summaryrefslogtreecommitdiffstats
path: root/src/vlib/pci/pci_config.h
AgeCommit message (Collapse)AuthorFilesLines
2018-02-26vlib: fix formatting in pci_config.hDamjan Marion1-103/+111
Change-Id: I5ce40f82e42be19f0f4d882ab194e5a25980adc1 Signed-off-by: Damjan Marion <damarion@cisco.com>
2017-11-28net/virtio: support modern device idGabriel Ganne1-0/+7
Add legacy and modern macros to pci_config header. This follows dpdk commit: 4c7903658f6b5a8f4901224ef405445541b91e4a And PCI Device Conformance doc : docs.oasis-open.org/virtio/virtio/v1.0/cs02/virtio-v1.0-cs02.html#x1-640001 Change-Id: Iacd40ea8c06f220736ca0bc7ce68bcf1e55b68f6 Signed-off-by: Gabriel Ganne <gabriel.ganne@enea.com>
2016-12-28Reorganize source tree to use single autotools instanceDamjan Marion1-0/+731
Change-Id: I7b51f88292e057c6443b12224486f2d0c9f8ae23 Signed-off-by: Damjan Marion <damarion@cisco.com>
25'>125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
/*
 * Copyright (c) 2021 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <quic/quic.h>
#include <quic/quic_crypto.h>
#include <vnet/session/session.h>

#include <quicly.h>
#include <picotls/openssl.h>
#include <pthread.h>

#define QUICLY_EPOCH_1RTT 3

extern quic_main_t quic_main;
extern quic_ctx_t *quic_get_conn_ctx (quicly_conn_t * conn);
vnet_crypto_main_t *cm = &crypto_main;

typedef struct crypto_key_
{
  vnet_crypto_alg_t algo;
  u8 key[32];
  u16 key_len;
} crypto_key_t;

struct cipher_context_t
{
  ptls_cipher_context_t super;
  vnet_crypto_op_t op;
  vnet_crypto_op_id_t id;
  crypto_key_t key;
};

struct aead_crypto_context_t
{
  ptls_aead_context_t super;
  EVP_CIPHER_CTX *evp_ctx;
  uint8_t static_iv[PTLS_MAX_IV_SIZE];
  vnet_crypto_op_t op;
  crypto_key_t key;

  vnet_crypto_op_id_t id;
  uint8_t iv[PTLS_MAX_IV_SIZE];
};

static int
quic_crypto_setup_cipher (quicly_crypto_engine_t *engine, quicly_conn_t *conn,
			  size_t epoch, int is_enc,
			  ptls_cipher_context_t **header_protect_ctx,
			  ptls_aead_context_t **packet_protect_ctx,
			  ptls_aead_algorithm_t *aead,
			  ptls_hash_algorithm_t *hash, const void *secret)
{
  uint8_t hpkey[PTLS_MAX_SECRET_SIZE];
  int ret;

  *packet_protect_ctx = NULL;
  /* generate new header protection key */
  if (header_protect_ctx != NULL)
    {
      *header_protect_ctx = NULL;
      ret =
	ptls_hkdf_expand_label (hash, hpkey, aead->ctr_cipher->key_size,
				ptls_iovec_init (secret, hash->digest_size),
				"quic hp", ptls_iovec_init (NULL, 0), NULL);
      if (ret)
	goto Exit;
      *header_protect_ctx = ptls_cipher_new (aead->ctr_cipher, is_enc, hpkey);
      if (NULL == *header_protect_ctx)
	{
	  ret = PTLS_ERROR_NO_MEMORY;
	  goto Exit;
	}
    }

  /* generate new AEAD context */
  *packet_protect_ctx =
    ptls_aead_new (aead, hash, is_enc, secret, QUICLY_AEAD_BASE_LABEL);
  if (NULL == *packet_protect_ctx)
    {
      ret = PTLS_ERROR_NO_MEMORY;
      goto Exit;
    }

  if (epoch == QUICLY_EPOCH_1RTT && !is_enc)
    {
      quic_ctx_t *qctx = quic_get_conn_ctx (conn);
      if (qctx->ingress_keys.aead_ctx != NULL)
	qctx->key_phase_ingress++;

      qctx->ingress_keys.aead_ctx = *packet_protect_ctx;
      if (header_protect_ctx != NULL)
	qctx->ingress_keys.hp_ctx = *header_protect_ctx;
    }

  ret = 0;

Exit:
  if (ret)
    {
      if (*packet_protect_ctx != NULL)
	{
	  ptls_aead_free (*packet_protect_ctx);
	  *packet_protect_ctx = NULL;
	}
      if (header_protect_ctx && *header_protect_ctx != NULL)
	{
	  ptls_cipher_free (*header_protect_ctx);
	  *header_protect_ctx = NULL;
	}
    }
  ptls_clear_memory (hpkey, sizeof (hpkey));
  return ret;
}

static u32
quic_crypto_set_key (crypto_key_t *key)
{
  u8 thread_index = vlib_get_thread_index ();
  u32 key_id = quic_main.per_thread_crypto_key_indices[thread_index];
  vnet_crypto_key_t *vnet_key = vnet_crypto_get_key (key_id);
  vlib_main_t *vm = vlib_get_main ();
  vnet_crypto_engine_t *engine;

  vec_foreach (engine, cm->engines)
    if (engine->key_op_handler)
      engine->key_op_handler (vm, VNET_CRYPTO_KEY_OP_DEL, key_id);

  vnet_key->alg = key->algo;
  clib_memcpy (vnet_key->data, key->key, key->key_len);

  vec_foreach (engine, cm->engines)
    if (engine->key_op_handler)
      engine->key_op_handler (vm, VNET_CRYPTO_KEY_OP_ADD, key_id);

  return key_id;
}

static size_t
quic_crypto_aead_decrypt (quic_ctx_t *qctx, ptls_aead_context_t *_ctx,
			  void *_output, const void *input, size_t inlen,
			  uint64_t decrypted_pn, const void *aad,
			  size_t aadlen)
{
  vlib_main_t *vm = vlib_get_main ();

  struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *) _ctx;

  vnet_crypto_op_init (&ctx->op, ctx->id);
  ctx->op.aad = (u8 *) aad;
  ctx->op.aad_len = aadlen;
  ctx->op.iv = ctx->iv;
  ptls_aead__build_iv (ctx->super.algo, ctx->op.iv, ctx->static_iv,
		       decrypted_pn);
  ctx->op.src = (u8 *) input;
  ctx->op.dst = _output;
  ctx->op.key_index = quic_crypto_set_key (&ctx->key);
  ctx->op.len = inlen - ctx->super.algo->tag_size;
  ctx->op.tag_len = ctx->super.algo->tag_size;
  ctx->op.tag = ctx->op.src + ctx->op.len;

  vnet_crypto_process_ops (vm, &(ctx->op), 1);

  return ctx->op.len;
}

void
quic_crypto_decrypt_packet (quic_ctx_t * qctx, quic_rx_packet_ctx_t * pctx)
{
  ptls_cipher_context_t *header_protection = NULL;
  ptls_aead_context_t *aead = NULL;
  int pn;

  /* Long Header packets are not decrypted by vpp */
  if (QUICLY_PACKET_IS_LONG_HEADER (pctx->packet.octets.base[0]))
    return;

  uint64_t next_expected_packet_number =
    quicly_get_next_expected_packet_number (qctx->conn);
  if (next_expected_packet_number == UINT64_MAX)
    return;

  aead = qctx->ingress_keys.aead_ctx;
  header_protection = qctx->ingress_keys.hp_ctx;

  if (!aead || !header_protection)
    return;

  size_t encrypted_len = pctx->packet.octets.len - pctx->packet.encrypted_off;
  uint8_t hpmask[5] = { 0 };
  uint32_t pnbits = 0;
  size_t pnlen, ptlen, i;

  /* decipher the header protection, as well as obtaining pnbits, pnlen */
  if (encrypted_len < header_protection->algo->iv_size + QUICLY_MAX_PN_SIZE)
    return;
  ptls_cipher_init (header_protection,
		    pctx->packet.octets.base + pctx->packet.encrypted_off +
		    QUICLY_MAX_PN_SIZE);
  ptls_cipher_encrypt (header_protection, hpmask, hpmask, sizeof (hpmask));
  pctx->packet.octets.base[0] ^=
    hpmask[0] & (QUICLY_PACKET_IS_LONG_HEADER (pctx->packet.octets.base[0]) ?
		 0xf : 0x1f);
  pnlen = (pctx->packet.octets.base[0] & 0x3) + 1;
  for (i = 0; i != pnlen; ++i)
    {
      pctx->packet.octets.base[pctx->packet.encrypted_off + i] ^=
	hpmask[i + 1];
      pnbits =
	(pnbits << 8) | pctx->packet.octets.base[pctx->packet.encrypted_off +
						 i];
    }

  size_t aead_off = pctx->packet.encrypted_off + pnlen;

  pn =
    quicly_determine_packet_number (pnbits, pnlen * 8,
				    next_expected_packet_number);

  int key_phase_bit =
    (pctx->packet.octets.base[0] & QUICLY_KEY_PHASE_BIT) != 0;

  if (key_phase_bit != (qctx->key_phase_ingress & 1))
    {
      pctx->packet.octets.base[0] ^=
	hpmask[0] &
	(QUICLY_PACKET_IS_LONG_HEADER (pctx->packet.octets.base[0]) ? 0xf :
	 0x1f);
      for (i = 0; i != pnlen; ++i)
	{
	  pctx->packet.octets.base[pctx->packet.encrypted_off + i] ^=
	    hpmask[i + 1];
	}
      return;
    }

  if ((ptlen = quic_crypto_aead_decrypt (
	 qctx, aead, pctx->packet.octets.base + aead_off,
	 pctx->packet.octets.base + aead_off,
	 pctx->packet.octets.len - aead_off, pn, pctx->packet.octets.base,
	 aead_off)) == SIZE_MAX)
    {
      fprintf (stderr,
	       "%s: aead decryption failure (pn: %d)\n", __FUNCTION__, pn);
      return;
    }

  pctx->packet.encrypted_off = aead_off;
  pctx->packet.octets.len = ptlen + aead_off;

  pctx->packet.decrypted.pn = pn;
  pctx->packet.decrypted.key_phase = qctx->key_phase_ingress;
}

void
quic_crypto_encrypt_packet (struct st_quicly_crypto_engine_t *engine,
			    quicly_conn_t *conn,
			    ptls_cipher_context_t *header_protect_ctx,
			    ptls_aead_context_t *packet_protect_ctx,
			    ptls_iovec_t datagram, size_t first_byte_at,
			    size_t payload_from, uint64_t packet_number,
			    int coalesced)
{
  vlib_main_t *vm = vlib_get_main ();

  struct cipher_context_t *hp_ctx =
    (struct cipher_context_t *) header_protect_ctx;
  struct aead_crypto_context_t *aead_ctx =
    (struct aead_crypto_context_t *) packet_protect_ctx;

  void *input = datagram.base + payload_from;
  void *output = input;
  size_t inlen =
    datagram.len - payload_from - packet_protect_ctx->algo->tag_size;
  const void *aad = datagram.base + first_byte_at;
  size_t aadlen = payload_from - first_byte_at;

  /* Build AEAD encrypt crypto operation */
  vnet_crypto_op_init (&aead_ctx->op, aead_ctx->id);
  aead_ctx->op.aad = (u8 *) aad;
  aead_ctx->op.aad_len = aadlen;
  aead_ctx->op.iv = aead_ctx->iv;
  ptls_aead__build_iv (aead_ctx->super.algo, aead_ctx->op.iv,
		       aead_ctx->static_iv, packet_number);
  aead_ctx->op.key_index = quic_crypto_set_key (&aead_ctx->key);
  aead_ctx->op.src = (u8 *) input;
  aead_ctx->op.dst = output;
  aead_ctx->op.len = inlen;
  aead_ctx->op.tag_len = aead_ctx->super.algo->tag_size;
  aead_ctx->op.tag = aead_ctx->op.src + inlen;
  vnet_crypto_process_ops (vm, &(aead_ctx->op), 1);
  assert (aead_ctx->op.status == VNET_CRYPTO_OP_STATUS_COMPLETED);

  /* Build Header protection crypto operation */
  ptls_aead_supplementary_encryption_t supp = {
    .ctx = header_protect_ctx,
    .input =
      datagram.base + payload_from - QUICLY_SEND_PN_SIZE + QUICLY_MAX_PN_SIZE
  };

  /* Build Header protection crypto operation */
  vnet_crypto_op_init (&hp_ctx->op, hp_ctx->id);
  memset (supp.output, 0, sizeof (supp.output));
  hp_ctx->op.iv = (u8 *) supp.input;
  hp_ctx->op.key_index = quic_crypto_set_key (&hp_ctx->key);
  ;
  hp_ctx->op.src = (u8 *) supp.output;
  hp_ctx->op.dst = (u8 *) supp.output;
  hp_ctx->op.len = sizeof (supp.output);
  vnet_crypto_process_ops (vm, &(hp_ctx->op), 1);
  assert (hp_ctx->op.status == VNET_CRYPTO_OP_STATUS_COMPLETED);

  datagram.base[first_byte_at] ^=
    supp.output[0] &
    (QUICLY_PACKET_IS_LONG_HEADER (datagram.base[first_byte_at]) ? 0xf : 0x1f);
  for (size_t i = 0; i != QUICLY_SEND_PN_SIZE; ++i)
    datagram.base[payload_from + i - QUICLY_SEND_PN_SIZE] ^=
      supp.output[i + 1];
}

static int
quic_crypto_cipher_setup_crypto (ptls_cipher_context_t *_ctx, int is_enc,
				 const void *key, const EVP_CIPHER *cipher)
{
  struct cipher_context_t *ctx = (struct cipher_context_t *) _ctx;

  vnet_crypto_alg_t algo;
  if (!strcmp (ctx->super.algo->name, "AES128-CTR"))
    {
      algo = VNET_CRYPTO_ALG_AES_128_CTR;
      ctx->id = is_enc ? VNET_CRYPTO_OP_AES_128_CTR_ENC :
			 VNET_CRYPTO_OP_AES_128_CTR_DEC;
      ptls_openssl_aes128ctr.setup_crypto (_ctx, is_enc, key);
    }
  else if (!strcmp (ctx->super.algo->name, "AES256-CTR"))
    {
      algo = VNET_CRYPTO_ALG_AES_256_CTR;
      ctx->id = is_enc ? VNET_CRYPTO_OP_AES_256_CTR_ENC :
			 VNET_CRYPTO_OP_AES_256_CTR_DEC;
      ptls_openssl_aes256ctr.setup_crypto (_ctx, is_enc, key);
    }
  else
    {
      QUIC_DBG (1, "%s, Invalid crypto cipher : ", __FUNCTION__,
		_ctx->algo->name);
      assert (0);
    }

  if (quic_main.vnet_crypto_enabled)
    {
      //       ctx->key_index =
      // 	quic_crypto_go_setup_key (algo, key, _ctx->algo->key_size);
      ctx->key.algo = algo;
      ctx->key.key_len = _ctx->algo->key_size;
      assert (ctx->key.key_len <= 32);
      clib_memcpy (&ctx->key.key, key, ctx->key.key_len);
    }

  return 0;
}

static int
quic_crypto_aes128ctr_setup_crypto (ptls_cipher_context_t * ctx, int is_enc,
				    const void *key)
{
  return quic_crypto_cipher_setup_crypto (ctx, 1, key, EVP_aes_128_ctr ());
}

static int
quic_crypto_aes256ctr_setup_crypto (ptls_cipher_context_t * ctx, int is_enc,
				    const void *key)
{
  return quic_crypto_cipher_setup_crypto (ctx, 1, key, EVP_aes_256_ctr ());
}

static int
quic_crypto_aead_setup_crypto (ptls_aead_context_t *_ctx, int is_enc,
			       const void *key, const void *iv,
			       const EVP_CIPHER *cipher)
{
  struct aead_crypto_context_t *ctx = (struct aead_crypto_context_t *) _ctx;

  vnet_crypto_alg_t algo;
  if (!strcmp (ctx->super.algo->name, "AES128-GCM"))
    {
      algo = VNET_CRYPTO_ALG_AES_128_GCM;
      ctx->id = is_enc ? VNET_CRYPTO_OP_AES_128_GCM_ENC :
			 VNET_CRYPTO_OP_AES_128_GCM_DEC;
      ptls_openssl_aes128gcm.setup_crypto (_ctx, is_enc, key, iv);
    }
  else if (!strcmp (ctx->super.algo->name, "AES256-GCM"))
    {
      algo = VNET_CRYPTO_ALG_AES_256_GCM;
      ctx->id = is_enc ? VNET_CRYPTO_OP_AES_256_GCM_ENC :
			 VNET_CRYPTO_OP_AES_256_GCM_DEC;
      ptls_openssl_aes256gcm.setup_crypto (_ctx, is_enc, key, iv);
    }
  else
    {
      QUIC_DBG (1, "%s, invalied aead cipher %s", __FUNCTION__,
		_ctx->algo->name);
      assert (0);
    }

  if (quic_main.vnet_crypto_enabled)
    {
      clib_memcpy (ctx->static_iv, iv, ctx->super.algo->iv_size);
      //       ctx->key_index =
      // 	quic_crypto_go_setup_key (algo, key, _ctx->algo->key_size);
      ctx->key.algo = algo;
      ctx->key.key_len = _ctx->algo->key_size;
      assert (ctx->key.key_len <= 32);
      clib_memcpy (&ctx->key.key, key, ctx->key.key_len);
    }

  return 0;
}

static int
quic_crypto_aead_aes128gcm_setup_crypto (ptls_aead_context_t *ctx, int is_enc,
					 const void *key, const void *iv)
{
  return quic_crypto_aead_setup_crypto (ctx, is_enc, key, iv,
					EVP_aes_128_gcm ());
}

static int
quic_crypto_aead_aes256gcm_setup_crypto (ptls_aead_context_t *ctx, int is_enc,
					 const void *key, const void *iv)
{
  return quic_crypto_aead_setup_crypto (ctx, is_enc, key, iv,
					EVP_aes_256_gcm ());
}

int
quic_encrypt_ticket_cb (ptls_encrypt_ticket_t *_self, ptls_t *tls,
			int is_encrypt, ptls_buffer_t *dst, ptls_iovec_t src)
{
  quic_session_cache_t *self = (void *) _self;
  int ret;

  if (is_encrypt)
    {

      /* replace the cached entry along with a newly generated session id */
      clib_mem_free (self->data.base);
      if ((self->data.base = clib_mem_alloc (src.len)) == NULL)
	return PTLS_ERROR_NO_MEMORY;

      ptls_get_context (tls)->random_bytes (self->id, sizeof (self->id));
      clib_memcpy (self->data.base, src.base, src.len);
      self->data.len = src.len;

      /* store the session id in buffer */
      if ((ret = ptls_buffer_reserve (dst, sizeof (self->id))) != 0)
	return ret;
      clib_memcpy (dst->base + dst->off, self->id, sizeof (self->id));
      dst->off += sizeof (self->id);
    }
  else
    {
      /* check if session id is the one stored in cache */
      if (src.len != sizeof (self->id))
	return PTLS_ERROR_SESSION_NOT_FOUND;
      if (clib_memcmp (self->id, src.base, sizeof (self->id)) != 0)
	return PTLS_ERROR_SESSION_NOT_FOUND;

      /* return the cached value */
      if ((ret = ptls_buffer_reserve (dst, self->data.len)) != 0)
	return ret;
      clib_memcpy (dst->base + dst->off, self->data.base, self->data.len);
      dst->off += self->data.len;
    }

  return 0;
}

ptls_cipher_algorithm_t quic_crypto_aes128ctr = {
  "AES128-CTR",
  PTLS_AES128_KEY_SIZE,
  1,
  PTLS_AES_IV_SIZE,
  sizeof (struct cipher_context_t),
  quic_crypto_aes128ctr_setup_crypto
};

ptls_cipher_algorithm_t quic_crypto_aes256ctr = {
  "AES256-CTR",
  PTLS_AES256_KEY_SIZE,
  1 /* block size */,
  PTLS_AES_IV_SIZE,
  sizeof (struct cipher_context_t),
  quic_crypto_aes256ctr_setup_crypto
};

ptls_aead_algorithm_t quic_crypto_aes128gcm = {
  "AES128-GCM",
  PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
  PTLS_AESGCM_INTEGRITY_LIMIT,
  &quic_crypto_aes128ctr,
  &ptls_openssl_aes128ecb,
  PTLS_AES128_KEY_SIZE,
  PTLS_AESGCM_IV_SIZE,
  PTLS_AESGCM_TAG_SIZE,
  sizeof (struct aead_crypto_context_t),
  quic_crypto_aead_aes128gcm_setup_crypto
};

ptls_aead_algorithm_t quic_crypto_aes256gcm = {
  "AES256-GCM",
  PTLS_AESGCM_CONFIDENTIALITY_LIMIT,
  PTLS_AESGCM_INTEGRITY_LIMIT,
  &quic_crypto_aes256ctr,
  &ptls_openssl_aes256ecb,
  PTLS_AES256_KEY_SIZE,
  PTLS_AESGCM_IV_SIZE,
  PTLS_AESGCM_TAG_SIZE,
  sizeof (struct aead_crypto_context_t),
  quic_crypto_aead_aes256gcm_setup_crypto
};

ptls_cipher_suite_t quic_crypto_aes128gcmsha256 = {
  PTLS_CIPHER_SUITE_AES_128_GCM_SHA256,
  &quic_crypto_aes128gcm, &ptls_openssl_sha256
};

ptls_cipher_suite_t quic_crypto_aes256gcmsha384 = {
  PTLS_CIPHER_SUITE_AES_256_GCM_SHA384,
  &quic_crypto_aes256gcm, &ptls_openssl_sha384
};

ptls_cipher_suite_t *quic_crypto_cipher_suites[] = {
  &quic_crypto_aes256gcmsha384, &quic_crypto_aes128gcmsha256, NULL
};

quicly_crypto_engine_t quic_crypto_engine = { quic_crypto_setup_cipher,
					      quic_crypto_encrypt_packet };

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */