summaryrefslogtreecommitdiffstats
path: root/build-root/config.site
AgeCommit message (Expand)AuthorFilesLines
2019-11-26build: remove valgrind leftoversBenoƮt Ganne1-7/+0
2018-03-12License text cleanupDave Barach1-0/+14
2015-12-08Initial commit of vpp code.v1.0.0Ed Warnicke1-0/+105
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
/*
 *------------------------------------------------------------------
 * Copyright (c) 2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

/*
 *------------------------------------------------------------------
 *  Copyright(c) 2018, Intel Corporation All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
 *  DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *------------------------------------------------------------------
 */

/*
 * Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
 *                   Vinodh Gopal, James Guilford, Tomasz Kantecki
 *
 * References:
 * [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
 *     Intel Architecture Processors. August, 2010
 * [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
 *     Intel Architecture Processors. October, 2012.
 * [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
 *
 * Definitions:
 *  GF    Galois Extension Field GF(2^128) - finite field where elements are
 *        represented as polynomials with coefficients in GF(2) with the
 *        highest degree of 127. Polynomials are represented as 128-bit binary
 *        numbers where each bit represents one coefficient.
 *        e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
 *  H     hash key (128 bit)
 *  POLY  irreducible polynomial x^127 + x^7 + x^2 + x + 1
 *  RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
 *  +     addition in GF, which equals to XOR operation
 *  *     multiplication in GF
 *
 * GF multiplication consists of 2 steps:
 *  - carry-less multiplication of two 128-bit operands into 256-bit result
 *  - reduction of 256-bit result into 128-bit with modulo POLY
 *
 * GHash is calculated on 128-bit blocks of data according to the following
 * formula:
 *    GH = (GH + data) * hash_key
 *
 * To avoid bit-reflection of data, this code uses GF multipication
 * with reversed polynomial:
 *   a * b * x^-127 mod RPOLY
 *
 * To improve computation speed table Hi is precomputed with powers of H',
 * where H' is calculated as H<<1 mod RPOLY.
 * This allows us to improve performance by deferring reduction. For example
 * to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
 *
 * __i128 Hi[4];
 * ghash_precompute (H, Hi, 4);
 *
 * ghash_data_t _gd, *gd = &_gd;
 * ghash_mul_first (gd, GH ^ b0, Hi[3]);
 * ghash_mul_next (gd, b1, Hi[2]);
 * ghash_mul_next (gd, b2, Hi[1]);
 * ghash_mul_next (gd, b3, Hi[0]);
 * ghash_reduce (gd);
 * ghash_reduce2 (gd);
 * GH = ghash_final (gd);
 *
 * Reduction step is split into 3 functions so it can be better interleaved
 * with other code, (i.e. with AES computation).
 */

#ifndef __ghash_h__
#define __ghash_h__

static_always_inline u8x16
gmul_lo_lo (u8x16 a, u8x16 b)
{
#if defined (__PCLMUL__)
  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x00);
#elif defined (__ARM_FEATURE_CRYPTO)
  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
			    (poly64_t) vget_low_p64 ((poly64x2_t) b));
#endif
}

static_always_inline u8x16
gmul_hi_lo (u8x16 a, u8x16 b)
{
#if defined (__PCLMUL__)
  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x01);
#elif defined (__ARM_FEATURE_CRYPTO)
  return (u8x16) vmull_p64 ((poly64_t) vget_high_p64 ((poly64x2_t) a),
			    (poly64_t) vget_low_p64 ((poly64x2_t) b));
#endif
}

static_always_inline u8x16
gmul_lo_hi (u8x16 a, u8x16 b)
{
#if defined (__PCLMUL__)
  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x10);
#elif defined (__ARM_FEATURE_CRYPTO)
  return (u8x16) vmull_p64 ((poly64_t) vget_low_p64 ((poly64x2_t) a),
			    (poly64_t) vget_high_p64 ((poly64x2_t) b));
#endif
}

static_always_inline u8x16
gmul_hi_hi (u8x16 a, u8x16 b)
{
#if defined (__PCLMUL__)
  return (u8x16) _mm_clmulepi64_si128 ((__m128i) a, (__m128i) b, 0x11);
#elif defined (__ARM_FEATURE_CRYPTO)
  return (u8x16) vmull_high_p64 ((poly64x2_t) a, (poly64x2_t) b);
#endif
}

typedef struct
{
  u8x16 mid, hi, lo, tmp_lo, tmp_hi;
  int pending;
} ghash_data_t;

static const u8x16 ghash_poly = {
  0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
};

static const u8x16 ghash_poly2 = {
  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2
};

static_always_inline void
ghash_mul_first (ghash_data_t * gd, u8x16 a, u8x16 b)
{
  /* a1 * b1 */
  gd->hi = gmul_hi_hi (a, b);
  /* a0 * b0 */
  gd->lo = gmul_lo_lo (a, b);
  /* a0 * b1 ^ a1 * b0 */
  gd->mid = (gmul_hi_lo (a, b) ^ gmul_lo_hi (a, b));

  /* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
     there is no pending data in tmp_lo and tmp_hi */
  gd->pending = 0;
}

static_always_inline void
ghash_mul_next (ghash_data_t * gd, u8x16 a, u8x16 b)
{
  /* a1 * b1 */
  u8x16 hi = gmul_hi_hi (a, b);
  /* a0 * b0 */
  u8x16 lo = gmul_lo_lo (a, b);

  /* this branch will be optimized out by the compiler, and it allows us to
     reduce number of XOR operations by using ternary logic */
  if (gd->pending)
    {
      /* there is peding data from previous invocation so we can XOR */
      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, hi);
      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, lo);
      gd->pending = 0;
    }
  else
    {
      /* there is no peding data from previous invocation so we postpone XOR */
      gd->tmp_hi = hi;
      gd->tmp_lo = lo;
      gd->pending = 1;
    }

  /* gd->mid ^= a0 * b1 ^ a1 * b0  */
  gd->mid = u8x16_xor3 (gd->mid, gmul_hi_lo (a, b), gmul_lo_hi (a, b));
}

static_always_inline void
ghash_reduce (ghash_data_t * gd)
{
  u8x16 r;

  /* Final combination:
     gd->lo ^= gd->mid << 64
     gd->hi ^= gd->mid >> 64 */
  u8x16 midl = u8x16_word_shift_left (gd->mid, 8);
  u8x16 midr = u8x16_word_shift_right (gd->mid, 8);

  if (gd->pending)
    {
      gd->lo = u8x16_xor3 (gd->lo, gd->tmp_lo, midl);
      gd->hi = u8x16_xor3 (gd->hi, gd->tmp_hi, midr);
    }
  else
    {
      gd->lo ^= midl;
      gd->hi ^= midr;
    }
  r = gmul_hi_lo (ghash_poly2, gd->lo);
  gd->lo ^= u8x16_word_shift_left (r, 8);
}

static_always_inline void
ghash_reduce2 (ghash_data_t * gd)
{
  gd->tmp_lo = gmul_lo_lo (ghash_poly2, gd->lo);
  gd->tmp_hi = gmul_lo_hi (ghash_poly2, gd->lo);
}

static_always_inline u8x16
ghash_final (ghash_data_t * gd)
{
  return u8x16_xor3 (gd->hi, u8x16_word_shift_right (gd->tmp_lo, 4),
		     u8x16_word_shift_left (gd->tmp_hi, 4));
}

static_always_inline u8x16
ghash_mul (u8x16 a, u8x16 b)
{
  ghash_data_t _gd, *gd = &_gd;
  ghash_mul_first (gd, a, b);
  ghash_reduce (gd);
  ghash_reduce2 (gd);
  return ghash_final (gd);
}

#ifdef __VPCLMULQDQ__

static const u8x64 ghash4_poly2 = {
  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
  0x00, 0x00, 0x00, 0xc2, 0x01, 0x00, 0x00, 0x00,
  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc2,
};

typedef struct
{
  u8x64 hi, lo, mid, tmp_lo, tmp_hi;
  int pending;
} ghash4_data_t;

static_always_inline u8x64
gmul4_lo_lo (u8x64 a, u8x64 b)
{
  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x00);
}

static_always_inline u8x64
gmul4_hi_lo (u8x64 a, u8x64 b)
{
  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x01);
}

static_always_inline u8x64
gmul4_lo_hi (u8x64 a, u8x64 b)
{
  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x10);
}

static_always_inline u8x64
gmul4_hi_hi (u8x64 a, u8x64 b)
{
  return (u8x64) _mm512_clmulepi64_epi128 ((__m512i) a, (__m512i) b, 0x11);
}


static_always_inline void
ghash4_mul_first (ghash4_data_t * gd, u8x64 a, u8x64 b)
{
  gd->hi = gmul4_hi_hi (a, b);
  gd->lo = gmul4_lo_lo (a, b);
  gd->mid = (gmul4_hi_lo (a, b) ^ gmul4_lo_hi (a, b));
  gd->pending = 0;
}

static_always_inline void
ghash4_mul_next (ghash4_data_t * gd, u8x64 a, u8x64 b)
{
  u8x64 hi = gmul4_hi_hi (a, b);
  u8x64 lo = gmul4_lo_lo (a, b);

  if (gd->pending)
    {
      /* there is peding data from previous invocation so we can XOR */
      gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, hi);
      gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, lo);
      gd->pending = 0;
    }
  else
    {
      /* there is no peding data from previous invocation so we postpone XOR */
      gd->tmp_hi = hi;
      gd->tmp_lo = lo;
      gd->pending = 1;
    }
  gd->mid = u8x64_xor3 (gd->mid, gmul4_hi_lo (a, b), gmul4_lo_hi (a, b));
}

static_always_inline void
ghash4_reduce (ghash4_data_t * gd)
{
  u8x64 r;

  /* Final combination:
     gd->lo ^= gd->mid << 64
     gd->hi ^= gd->mid >> 64 */

  u8x64 midl = u8x64_word_shift_left (gd->mid, 8);
  u8x64 midr = u8x64_word_shift_right (gd->mid, 8);

  if (gd->pending)
    {
      gd->lo = u8x64_xor3 (gd->lo, gd->tmp_lo, midl);
      gd->hi = u8x64_xor3 (gd->hi, gd->tmp_hi, midr);
    }
  else
    {
      gd->lo ^= midl;
      gd->hi ^= midr;
    }

  r = gmul4_hi_lo (ghash4_poly2, gd->lo);
  gd->lo ^= u8x64_word_shift_left (r, 8);

}

static_always_inline void
ghash4_reduce2 (ghash4_data_t * gd)
{
  gd->tmp_lo = gmul4_lo_lo (ghash4_poly2, gd->lo);
  gd->tmp_hi = gmul4_lo_hi (ghash4_poly2, gd->lo);
}

static_always_inline u8x16
ghash4_final (ghash4_data_t * gd)
{
  u8x64 r;
  u8x32 t;

  r = u8x64_xor3 (gd->hi, u8x64_word_shift_right (gd->tmp_lo, 4),
		  u8x64_word_shift_left (gd->tmp_hi, 4));

  /* horizontal XOR of 4 128-bit lanes */
  t = u8x64_extract_lo (r) ^ u8x64_extract_hi (r);
  return u8x32_extract_hi (t) ^ u8x32_extract_lo (t);
}
#endif

static_always_inline void
ghash_precompute (u8x16 H, u8x16 * Hi, int n)
{
  u8x16 r8;
  u32x4 r32;
  /* calcullate H<<1 mod poly from the hash key */
  r8 = (u8x16) ((u64x2) H >> 63);
  H = (u8x16) ((u64x2) H << 1);
  H |= u8x16_word_shift_left (r8, 8);
  r32 = (u32x4) u8x16_word_shift_right (r8, 8);
#ifdef __SSE2__
  r32 = u32x4_shuffle (r32, 0, 1, 2, 0);
#else
  r32[3] = r32[0];
#endif
  /* *INDENT-OFF* */
  r32 = r32 == (u32x4) {1, 0, 0, 1};
  /* *INDENT-ON* */
  Hi[n - 1] = H = H ^ ((u8x16) r32 & ghash_poly);

  /* calculate H^(i + 1) */
  for (int i = n - 2; i >= 0; i--)
    Hi[i] = ghash_mul (H, Hi[i + 1]);
}

#endif /* __ghash_h__ */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */