aboutsummaryrefslogtreecommitdiffstats
path: root/src/plugins/CMakeLists.txt
AgeCommit message (Expand)AuthorFilesLines
2018-08-26cmake: move functions to src/cmakeDamjan Marion1-41/+1
2018-08-25cmake: handle api_test_plugins in add_vpp_plugin macroDamjan Marion1-19/+11
2018-08-25cmake: improve add_vpp_plugin macroDamjan Marion1-7/+21
2018-08-22CMake: install .json files in ROOT/share/... for papi.Neale Ranns1-3/+3
2018-08-17CMake as an alternative to autotools (experimental)Damjan Marion1-0/+63
'#n133'>133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
  Copyright (c) 2011 Cisco and/or its affiliates.

  * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
*/

#include <vppinfra/anneal.h>

/*
 * Optimize an objective function by simulated annealing
 *
 * Here are a couple of short, easily-understood
 * descriptions of simulated annealing:
 *
 * http://www.cs.sandia.gov/opt/survey/sa.html
 * Numerical Recipes in C, 2nd ed., 444ff
 *
 * The description in the Wikipedia is not helpful.
 *
 * The algorithm tries to produce a decent answer to combinatorially
 * explosive optimization problems by analogy to slow cooling
 * of hot metal, aka annealing.
 *
 * There are (at least) three problem-dependent annealing parameters
 * to consider:
 *
 * t0, the initial "temperature. Should be set so that the probability
 * of accepting a transition to a higher cost configuration is
 * initially about 0.8.
 *
 * ntemps, the number of temperatures to use. Each successive temperature
 * is some fraction of the previous temperature.
 *
 * nmoves_per_temp, the number of configurations to try at each temperature
 *
 * It is a black art to set ntemps, nmoves_per_temp, and the rate
 * at which the temperature drops. Go too fast with too few iterations,
 * and the computation falls into a local minimum instead of the
 * (desired) global minimum.
 */

void
clib_anneal (clib_anneal_param_t * p)
{
  f64 t;
  f64 cost, prev_cost, delta_cost, initial_cost, best_cost;
  f64 random_accept, delta_cost_over_t;
  f64 total_increase = 0.0, average_increase;
  u32 i, j;
  u32 number_of_increases = 0;
  u32 accepted_this_temperature;
  u32 best_saves_this_temperature;
  int accept;

  t = p->initial_temperature;
  best_cost = initial_cost = prev_cost = p->anneal_metric (p->opaque);
  p->anneal_save_best_configuration (p->opaque);

  if (p->flags & CLIB_ANNEAL_VERBOSE)
    fformat (stdout, "Initial cost %.2f\n", initial_cost);

  for (i = 0; i < p->number_of_temperatures; i++)
    {
      accepted_this_temperature = 0;
      best_saves_this_temperature = 0;

      p->anneal_restore_best_configuration (p->opaque);
      cost = best_cost;

      for (j = 0; j < p->number_of_configurations_per_temperature; j++)
	{
	  p->anneal_new_configuration (p->opaque);
	  cost = p->anneal_metric (p->opaque);

	  delta_cost = cost - prev_cost;

	  /* cost function looks better, accept this move */
	  if (p->flags & CLIB_ANNEAL_MINIMIZE)
	    accept = delta_cost < 0.0;
	  else
	    accept = delta_cost > 0.0;

	  if (accept)
	    {
	      if (p->flags & CLIB_ANNEAL_MINIMIZE)
		if (cost < best_cost)
		  {
		    if (p->flags & CLIB_ANNEAL_VERBOSE)
		      fformat (stdout, "New best cost %.2f\n", cost);
		    best_cost = cost;
		    p->anneal_save_best_configuration (p->opaque);
		    best_saves_this_temperature++;
		  }

	      accepted_this_temperature++;
	      prev_cost = cost;
	      continue;
	    }

	  /* cost function worse, keep stats to suggest t0 */
	  total_increase += (p->flags & CLIB_ANNEAL_MINIMIZE) ?
	    delta_cost : -delta_cost;

	  number_of_increases++;

	  /*
	   * Accept a higher cost with Pr { e^(-(delta_cost / T)) },
	   * equivalent to rnd[0,1] < e^(-(delta_cost / T))
	   *
	   * AKA, the Boltzmann factor.
	   */
	  random_accept = random_f64 (&p->random_seed);

	  delta_cost_over_t = delta_cost / t;

	  if (random_accept < exp (-delta_cost_over_t))
	    {
	      accepted_this_temperature++;
	      prev_cost = cost;
	      continue;
	    }
	  p->anneal_restore_previous_configuration (p->opaque);
	}

      if (p->flags & CLIB_ANNEAL_VERBOSE)
	{
	  fformat (stdout, "Temp %.2f, cost %.2f, accepted %d, bests %d\n", t,
		   prev_cost, accepted_this_temperature,
		   best_saves_this_temperature);
	  fformat (stdout, "Improvement %.2f\n", initial_cost - prev_cost);
	  fformat (stdout, "-------------\n");
	}

      t = t * p->temperature_step;
    }

  /*
   * Empirically, one wants the probability of accepting a move
   * at the initial temperature to be about 0.8.
   */
  average_increase = total_increase / (f64) number_of_increases;
  p->suggested_initial_temperature = average_increase / 0.22;	/* 0.22 = -ln (0.8) */

  p->final_temperature = t;
  p->final_metric = p->anneal_metric (p->opaque);

  if (p->flags & CLIB_ANNEAL_VERBOSE)
    {
      fformat (stdout, "Average cost increase from a bad move: %.2f\n",
	       average_increase);
      fformat (stdout, "Suggested t0 = %.2f\n",
	       p->suggested_initial_temperature);
    }
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */