summaryrefslogtreecommitdiffstats
path: root/src/vnet/fib
AgeCommit message (Expand)AuthorFilesLines
2018-05-04Harmonize vec/pool_get_aligned object sizes and alignment requestsDave Barach5-3/+10
2018-04-30FIB: elide cover walk for insert of host routeNeale Ranns3-3/+25
2018-04-25GBPv6: NAT66 actions for GBPNeale Ranns1-1/+1
2018-04-23MPLS VPLS CLI fixNeale Ranns1-0/+1
2018-04-17IP mcast: allow unicast address as a next-hopNeale Ranns1-2/+2
2018-04-13GBP V2Neale Ranns2-0/+26
2018-04-12Fixes for 'make UNATTENDED=yes CC=clang CXX=clang verify'Neale Ranns1-23/+23
2018-04-04NAT added FIB entries have a preference lower than API/CLINeale Ranns2-0/+6
2018-03-26Restore the brief FIB entry printingNeale Ranns1-7/+7
2018-03-20FIB Interpose SourceNeale Ranns18-3987/+5041
2018-03-19FIB code coverity found defectNeale Ranns1-1/+1
2018-03-19IGMP pluginJakub Grajciar1-2/+18
2018-03-19FIX: Fixed ip6_fib_dump api function response.Dmitry Vakhrushev1-1/+1
2018-03-13Common form of fib-path reproting in dumpsNeale Ranns5-4/+292
2018-03-13FIB: DVR paths are not considered L3 attachedNeale Ranns1-0/+10
2018-03-09MPLS Unifom modeNeale Ranns13-95/+399
2018-03-05IP6 link-local tableNeale Ranns8-74/+106
2018-03-016RD: Rewritten 6RD RFC5969 support.Ole Troan3-6/+1
2018-02-22bihash table size perf/scale improvementsDave Barach1-3/+11
2018-02-19Adjacency Delegate updatesNeale Ranns1-24/+18
2018-02-06Fix clang -Wvarargs compile errorsDamjan Marion2-4/+4
2018-02-01FIB: Consolidate several copies of fib_ip_proto() into one.Jon Loeliger1-0/+11
2018-01-23VPPAPIGEN: vppapigen replacement in Python PLY.Ole Troan1-0/+45
2018-01-18FIB Inherited SrouceNeale Ranns15-119/+1615
2018-01-09DVR: run L3 output featuresNeale Ranns4-52/+86
2017-12-21fib: make deag entries urpf extemptFlorin Coras4-0/+14
2017-12-19FIB memory leak during recursive loop detectionNeale Ranns1-0/+2
2017-12-15fib: fix show fib path-list and pathFlorin Coras2-4/+4
2017-12-13Separate heap for IPv4 mtriesNeale Ranns2-30/+14
2017-12-09BIER in non-MPLS netowrksNeale Ranns6-146/+117
2017-12-05Revert "FIB: optimise for src memory allocations"Neale Ranns5-264/+121
2017-11-30Fix CLI path parsing for via interface onlyNeale Ranns1-6/+6
2017-11-29Include allocated table memory in 'sh fib mem' outputNeale Ranns9-12/+148
2017-11-27Fix - sh ip fib mtrie sumNeale Ranns1-5/+5
2017-11-26FIB: optimise for src memory allocationsNeale Ranns5-121/+264
2017-11-26FIB: store the node type not the function pointer.Neale Ranns5-15/+11
2017-11-18unformat function for FIB pathsNeale Ranns2-0/+171
2017-11-15BIER: coverity fixesNeale Ranns1-5/+11
2017-11-14Ip6 dump not showing fib table names (VPP-1063)Neale Ranns1-4/+3
2017-11-11MPLS disposition actions at the tail of unicast LSPsNeale Ranns6-31/+107
2017-11-09BIERNeale Ranns15-70/+561
2017-11-07UDP Encapsulation.Neale Ranns4-1/+84
2017-10-26fib test - fix undefined behavior warning found by clangGabriel Ganne2-2/+2
2017-10-25L3 proxy FIB source for container networkingAndrew Yourtchenko3-7/+14
2017-10-14Source Lookup progammable via APINeale Ranns5-8/+61
2017-10-06Initial GENEVE TUNNEL implementation and tests.Marco Varlese1-0/+1
2017-10-05Distributed Virtual Router SupportNeale Ranns5-100/+100
2017-10-04[aarch64] Fixes CLI crashes on dpaa2 platform.Christophe Fontaine10-28/+28
2017-10-04Dump of deag/lookup routes has is_drop=1 (VPP-995)Neale Ranns1-0/+2
2017-10-03Repair vlib API socket serverDave Barach1-1/+2
28 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
/*
 * Copyright (c) 2020 Doc.ai and/or its affiliates.
 * Copyright (c) 2015-2020 Jason A. Donenfeld <Jason@zx2c4.com>.
 * Copyright (c) 2019-2020 Matt Dunwoodie <ncon@noconroy.net>.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <openssl/hmac.h>
#include <wireguard/wireguard.h>

/* This implements Noise_IKpsk2:
 *
 * <- s
 * ******
 * -> e, es, s, ss, {t}
 * <- e, ee, se, psk, {}
 */

noise_local_t *noise_local_pool;

/* Private functions */
static noise_keypair_t *noise_remote_keypair_allocate (noise_remote_t *);
static void noise_remote_keypair_free (vlib_main_t * vm, noise_remote_t *,
				       noise_keypair_t **);
static uint32_t noise_remote_handshake_index_get (noise_remote_t *);
static void noise_remote_handshake_index_drop (noise_remote_t *);

static uint64_t noise_counter_send (noise_counter_t *);
static bool noise_counter_recv (noise_counter_t *, uint64_t);

static void noise_kdf (uint8_t *, uint8_t *, uint8_t *, const uint8_t *,
		       size_t, size_t, size_t, size_t,
		       const uint8_t[NOISE_HASH_LEN]);
static bool noise_mix_dh (uint8_t[NOISE_HASH_LEN],
			  uint8_t[NOISE_SYMMETRIC_KEY_LEN],
			  const uint8_t[NOISE_PUBLIC_KEY_LEN],
			  const uint8_t[NOISE_PUBLIC_KEY_LEN]);
static bool noise_mix_ss (uint8_t ck[NOISE_HASH_LEN],
			  uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
			  const uint8_t ss[NOISE_PUBLIC_KEY_LEN]);
static void noise_mix_hash (uint8_t[NOISE_HASH_LEN], const uint8_t *, size_t);
static void noise_mix_psk (uint8_t[NOISE_HASH_LEN],
			   uint8_t[NOISE_HASH_LEN],
			   uint8_t[NOISE_SYMMETRIC_KEY_LEN],
			   const uint8_t[NOISE_SYMMETRIC_KEY_LEN]);
static void noise_param_init (uint8_t[NOISE_HASH_LEN],
			      uint8_t[NOISE_HASH_LEN],
			      const uint8_t[NOISE_PUBLIC_KEY_LEN]);

static void noise_msg_encrypt (vlib_main_t * vm, uint8_t *, uint8_t *, size_t,
			       uint32_t key_idx, uint8_t[NOISE_HASH_LEN]);
static bool noise_msg_decrypt (vlib_main_t * vm, uint8_t *, uint8_t *, size_t,
			       uint32_t key_idx, uint8_t[NOISE_HASH_LEN]);
static void noise_msg_ephemeral (uint8_t[NOISE_HASH_LEN],
				 uint8_t[NOISE_HASH_LEN],
				 const uint8_t src[NOISE_PUBLIC_KEY_LEN]);

static void noise_tai64n_now (uint8_t[NOISE_TIMESTAMP_LEN]);

static void secure_zero_memory (void *v, size_t n);

/* Set/Get noise parameters */
void
noise_local_init (noise_local_t * l, struct noise_upcall *upcall)
{
  clib_memset (l, 0, sizeof (*l));
  l->l_upcall = *upcall;
}

bool
noise_local_set_private (noise_local_t * l,
			 const uint8_t private[NOISE_PUBLIC_KEY_LEN])
{
  clib_memcpy (l->l_private, private, NOISE_PUBLIC_KEY_LEN);

  return curve25519_gen_public (l->l_public, private);
}

void
noise_remote_init (noise_remote_t * r, uint32_t peer_pool_idx,
		   const uint8_t public[NOISE_PUBLIC_KEY_LEN],
		   u32 noise_local_idx)
{
  clib_memset (r, 0, sizeof (*r));
  clib_memcpy (r->r_public, public, NOISE_PUBLIC_KEY_LEN);
  clib_rwlock_init (&r->r_keypair_lock);
  r->r_peer_idx = peer_pool_idx;
  r->r_local_idx = noise_local_idx;
  r->r_handshake.hs_state = HS_ZEROED;

  noise_remote_precompute (r);
}

void
noise_remote_precompute (noise_remote_t * r)
{
  noise_local_t *l = noise_local_get (r->r_local_idx);

  if (!curve25519_gen_shared (r->r_ss, l->l_private, r->r_public))
    clib_memset (r->r_ss, 0, NOISE_PUBLIC_KEY_LEN);

  noise_remote_handshake_index_drop (r);
  secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));
}

/* Handshake functions */
bool
noise_create_initiation (vlib_main_t * vm, noise_remote_t * r,
			 uint32_t * s_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
			 uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN],
			 uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN])
{
  noise_handshake_t *hs = &r->r_handshake;
  noise_local_t *l = noise_local_get (r->r_local_idx);
  uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
  uint32_t key_idx;
  uint8_t *key;
  int ret = false;

  key_idx =
    vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
			 NOISE_SYMMETRIC_KEY_LEN);
  key = vnet_crypto_get_key (key_idx)->data;

  noise_param_init (hs->hs_ck, hs->hs_hash, r->r_public);

  /* e */
  curve25519_gen_secret (hs->hs_e);
  if (!curve25519_gen_public (ue, hs->hs_e))
    goto error;
  noise_msg_ephemeral (hs->hs_ck, hs->hs_hash, ue);

  /* es */
  if (!noise_mix_dh (hs->hs_ck, key, hs->hs_e, r->r_public))
    goto error;

  /* s */
  noise_msg_encrypt (vm, es, l->l_public, NOISE_PUBLIC_KEY_LEN, key_idx,
		     hs->hs_hash);

  /* ss */
  if (!noise_mix_ss (hs->hs_ck, key, r->r_ss))
    goto error;

  /* {t} */
  noise_tai64n_now (ets);
  noise_msg_encrypt (vm, ets, ets, NOISE_TIMESTAMP_LEN, key_idx, hs->hs_hash);
  noise_remote_handshake_index_drop (r);
  hs->hs_state = CREATED_INITIATION;
  hs->hs_local_index = noise_remote_handshake_index_get (r);
  *s_idx = hs->hs_local_index;
  ret = true;
error:
  secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
  vnet_crypto_key_del (vm, key_idx);
  return ret;
}

bool
noise_consume_initiation (vlib_main_t * vm, noise_local_t * l,
			  noise_remote_t ** rp, uint32_t s_idx,
			  uint8_t ue[NOISE_PUBLIC_KEY_LEN],
			  uint8_t es[NOISE_PUBLIC_KEY_LEN +
				     NOISE_AUTHTAG_LEN],
			  uint8_t ets[NOISE_TIMESTAMP_LEN +
				      NOISE_AUTHTAG_LEN])
{
  noise_remote_t *r;
  noise_handshake_t hs;
  uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
  uint8_t r_public[NOISE_PUBLIC_KEY_LEN];
  uint8_t timestamp[NOISE_TIMESTAMP_LEN];
  u32 key_idx;
  uint8_t *key;
  int ret = false;

  key_idx =
    vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
			 NOISE_SYMMETRIC_KEY_LEN);
  key = vnet_crypto_get_key (key_idx)->data;

  noise_param_init (hs.hs_ck, hs.hs_hash, l->l_public);

  /* e */
  noise_msg_ephemeral (hs.hs_ck, hs.hs_hash, ue);

  /* es */
  if (!noise_mix_dh (hs.hs_ck, key, l->l_private, ue))
    goto error;

  /* s */

  if (!noise_msg_decrypt (vm, r_public, es,
			  NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN, key_idx,
			  hs.hs_hash))
    goto error;

  /* Lookup the remote we received from */
  if ((r = l->l_upcall.u_remote_get (r_public)) == NULL)
    goto error;

  /* ss */
  if (!noise_mix_ss (hs.hs_ck, key, r->r_ss))
    goto error;

  /* {t} */
  if (!noise_msg_decrypt (vm, timestamp, ets,
			  NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN, key_idx,
			  hs.hs_hash))
    goto error;
  ;

  hs.hs_state = CONSUMED_INITIATION;
  hs.hs_local_index = 0;
  hs.hs_remote_index = s_idx;
  clib_memcpy (hs.hs_e, ue, NOISE_PUBLIC_KEY_LEN);

  /* Replay */
  if (clib_memcmp (timestamp, r->r_timestamp, NOISE_TIMESTAMP_LEN) > 0)
    clib_memcpy (r->r_timestamp, timestamp, NOISE_TIMESTAMP_LEN);
  else
    goto error;

  /* Flood attack */
  if (wg_birthdate_has_expired (r->r_last_init, REJECT_INTERVAL))
    r->r_last_init = vlib_time_now (vm);
  else
    goto error;

  /* Ok, we're happy to accept this initiation now */
  noise_remote_handshake_index_drop (r);
  r->r_handshake = hs;
  *rp = r;
  ret = true;

error:
  secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
  vnet_crypto_key_del (vm, key_idx);
  secure_zero_memory (&hs, sizeof (hs));
  return ret;
}

bool
noise_create_response (vlib_main_t * vm, noise_remote_t * r, uint32_t * s_idx,
		       uint32_t * r_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
		       uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
  noise_handshake_t *hs = &r->r_handshake;
  uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
  uint8_t e[NOISE_PUBLIC_KEY_LEN];
  uint32_t key_idx;
  uint8_t *key;
  int ret = false;

  key_idx =
    vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
			 NOISE_SYMMETRIC_KEY_LEN);
  key = vnet_crypto_get_key (key_idx)->data;

  if (hs->hs_state != CONSUMED_INITIATION)
    goto error;

  /* e */
  curve25519_gen_secret (e);
  if (!curve25519_gen_public (ue, e))
    goto error;
  noise_msg_ephemeral (hs->hs_ck, hs->hs_hash, ue);

  /* ee */
  if (!noise_mix_dh (hs->hs_ck, NULL, e, hs->hs_e))
    goto error;

  /* se */
  if (!noise_mix_dh (hs->hs_ck, NULL, e, r->r_public))
    goto error;

  /* psk */
  noise_mix_psk (hs->hs_ck, hs->hs_hash, key, r->r_psk);

  /* {} */
  noise_msg_encrypt (vm, en, NULL, 0, key_idx, hs->hs_hash);


  hs->hs_state = CREATED_RESPONSE;
  hs->hs_local_index = noise_remote_handshake_index_get (r);
  *r_idx = hs->hs_remote_index;
  *s_idx = hs->hs_local_index;
  ret = true;
error:
  secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
  vnet_crypto_key_del (vm, key_idx);
  secure_zero_memory (e, NOISE_PUBLIC_KEY_LEN);
  return ret;
}

bool
noise_consume_response (vlib_main_t * vm, noise_remote_t * r, uint32_t s_idx,
			uint32_t r_idx, uint8_t ue[NOISE_PUBLIC_KEY_LEN],
			uint8_t en[0 + NOISE_AUTHTAG_LEN])
{
  noise_local_t *l = noise_local_get (r->r_local_idx);
  noise_handshake_t hs;
  uint8_t _key[NOISE_SYMMETRIC_KEY_LEN];
  uint8_t preshared_key[NOISE_PUBLIC_KEY_LEN];
  uint32_t key_idx;
  uint8_t *key;
  int ret = false;

  key_idx =
    vnet_crypto_key_add (vm, VNET_CRYPTO_ALG_CHACHA20_POLY1305, _key,
			 NOISE_SYMMETRIC_KEY_LEN);
  key = vnet_crypto_get_key (key_idx)->data;

  hs = r->r_handshake;
  clib_memcpy (preshared_key, r->r_psk, NOISE_SYMMETRIC_KEY_LEN);

  if (hs.hs_state != CREATED_INITIATION || hs.hs_local_index != r_idx)
    goto error;

  /* e */
  noise_msg_ephemeral (hs.hs_ck, hs.hs_hash, ue);

  /* ee */
  if (!noise_mix_dh (hs.hs_ck, NULL, hs.hs_e, ue))
    goto error;

  /* se */
  if (!noise_mix_dh (hs.hs_ck, NULL, l->l_private, ue))
    goto error;

  /* psk */
  noise_mix_psk (hs.hs_ck, hs.hs_hash, key, preshared_key);

  /* {} */

  if (!noise_msg_decrypt
      (vm, NULL, en, 0 + NOISE_AUTHTAG_LEN, key_idx, hs.hs_hash))
    goto error;


  hs.hs_remote_index = s_idx;

  if (r->r_handshake.hs_state == hs.hs_state &&
      r->r_handshake.hs_local_index == hs.hs_local_index)
    {
      r->r_handshake = hs;
      r->r_handshake.hs_state = CONSUMED_RESPONSE;
      ret = true;
    }
error:
  secure_zero_memory (&hs, sizeof (hs));
  secure_zero_memory (key, NOISE_SYMMETRIC_KEY_LEN);
  vnet_crypto_key_del (vm, key_idx);
  return ret;
}

bool
noise_remote_begin_session (vlib_main_t * vm, noise_remote_t * r)
{
  noise_handshake_t *hs = &r->r_handshake;
  noise_keypair_t kp, *next, *current, *previous;

  uint8_t key_send[NOISE_SYMMETRIC_KEY_LEN];
  uint8_t key_recv[NOISE_SYMMETRIC_KEY_LEN];

  /* We now derive the keypair from the handshake */
  if (hs->hs_state == CONSUMED_RESPONSE)
    {
      kp.kp_is_initiator = 1;
      noise_kdf (key_send, key_recv, NULL, NULL,
		 NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
		 hs->hs_ck);
    }
  else if (hs->hs_state == CREATED_RESPONSE)
    {
      kp.kp_is_initiator = 0;
      noise_kdf (key_recv, key_send, NULL, NULL,
		 NOISE_SYMMETRIC_KEY_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, 0,
		 hs->hs_ck);
    }
  else
    {
      return false;
    }

  kp.kp_valid = 1;
  kp.kp_send_index = vnet_crypto_key_add (vm,
					  VNET_CRYPTO_ALG_CHACHA20_POLY1305,
					  key_send, NOISE_SYMMETRIC_KEY_LEN);
  kp.kp_recv_index = vnet_crypto_key_add (vm,
					  VNET_CRYPTO_ALG_CHACHA20_POLY1305,
					  key_recv, NOISE_SYMMETRIC_KEY_LEN);
  kp.kp_local_index = hs->hs_local_index;
  kp.kp_remote_index = hs->hs_remote_index;
  kp.kp_birthdate = vlib_time_now (vm);
  clib_memset (&kp.kp_ctr, 0, sizeof (kp.kp_ctr));

  /* Now we need to add_new_keypair */
  clib_rwlock_writer_lock (&r->r_keypair_lock);
  next = r->r_next;
  current = r->r_current;
  previous = r->r_previous;

  if (kp.kp_is_initiator)
    {
      if (next != NULL)
	{
	  r->r_next = NULL;
	  r->r_previous = next;
	  noise_remote_keypair_free (vm, r, &current);
	}
      else
	{
	  r->r_previous = current;
	}

      noise_remote_keypair_free (vm, r, &previous);

      r->r_current = noise_remote_keypair_allocate (r);
      *r->r_current = kp;
    }
  else
    {
      noise_remote_keypair_free (vm, r, &next);
      r->r_previous = NULL;
      noise_remote_keypair_free (vm, r, &previous);

      r->r_next = noise_remote_keypair_allocate (r);
      *r->r_next = kp;
    }
  clib_rwlock_writer_unlock (&r->r_keypair_lock);

  secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));

  secure_zero_memory (&kp, sizeof (kp));
  return true;
}

void
noise_remote_clear (vlib_main_t * vm, noise_remote_t * r)
{
  noise_remote_handshake_index_drop (r);
  secure_zero_memory (&r->r_handshake, sizeof (r->r_handshake));

  clib_rwlock_writer_lock (&r->r_keypair_lock);
  noise_remote_keypair_free (vm, r, &r->r_next);
  noise_remote_keypair_free (vm, r, &r->r_current);
  noise_remote_keypair_free (vm, r, &r->r_previous);
  r->r_next = NULL;
  r->r_current = NULL;
  r->r_previous = NULL;
  clib_rwlock_writer_unlock (&r->r_keypair_lock);
}

void
noise_remote_expire_current (noise_remote_t * r)
{
  clib_rwlock_writer_lock (&r->r_keypair_lock);
  if (r->r_next != NULL)
    r->r_next->kp_valid = 0;
  if (r->r_current != NULL)
    r->r_current->kp_valid = 0;
  clib_rwlock_writer_unlock (&r->r_keypair_lock);
}

bool
noise_remote_ready (noise_remote_t * r)
{
  noise_keypair_t *kp;
  int ret;

  clib_rwlock_reader_lock (&r->r_keypair_lock);
  if ((kp = r->r_current) == NULL ||
      !kp->kp_valid ||
      wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
      kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
      kp->kp_ctr.c_send >= REJECT_AFTER_MESSAGES)
    ret = false;
  else
    ret = true;
  clib_rwlock_reader_unlock (&r->r_keypair_lock);
  return ret;
}

static bool
chacha20poly1305_calc (vlib_main_t * vm,
		       u8 * src,
		       u32 src_len,
		       u8 * dst,
		       u8 * aad,
		       u32 aad_len,
		       u64 nonce,
		       vnet_crypto_op_id_t op_id,
		       vnet_crypto_key_index_t key_index)
{
  vnet_crypto_op_t _op, *op = &_op;
  u8 iv[12];
  u8 tag_[NOISE_AUTHTAG_LEN] = { };
  u8 src_[] = { };

  clib_memset (iv, 0, 12);
  clib_memcpy (iv + 4, &nonce, sizeof (nonce));

  vnet_crypto_op_init (op, op_id);

  op->tag_len = NOISE_AUTHTAG_LEN;
  if (op_id == VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC)
    {
      op->tag = src + src_len - NOISE_AUTHTAG_LEN;
      src_len -= NOISE_AUTHTAG_LEN;
    }
  else
    op->tag = tag_;

  op->src = !src ? src_ : src;
  op->len = src_len;

  op->dst = dst;
  op->key_index = key_index;
  op->aad = aad;
  op->aad_len = aad_len;
  op->iv = iv;

  vnet_crypto_process_ops (vm, op, 1);
  if (op_id == VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC)
    {
      clib_memcpy (dst + src_len, op->tag, NOISE_AUTHTAG_LEN);
    }

  return (op->status == VNET_CRYPTO_OP_STATUS_COMPLETED);
}

enum noise_state_crypt
noise_remote_encrypt (vlib_main_t * vm, noise_remote_t * r, uint32_t * r_idx,
		      uint64_t * nonce, uint8_t * src, size_t srclen,
		      uint8_t * dst)
{
  noise_keypair_t *kp;
  enum noise_state_crypt ret = SC_FAILED;

  clib_rwlock_reader_lock (&r->r_keypair_lock);
  if ((kp = r->r_current) == NULL)
    goto error;

  /* We confirm that our values are within our tolerances. We want:
   *  - a valid keypair
   *  - our keypair to be less than REJECT_AFTER_TIME seconds old
   *  - our receive counter to be less than REJECT_AFTER_MESSAGES
   *  - our send counter to be less than REJECT_AFTER_MESSAGES
   */
  if (!kp->kp_valid ||
      wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
      kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES ||
      ((*nonce = noise_counter_send (&kp->kp_ctr)) > REJECT_AFTER_MESSAGES))
    goto error;

  /* We encrypt into the same buffer, so the caller must ensure that buf
   * has NOISE_AUTHTAG_LEN bytes to store the MAC. The nonce and index
   * are passed back out to the caller through the provided data pointer. */
  *r_idx = kp->kp_remote_index;

  chacha20poly1305_calc (vm, src, srclen, dst, NULL, 0, *nonce,
			 VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC,
			 kp->kp_send_index);

  /* If our values are still within tolerances, but we are approaching
   * the tolerances, we notify the caller with ESTALE that they should
   * establish a new keypair. The current keypair can continue to be used
   * until the tolerances are hit. We notify if:
   *  - our send counter is valid and not less than REKEY_AFTER_MESSAGES
   *  - we're the initiator and our keypair is older than
   *    REKEY_AFTER_TIME seconds */
  ret = SC_KEEP_KEY_FRESH;
  if ((kp->kp_valid && *nonce >= REKEY_AFTER_MESSAGES) ||
      (kp->kp_is_initiator &&
       wg_birthdate_has_expired (kp->kp_birthdate, REKEY_AFTER_TIME)))
    goto error;

  ret = SC_OK;
error:
  clib_rwlock_reader_unlock (&r->r_keypair_lock);
  return ret;
}

enum noise_state_crypt
noise_remote_decrypt (vlib_main_t * vm, noise_remote_t * r, uint32_t r_idx,
		      uint64_t nonce, uint8_t * src, size_t srclen,
		      uint8_t * dst)
{
  noise_keypair_t *kp;
  enum noise_state_crypt ret = SC_FAILED;
  clib_rwlock_reader_lock (&r->r_keypair_lock);

  if (r->r_current != NULL && r->r_current->kp_local_index == r_idx)
    {
      kp = r->r_current;
    }
  else if (r->r_previous != NULL && r->r_previous->kp_local_index == r_idx)
    {
      kp = r->r_previous;
    }
  else if (r->r_next != NULL && r->r_next->kp_local_index == r_idx)
    {
      kp = r->r_next;
    }
  else
    {
      goto error;
    }

  /* We confirm that our values are within our tolerances. These values
   * are the same as the encrypt routine.
   *
   * kp_ctr isn't locked here, we're happy to accept a racy read. */
  if (wg_birthdate_has_expired (kp->kp_birthdate, REJECT_AFTER_TIME) ||
      kp->kp_ctr.c_recv >= REJECT_AFTER_MESSAGES)
    goto error;

  /* Decrypt, then validate the counter. We don't want to validate the
   * counter before decrypting as we do not know the message is authentic
   * prior to decryption. */
  if (!chacha20poly1305_calc (vm, src, srclen, dst, NULL, 0, nonce,
			      VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC,
			      kp->kp_recv_index))
    goto error;

  if (!noise_counter_recv (&kp->kp_ctr, nonce))
    goto error;

  /* If we've received the handshake confirming data packet then move the
   * next keypair into current. If we do slide the next keypair in, then
   * we skip the REKEY_AFTER_TIME_RECV check. This is safe to do as a
   * data packet can't confirm a session that we are an INITIATOR of. */
  if (kp == r->r_next)
    {
      clib_rwlock_reader_unlock (&r->r_keypair_lock);
      clib_rwlock_writer_lock (&r->r_keypair_lock);
      if (kp == r->r_next && kp->kp_local_index == r_idx)
	{
	  noise_remote_keypair_free (vm, r, &r->r_previous);
	  r->r_previous = r->r_current;
	  r->r_current = r->r_next;
	  r->r_next = NULL;

	  ret = SC_CONN_RESET;
	  clib_rwlock_writer_unlock (&r->r_keypair_lock);
	  clib_rwlock_reader_lock (&r->r_keypair_lock);
	  goto error;
	}
      clib_rwlock_writer_unlock (&r->r_keypair_lock);
      clib_rwlock_reader_lock (&r->r_keypair_lock);
    }

  /* Similar to when we encrypt, we want to notify the caller when we
   * are approaching our tolerances. We notify if:
   *  - we're the initiator and the current keypair is older than
   *    REKEY_AFTER_TIME_RECV seconds. */
  ret = SC_KEEP_KEY_FRESH;
  kp = r->r_current;
  if (kp != NULL &&
      kp->kp_valid &&
      kp->kp_is_initiator &&
      wg_birthdate_has_expired (kp->kp_birthdate, REKEY_AFTER_TIME_RECV))
    goto error;

  ret = SC_OK;
error:
  clib_rwlock_reader_unlock (&r->r_keypair_lock);
  return ret;
}

/* Private functions - these should not be called outside this file under any
 * circumstances. */
static noise_keypair_t *
noise_remote_keypair_allocate (noise_remote_t * r)
{
  noise_keypair_t *kp;
  kp = clib_mem_alloc (sizeof (*kp));
  return kp;
}

static void
noise_remote_keypair_free (vlib_main_t * vm, noise_remote_t * r,
			   noise_keypair_t ** kp)
{
  noise_local_t *local = noise_local_get (r->r_local_idx);
  struct noise_upcall *u = &local->l_upcall;
  if (*kp)
    {
      u->u_index_drop ((*kp)->kp_local_index);
      vnet_crypto_key_del (vm, (*kp)->kp_send_index);
      vnet_crypto_key_del (vm, (*kp)->kp_recv_index);
      clib_mem_free (*kp);
    }
}

static uint32_t
noise_remote_handshake_index_get (noise_remote_t * r)
{
  noise_local_t *local = noise_local_get (r->r_local_idx);
  struct noise_upcall *u = &local->l_upcall;
  return u->u_index_set (r);
}

static void
noise_remote_handshake_index_drop (noise_remote_t * r)
{
  noise_handshake_t *hs = &r->r_handshake;
  noise_local_t *local = noise_local_get (r->r_local_idx);
  struct noise_upcall *u = &local->l_upcall;
  if (hs->hs_state != HS_ZEROED)
    u->u_index_drop (hs->hs_local_index);
}

static uint64_t
noise_counter_send (noise_counter_t * ctr)
{
  uint64_t ret;
  ret = ctr->c_send++;
  return ret;
}

static bool
noise_counter_recv (noise_counter_t * ctr, uint64_t recv)
{
  uint64_t i, top, index_recv, index_ctr;
  unsigned long bit;
  bool ret = false;

  /* Check that the recv counter is valid */
  if (ctr->c_recv >= REJECT_AFTER_MESSAGES || recv >= REJECT_AFTER_MESSAGES)
    goto error;

  /* If the packet is out of the window, invalid */
  if (recv + COUNTER_WINDOW_SIZE < ctr->c_recv)
    goto error;

  /* If the new counter is ahead of the current counter, we'll need to
   * zero out the bitmap that has previously been used */
  index_recv = recv / COUNTER_BITS;
  index_ctr = ctr->c_recv / COUNTER_BITS;

  if (recv > ctr->c_recv)
    {
      top = clib_min (index_recv - index_ctr, COUNTER_NUM);
      for (i = 1; i <= top; i++)
	ctr->c_backtrack[(i + index_ctr) & (COUNTER_NUM - 1)] = 0;
      ctr->c_recv = recv;
    }

  index_recv %= COUNTER_NUM;
  bit = 1ul << (recv % COUNTER_BITS);

  if (ctr->c_backtrack[index_recv] & bit)
    goto error;

  ctr->c_backtrack[index_recv] |= bit;

  ret = true;
error:
  return ret;
}

static void
noise_kdf (uint8_t * a, uint8_t * b, uint8_t * c, const uint8_t * x,
	   size_t a_len, size_t b_len, size_t c_len, size_t x_len,
	   const uint8_t ck[NOISE_HASH_LEN])
{
  uint8_t out[BLAKE2S_HASH_SIZE + 1];
  uint8_t sec[BLAKE2S_HASH_SIZE];

  /* Extract entropy from "x" into sec */
  u32 l = 0;
  HMAC (EVP_blake2s256 (), ck, NOISE_HASH_LEN, x, x_len, sec, &l);
  ASSERT (l == BLAKE2S_HASH_SIZE);
  if (a == NULL || a_len == 0)
    goto out;

  /* Expand first key: key = sec, data = 0x1 */
  out[0] = 1;
  HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, 1, out, &l);
  ASSERT (l == BLAKE2S_HASH_SIZE);
  clib_memcpy (a, out, a_len);

  if (b == NULL || b_len == 0)
    goto out;

  /* Expand second key: key = sec, data = "a" || 0x2 */
  out[BLAKE2S_HASH_SIZE] = 2;
  HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, BLAKE2S_HASH_SIZE + 1,
	out, &l);
  ASSERT (l == BLAKE2S_HASH_SIZE);
  clib_memcpy (b, out, b_len);

  if (c == NULL || c_len == 0)
    goto out;

  /* Expand third key: key = sec, data = "b" || 0x3 */
  out[BLAKE2S_HASH_SIZE] = 3;
  HMAC (EVP_blake2s256 (), sec, BLAKE2S_HASH_SIZE, out, BLAKE2S_HASH_SIZE + 1,
	out, &l);
  ASSERT (l == BLAKE2S_HASH_SIZE);

  clib_memcpy (c, out, c_len);

out:
  /* Clear sensitive data from stack */
  secure_zero_memory (sec, BLAKE2S_HASH_SIZE);
  secure_zero_memory (out, BLAKE2S_HASH_SIZE + 1);
}

static bool
noise_mix_dh (uint8_t ck[NOISE_HASH_LEN],
	      uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
	      const uint8_t private[NOISE_PUBLIC_KEY_LEN],
	      const uint8_t public[NOISE_PUBLIC_KEY_LEN])
{
  uint8_t dh[NOISE_PUBLIC_KEY_LEN];
  if (!curve25519_gen_shared (dh, private, public))
    return false;
  noise_kdf (ck, key, NULL, dh,
	     NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
	     ck);
  secure_zero_memory (dh, NOISE_PUBLIC_KEY_LEN);
  return true;
}

static bool
noise_mix_ss (uint8_t ck[NOISE_HASH_LEN],
	      uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
	      const uint8_t ss[NOISE_PUBLIC_KEY_LEN])
{
  static uint8_t null_point[NOISE_PUBLIC_KEY_LEN];
  if (clib_memcmp (ss, null_point, NOISE_PUBLIC_KEY_LEN) == 0)
    return false;
  noise_kdf (ck, key, NULL, ss,
	     NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN, 0, NOISE_PUBLIC_KEY_LEN,
	     ck);
  return true;
}

static void
noise_mix_hash (uint8_t hash[NOISE_HASH_LEN], const uint8_t * src,
		size_t src_len)
{
  blake2s_state_t blake;

  blake2s_init (&blake, NOISE_HASH_LEN);
  blake2s_update (&blake, hash, NOISE_HASH_LEN);
  blake2s_update (&blake, src, src_len);
  blake2s_final (&blake, hash, NOISE_HASH_LEN);
}

static void
noise_mix_psk (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
	       uint8_t key[NOISE_SYMMETRIC_KEY_LEN],
	       const uint8_t psk[NOISE_SYMMETRIC_KEY_LEN])
{
  uint8_t tmp[NOISE_HASH_LEN];

  noise_kdf (ck, tmp, key, psk,
	     NOISE_HASH_LEN, NOISE_HASH_LEN, NOISE_SYMMETRIC_KEY_LEN,
	     NOISE_SYMMETRIC_KEY_LEN, ck);
  noise_mix_hash (hash, tmp, NOISE_HASH_LEN);
  secure_zero_memory (tmp, NOISE_HASH_LEN);
}

static void
noise_param_init (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
		  const uint8_t s[NOISE_PUBLIC_KEY_LEN])
{
  blake2s_state_t blake;

  blake2s (ck, NOISE_HASH_LEN, (uint8_t *) NOISE_HANDSHAKE_NAME,
	   strlen (NOISE_HANDSHAKE_NAME), NULL, 0);

  blake2s_init (&blake, NOISE_HASH_LEN);
  blake2s_update (&blake, ck, NOISE_HASH_LEN);
  blake2s_update (&blake, (uint8_t *) NOISE_IDENTIFIER_NAME,
		  strlen (NOISE_IDENTIFIER_NAME));
  blake2s_final (&blake, hash, NOISE_HASH_LEN);

  noise_mix_hash (hash, s, NOISE_PUBLIC_KEY_LEN);
}

static void
noise_msg_encrypt (vlib_main_t * vm, uint8_t * dst, uint8_t * src,
		   size_t src_len, uint32_t key_idx,
		   uint8_t hash[NOISE_HASH_LEN])
{
  /* Nonce always zero for Noise_IK */
  chacha20poly1305_calc (vm, src, src_len, dst, hash, NOISE_HASH_LEN, 0,
			 VNET_CRYPTO_OP_CHACHA20_POLY1305_ENC, key_idx);
  noise_mix_hash (hash, dst, src_len + NOISE_AUTHTAG_LEN);
}

static bool
noise_msg_decrypt (vlib_main_t * vm, uint8_t * dst, uint8_t * src,
		   size_t src_len, uint32_t key_idx,
		   uint8_t hash[NOISE_HASH_LEN])
{
  /* Nonce always zero for Noise_IK */
  if (!chacha20poly1305_calc (vm, src, src_len, dst, hash, NOISE_HASH_LEN, 0,
			      VNET_CRYPTO_OP_CHACHA20_POLY1305_DEC, key_idx))
    return false;
  noise_mix_hash (hash, src, src_len);
  return true;
}

static void
noise_msg_ephemeral (uint8_t ck[NOISE_HASH_LEN], uint8_t hash[NOISE_HASH_LEN],
		     const uint8_t src[NOISE_PUBLIC_KEY_LEN])
{
  noise_mix_hash (hash, src, NOISE_PUBLIC_KEY_LEN);
  noise_kdf (ck, NULL, NULL, src, NOISE_HASH_LEN, 0, 0,
	     NOISE_PUBLIC_KEY_LEN, ck);
}

static void
noise_tai64n_now (uint8_t output[NOISE_TIMESTAMP_LEN])
{
  uint32_t unix_sec;
  uint32_t unix_nanosec;

  uint64_t sec;
  uint32_t nsec;

  unix_time_now_nsec_fraction (&unix_sec, &unix_nanosec);

  /* Round down the nsec counter to limit precise timing leak. */
  unix_nanosec &= REJECT_INTERVAL_MASK;

  /* https://cr.yp.to/libtai/tai64.html */
  sec = htobe64 (0x400000000000000aULL + unix_sec);
  nsec = htobe32 (unix_nanosec);

  /* memcpy to output buffer, assuming output could be unaligned. */
  clib_memcpy (output, &sec, sizeof (sec));
  clib_memcpy (output + sizeof (sec), &nsec, sizeof (nsec));
}

static void
secure_zero_memory (void *v, size_t n)
{
  static void *(*const volatile memset_v) (void *, int, size_t) = &memset;
  memset_v (v, 0, n);
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */