summaryrefslogtreecommitdiffstats
path: root/src/vlib/unix/dir.dox
AgeCommit message (Collapse)AuthorFilesLines
2016-12-28Reorganize source tree to use single autotools instanceDamjan Marion1-0/+28
Change-Id: I7b51f88292e057c6443b12224486f2d0c9f8ae23 Signed-off-by: Damjan Marion <damarion@cisco.com>
f='#n58'>58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
 *------------------------------------------------------------------
 * Copyright (c) 2020 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

#ifndef __aesni_h__
#define __aesni_h__

typedef enum
{
  AES_KEY_128 = 0,
  AES_KEY_192 = 1,
  AES_KEY_256 = 2,
} aes_key_size_t;

#define AES_KEY_ROUNDS(x)		(10 + x * 2)
#define AES_KEY_BYTES(x)		(16 + x * 8)

#ifdef __x86_64__

static_always_inline u8x16
aes_block_load (u8 * p)
{
  return (u8x16) _mm_loadu_si128 ((__m128i *) p);
}

static_always_inline u8x16
aes_enc_round (u8x16 a, u8x16 k)
{
  return (u8x16) _mm_aesenc_si128 ((__m128i) a, (__m128i) k);
}

static_always_inline u8x16
aes_enc_last_round (u8x16 a, u8x16 k)
{
  return (u8x16) _mm_aesenclast_si128 ((__m128i) a, (__m128i) k);
}

static_always_inline u8x16
aes_dec_round (u8x16 a, u8x16 k)
{
  return (u8x16) _mm_aesdec_si128 ((__m128i) a, (__m128i) k);
}

static_always_inline u8x16
aes_dec_last_round (u8x16 a, u8x16 k)
{
  return (u8x16) _mm_aesdeclast_si128 ((__m128i) a, (__m128i) k);
}

static_always_inline void
aes_block_store (u8 * p, u8x16 r)
{
  _mm_storeu_si128 ((__m128i *) p, (__m128i) r);
}

static_always_inline u8x16
aes_inv_mix_column (u8x16 a)
{
  return (u8x16) _mm_aesimc_si128 ((__m128i) a);
}

/* AES-NI based AES key expansion based on code samples from
   Intel(r) Advanced Encryption Standard (AES) New Instructions White Paper
   (323641-001) */

static_always_inline void
aes128_key_assist (__m128i * k, __m128i r)
{
  __m128i t = k[-1];
  t ^= _mm_slli_si128 (t, 4);
  t ^= _mm_slli_si128 (t, 4);
  t ^= _mm_slli_si128 (t, 4);
  k[0] = t ^ _mm_shuffle_epi32 (r, 0xff);
}

static_always_inline void
aes128_key_expand (u8x16 * key_schedule, u8 * key)
{
  __m128i *k = (__m128i *) key_schedule;
  k[0] = _mm_loadu_si128 ((const __m128i *) key);
  aes128_key_assist (k + 1, _mm_aeskeygenassist_si128 (k[0], 0x01));
  aes128_key_assist (k + 2, _mm_aeskeygenassist_si128 (k[1], 0x02));
  aes128_key_assist (k + 3, _mm_aeskeygenassist_si128 (k[2], 0x04));
  aes128_key_assist (k + 4, _mm_aeskeygenassist_si128 (k[3], 0x08));
  aes128_key_assist (k + 5, _mm_aeskeygenassist_si128 (k[4], 0x10));
  aes128_key_assist (k + 6, _mm_aeskeygenassist_si128 (k[5], 0x20));
  aes128_key_assist (k + 7, _mm_aeskeygenassist_si128 (k[6], 0x40));
  aes128_key_assist (k + 8, _mm_aeskeygenassist_si128 (k[7], 0x80));
  aes128_key_assist (k + 9, _mm_aeskeygenassist_si128 (k[8], 0x1b));
  aes128_key_assist (k + 10, _mm_aeskeygenassist_si128 (k[9], 0x36));
}

static_always_inline void
aes192_key_assist (__m128i * r1, __m128i * r2, __m128i key_assist)
{
  __m128i t;
  *r1 ^= t = _mm_slli_si128 (*r1, 0x4);
  *r1 ^= t = _mm_slli_si128 (t, 0x4);
  *r1 ^= _mm_slli_si128 (t, 0x4);
  *r1 ^= _mm_shuffle_epi32 (key_assist, 0x55);
  *r2 ^= _mm_slli_si128 (*r2, 0x4);
  *r2 ^= _mm_shuffle_epi32 (*r1, 0xff);
}

static_always_inline void
aes192_key_expand (u8x16 * key_schedule, u8 * key)
{
  __m128i r1, r2, *k = (__m128i *) key_schedule;

  k[0] = r1 = _mm_loadu_si128 ((__m128i *) key);
  /* load the 24-bytes key as 2 * 16-bytes (and ignore last 8-bytes) */
  k[1] = r2 = CLIB_MEM_OVERFLOW_LOAD (_mm_loadu_si128, (__m128i *) key + 1);

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x1));
  k[1] = (__m128i) _mm_shuffle_pd ((__m128d) k[1], (__m128d) r1, 0);
  k[2] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x2));
  k[3] = r1;
  k[4] = r2;

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x4));
  k[4] = (__m128i) _mm_shuffle_pd ((__m128d) k[4], (__m128d) r1, 0);
  k[5] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x8));
  k[6] = r1;
  k[7] = r2;

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x10));
  k[7] = (__m128i) _mm_shuffle_pd ((__m128d) k[7], (__m128d) r1, 0);
  k[8] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x20));
  k[9] = r1;
  k[10] = r2;

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x40));
  k[10] = (__m128i) _mm_shuffle_pd ((__m128d) k[10], (__m128d) r1, 0);
  k[11] = (__m128i) _mm_shuffle_pd ((__m128d) r1, (__m128d) r2, 1);

  aes192_key_assist (&r1, &r2, _mm_aeskeygenassist_si128 (r2, 0x80));
  k[12] = r1;
}

static_always_inline void
aes256_key_assist (__m128i * k, int i, __m128i key_assist)
{
  __m128i r, t;
  k += i;
  r = k[-2];
  r ^= t = _mm_slli_si128 (r, 0x4);
  r ^= t = _mm_slli_si128 (t, 0x4);
  r ^= _mm_slli_si128 (t, 0x4);
  r ^= _mm_shuffle_epi32 (key_assist, 0xff);
  k[0] = r;

  if (i >= 14)
    return;

  r = k[-1];
  r ^= t = _mm_slli_si128 (r, 0x4);
  r ^= t = _mm_slli_si128 (t, 0x4);
  r ^= _mm_slli_si128 (t, 0x4);
  r ^= _mm_shuffle_epi32 (_mm_aeskeygenassist_si128 (k[0], 0x0), 0xaa);
  k[1] = r;
}

static_always_inline void
aes256_key_expand (u8x16 * key_schedule, u8 * key)
{
  __m128i *k = (__m128i *) key_schedule;
  k[0] = _mm_loadu_si128 ((__m128i *) key);
  k[1] = _mm_loadu_si128 ((__m128i *) (key + 16));
  aes256_key_assist (k, 2, _mm_aeskeygenassist_si128 (k[1], 0x01));
  aes256_key_assist (k, 4, _mm_aeskeygenassist_si128 (k[3], 0x02));
  aes256_key_assist (k, 6, _mm_aeskeygenassist_si128 (k[5], 0x04));
  aes256_key_assist (k, 8, _mm_aeskeygenassist_si128 (k[7], 0x08));
  aes256_key_assist (k, 10, _mm_aeskeygenassist_si128 (k[9], 0x10));
  aes256_key_assist (k, 12, _mm_aeskeygenassist_si128 (k[11], 0x20));
  aes256_key_assist (k, 14, _mm_aeskeygenassist_si128 (k[13], 0x40));
}
#endif

#ifdef __aarch64__

static_always_inline u8x16
aes_inv_mix_column (u8x16 a)
{
  return vaesimcq_u8 (a);
}

static const u8x16 aese_prep_mask1 =
  { 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12 };
static const u8x16 aese_prep_mask2 =
  { 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15 };

static inline void
aes128_key_expand_round_neon (u8x16 * rk, u32 rcon)
{
  u8x16 r, t, last_round = rk[-1], z = { };
  r = vqtbl1q_u8 (last_round, aese_prep_mask1);
  r = vaeseq_u8 (r, z);
  r ^= (u8x16) vdupq_n_u32 (rcon);
  r ^= last_round;
  r ^= t = vextq_u8 (z, last_round, 12);
  r ^= t = vextq_u8 (z, t, 12);
  r ^= vextq_u8 (z, t, 12);
  rk[0] = r;
}

void
aes128_key_expand (u8x16 * rk, const u8 * k)
{
  rk[0] = vld1q_u8 (k);
  aes128_key_expand_round_neon (rk + 1, 0x01);
  aes128_key_expand_round_neon (rk + 2, 0x02);
  aes128_key_expand_round_neon (rk + 3, 0x04);
  aes128_key_expand_round_neon (rk + 4, 0x08);
  aes128_key_expand_round_neon (rk + 5, 0x10);
  aes128_key_expand_round_neon (rk + 6, 0x20);
  aes128_key_expand_round_neon (rk + 7, 0x40);
  aes128_key_expand_round_neon (rk + 8, 0x80);
  aes128_key_expand_round_neon (rk + 9, 0x1b);
  aes128_key_expand_round_neon (rk + 10, 0x36);
}

static inline void
aes192_key_expand_round_neon (u8x8 * rk, u32 rcon)
{
  u8x8 r, last_round = rk[-1], z = { };
  u8x16 r2, z2 = { };

  r2 = (u8x16) vdupq_lane_u64 ((uint64x1_t) last_round, 0);
  r2 = vqtbl1q_u8 (r2, aese_prep_mask1);
  r2 = vaeseq_u8 (r2, z2);
  r2 ^= (u8x16) vdupq_n_u32 (rcon);

  r = (u8x8) vdup_laneq_u64 ((u64x2) r2, 0);
  r ^= rk[-3];
  r ^= vext_u8 (z, rk[-3], 4);
  rk[0] = r;

  r = rk[-2] ^ vext_u8 (r, z, 4);
  r ^= vext_u8 (z, r, 4);
  rk[1] = r;

  if (rcon == 0x80)
    return;

  r = rk[-1] ^ vext_u8 (r, z, 4);
  r ^= vext_u8 (z, r, 4);
  rk[2] = r;
}

void
aes192_key_expand (u8x16 * ek, const u8 * k)
{
  u8x8 *rk = (u8x8 *) ek;
  ek[0] = vld1q_u8 (k);
  rk[2] = vld1_u8 (k + 16);
  aes192_key_expand_round_neon (rk + 3, 0x01);
  aes192_key_expand_round_neon (rk + 6, 0x02);
  aes192_key_expand_round_neon (rk + 9, 0x04);
  aes192_key_expand_round_neon (rk + 12, 0x08);
  aes192_key_expand_round_neon (rk + 15, 0x10);
  aes192_key_expand_round_neon (rk + 18, 0x20);
  aes192_key_expand_round_neon (rk + 21, 0x40);
  aes192_key_expand_round_neon (rk + 24, 0x80);
}


static inline void
aes256_key_expand_round_neon (u8x16 * rk, u32 rcon)
{
  u8x16 r, t, z = { };

  r = vqtbl1q_u8 (rk[-1], rcon ? aese_prep_mask1 : aese_prep_mask2);
  r = vaeseq_u8 (r, z);
  if (rcon)
    r ^= (u8x16) vdupq_n_u32 (rcon);
  r ^= rk[-2];
  r ^= t = vextq_u8 (z, rk[-2], 12);
  r ^= t = vextq_u8 (z, t, 12);
  r ^= vextq_u8 (z, t, 12);
  rk[0] = r;
}

void
aes256_key_expand (u8x16 * rk, const u8 * k)
{
  rk[0] = vld1q_u8 (k);
  rk[1] = vld1q_u8 (k + 16);
  aes256_key_expand_round_neon (rk + 2, 0x01);
  aes256_key_expand_round_neon (rk + 3, 0);
  aes256_key_expand_round_neon (rk + 4, 0x02);
  aes256_key_expand_round_neon (rk + 5, 0);
  aes256_key_expand_round_neon (rk + 6, 0x04);
  aes256_key_expand_round_neon (rk + 7, 0);
  aes256_key_expand_round_neon (rk + 8, 0x08);
  aes256_key_expand_round_neon (rk + 9, 0);
  aes256_key_expand_round_neon (rk + 10, 0x10);
  aes256_key_expand_round_neon (rk + 11, 0);
  aes256_key_expand_round_neon (rk + 12, 0x20);
  aes256_key_expand_round_neon (rk + 13, 0);
  aes256_key_expand_round_neon (rk + 14, 0x40);
}

#endif

static_always_inline void
aes_key_expand (u8x16 * key_schedule, u8 * key, aes_key_size_t ks)
{
  switch (ks)
    {
    case AES_KEY_128:
      aes128_key_expand (key_schedule, key);
      break;
    case AES_KEY_192:
      aes192_key_expand (key_schedule, key);
      break;
    case AES_KEY_256:
      aes256_key_expand (key_schedule, key);
      break;
    }
}

static_always_inline void
aes_key_enc_to_dec (u8x16 * ke, u8x16 * kd, aes_key_size_t ks)
{
  int rounds = AES_KEY_ROUNDS (ks);

  kd[rounds] = ke[0];
  kd[0] = ke[rounds];

  for (int i = 1; i < (rounds / 2); i++)
    {
      kd[rounds - i] = aes_inv_mix_column (ke[i]);
      kd[i] = aes_inv_mix_column (ke[rounds - i]);
    }

  kd[rounds / 2] = aes_inv_mix_column (ke[rounds / 2]);
}

#endif /* __aesni_h__ */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */