNI_KEY_##x); } + +foreach_aesni_gcm_handler_type; +#undef _ + +clib_error_t * +#ifdef __AVX512F__ +crypto_ia32_aesni_gcm_init_avx512 (vlib_main_t * vm) +#elif __AVX2__ +crypto_ia32_aesni_gcm_init_avx2 (vlib_main_t * vm) +#else +crypto_ia32_aesni_gcm_init_sse42 (vlib_main_t * vm) +#endif +{ + crypto_ia32_main_t *cm = &crypto_ia32_main; + +#define _(x) \ + vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ + VNET_CRYPTO_OP_AES_##x##_GCM_ENC, \ + aesni_ops_enc_aes_gcm_##x); \ + vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \ + VNET_CRYPTO_OP_AES_##x##_GCM_DEC, \ + aesni_ops_dec_aes_gcm_##x); \ + cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_GCM] = aesni_gcm_key_exp_##x; + foreach_aesni_gcm_handler_type; +#undef _ + return 0; +} + +/* + * fd.io coding-style-patch-verification: ON + * + * Local Variables: + * eval: (c-set-style "gnu") + * End: + */ diff --git a/src/plugins/crypto_ia32/crypto_ia32.h b/src/plugins/crypto_ia32/crypto_ia32.h index 7acf0741ec6..f80a0d09a3b 100644 --- a/src/plugins/crypto_ia32/crypto_ia32.h +++ b/src/plugins/crypto_ia32/crypto_ia32.h @@ -39,6 +39,9 @@ clib_error_t *crypto_ia32_aesni_cbc_init_sse42 (vlib_main_t * vm); clib_error_t *crypto_ia32_aesni_cbc_init_avx2 (vlib_main_t * vm); clib_error_t *crypto_ia32_aesni_cbc_init_avx512 (vlib_main_t * vm); +clib_error_t *crypto_ia32_aesni_gcm_init_sse42 (vlib_main_t * vm); +clib_error_t *crypto_ia32_aesni_gcm_init_avx2 (vlib_main_t * vm); +clib_error_t *crypto_ia32_aesni_gcm_init_avx512 (vlib_main_t * vm); #endif /* __crypto_ia32_h__ */ /* diff --git a/src/plugins/crypto_ia32/ghash.h b/src/plugins/crypto_ia32/ghash.h new file mode 100644 index 00000000000..0b2f629e28a --- /dev/null +++ b/src/plugins/crypto_ia32/ghash.h @@ -0,0 +1,253 @@ +/* + *------------------------------------------------------------------ + * Copyright (c) 2019 Cisco and/or its affiliates. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at: + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + *------------------------------------------------------------------ + */ + +/* + *------------------------------------------------------------------ + * Copyright(c) 2018, Intel Corporation All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE, + * DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *------------------------------------------------------------------ + */ + +/* + * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk, + * Vinodh Gopal, James Guilford, Tomasz Kantecki + * + * References: + * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on + * Intel Architecture Processors. August, 2010 + * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on + * Intel Architecture Processors. October, 2012. + * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git + * + * Definitions: + * GF Galois Extension Field GF(2^128) - finite field where elements are + * represented as polynomials with coefficients in GF(2) with the + * highest degree of 127. Polynomials are represented as 128-bit binary + * numbers where each bit represents one coefficient. + * e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011. + * H hash key (128 bit) + * POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1 + * RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1 + * + addition in GF, which equals to XOR operation + * * multiplication in GF + * + * GF multiplication consists of 2 steps: + * - carry-less multiplication of two 128-bit operands into 256-bit result + * - reduction of 256-bit result into 128-bit with modulo POLY + * + * GHash is calculated on 128-bit blocks of data according to the following + * formula: + * GH = (GH + data) * hash_key + * + * To avoid bit-reflection of data, this code uses GF multipication + * with reversed polynomial: + * a * b * x^-127 mod RPOLY + * + * To improve computation speed table Hi is precomputed with powers of H', + * where H' is calculated as H<<1 mod RPOLY. + * This allows us to improve performance by deferring reduction. For example + * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do: + * + * __i128 Hi[4]; + * ghash_precompute (H, Hi, 4); + * + * ghash_data_t _gd, *gd = &_gd; + * ghash_mul_first (gd, GH ^ b0, Hi[3]); + * ghash_mul_next (gd, b1, Hi[2]); + * ghash_mul_next (gd, b2, Hi[1]); + * ghash_mul_next (gd, b3, Hi[0]); + * ghash_reduce (gd); + * ghash_reduce2 (gd); + * GH = ghash_final (gd); + * + * Reduction step is split into 3 functions so it can be better interleaved + * with other code, (i.e. with AES computation). + */ + +#ifndef __ghash_h__ +#define __ghash_h__ + +/* on AVX-512 systems we can save a clock cycle by using ternary logic + instruction to calculate a XOR b XOR c */ +static_always_inline __m128i +ghash_xor3 (__m128i a, __m128i b, __m128i c) +{ +#if defined (__AVX512F__) + return _mm_ternarylogic_epi32 (a, b, c, 0x96); +#endif + return a ^ b ^ c; +} + +typedef struct +{ + __m128i mid, hi, lo, tmp_lo, tmp_hi; + int pending; +} ghash_data_t; + +static const __m128i ghash_poly = { 1, 0xC200000000000000 }; +static const __m128i ghash_poly2 = { 0x1C2000000, 0xC200000000000000 }; + +static_always_inline void +ghash_mul_first (ghash_data_t * gd, __m128i a, __m128i b) +{ + /* a1 * b1 */ + gd->hi = _mm_clmulepi64_si128 (a, b, 0x11); + /* a0 * b0 */ + gd->lo = _mm_clmulepi64_si128 (a, b, 0x00); + /* a0 * b1 ^ a1 * b0 */ + gd->mid = (_mm_clmulepi64_si128 (a, b, 0x01) ^ + _mm_clmulepi64_si128 (a, b, 0x10)); + + /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that + there is no pending data in tmp_lo and tmp_hi */ + gd->pending = 0; +} + +static_always_inline void +ghash_mul_next (ghash_data_t * gd, __m128i a, __m128i b) +{ + /* a1 * b1 */ + __m128i hi = _mm_clmulepi64_si128 (a, b, 0x11); + /* a0 * b0 */ + __m128i lo = _mm_clmulepi64_si128 (a, b, 0x00); + + /* this branch will be optimized out by the compiler, and it allows us to + reduce number of XOR operations by using ternary logic */ + if (gd->pending) + { + /* there is peding data from previous invocation so we can XOR */ + gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, hi); + gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, lo); + gd->pending = 0; + } + else + { + /* there is no peding data from previous invocation so we postpone XOR */ + gd->tmp_hi = hi; + gd->tmp_lo = lo; + gd->pending = 1; + } + + /* gd->mid ^= a0 * b1 ^ a1 * b0 */ + gd->mid = ghash_xor3 (gd->mid, + _mm_clmulepi64_si128 (a, b, 0x01), + _mm_clmulepi64_si128 (a, b, 0x10)); +} + +static_always_inline void +ghash_reduce (ghash_data_t * gd) +{ + __m128i r; + + /* Final combination: + gd->lo ^= gd->mid << 64 + gd->hi ^= gd->mid >> 64 */ + __m128i midl = _mm_slli_si128 (gd->mid, 8); + __m128i midr = _mm_srli_si128 (gd->mid, 8); + + if (gd->pending) + { + gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, midl); + gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, midr); + } + else + { + gd->lo ^= midl; + gd->hi ^= midr; + } + + r = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x01); + gd->lo ^= _mm_slli_si128 (r, 8); +} + +static_always_inline void +ghash_reduce2 (ghash_data_t * gd) +{ + gd->tmp_lo = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x00); + gd->tmp_hi = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x10); +} + +static_always_inline __m128i +ghash_final (ghash_data_t * gd) +{ + return ghash_xor3 (gd->hi, _mm_srli_si128 (gd->tmp_lo, 4), + _mm_slli_si128 (gd->tmp_hi, 4)); +} + +static_always_inline __m128i +ghash_mul (__m128i a, __m128i b) +{ + ghash_data_t _gd, *gd = &_gd; + ghash_mul_first (gd, a, b); + ghash_reduce (gd); + ghash_reduce2 (gd); + return ghash_final (gd); +} + +static_always_inline void +ghash_precompute (__m128i H, __m128i * Hi, int count) +{ + __m128i r; + /* calcullate H<<1 mod poly from the hash key */ + r = _mm_srli_epi64 (H, 63); + H = _mm_slli_epi64 (H, 1); + H |= _mm_slli_si128 (r, 8); + r = _mm_srli_si128 (r, 8); + r = _mm_shuffle_epi32 (r, 0x24); + /* *INDENT-OFF* */ + r = _mm_cmpeq_epi32 (r, (__m128i) (u32x4) {1, 0, 0, 1}); + /* *INDENT-ON* */ + Hi[0] = H ^ (r & ghash_poly); + + /* calculate H^(i + 1) */ + for (int i = 1; i < count; i++) + Hi[i] = ghash_mul (Hi[0], Hi[i - 1]); +} + +#endif /* __ghash_h__ */ + +/* + * fd.io coding-style-patch-verification: ON + * + * Local Variables: + * eval: (c-set-style "gnu") + * End: + */ diff --git a/src/plugins/crypto_ia32/main.c b/src/plugins/crypto_ia32/main.c index b31c9019495..cca5fb4cf64 100644 --- a/src/plugins/crypto_ia32/main.c +++ b/src/plugins/crypto_ia32/main.c @@ -86,6 +86,19 @@ crypto_ia32_init (vlib_main_t * vm) if (error) goto error; + if (clib_cpu_supports_pclmulqdq ()) + { + if (clib_cpu_supports_avx512f ()) + error = crypto_ia32_aesni_gcm_init_avx512 (vm); + else if (clib_cpu_supports_avx2 ()) + error = crypto_ia32_aesni_gcm_init_avx2 (vm); + else + error = crypto_ia32_aesni_gcm_init_sse42 (vm); + + if (error) + goto error; + } + vnet_crypto_register_key_handler (vm, cm->crypto_engine_index, crypto_ia32_key_handler); |