summaryrefslogtreecommitdiffstats
path: root/src/vnet/ip-neighbor
AgeCommit message (Expand)AuthorFilesLines
2022-04-26linux-cp: sync addr and neigh only for lcp interfacesStanislav Zaikin2-1/+2
2021-10-23arp: fix for source address selectionEd Warnicke1-1/+1
2021-10-07arp: source address selectionEd Warnicke2-5/+13
2021-09-13ip-neighbor: Handle local MAC address change for incomplete adjacenciesNeale Ranns1-34/+6
2021-07-15ip-neighbor: GARP sent to bogus ip addressSteven Luong1-2/+2
2021-05-01vlib: refactor trajectory trace debug featureBenoƮt Ganne2-2/+0
2021-04-02ip-neighbor: suppress unsolicited clib_warning when sending garpSteven Luong2-5/+19
2021-03-21gre: Multipoint GRE fixesNeale Ranns1-2/+5
2021-02-22ip-neighbor: add set ip neighbor-config CLI commandIvan Shvedunov1-0/+54
2020-12-14misc: move to new pool_foreach macrosDamjan Marion1-12/+12
2020-12-08fib: Source Address SelectionNeale Ranns6-62/+48
2020-11-25ip-neighbor: Send API event when neighbor is removedNeale Ranns8-51/+174
2020-11-20ip-neighbor: Use ip_address_t rather than ip46_address_tNeale Ranns7-274/+264
2020-10-28misc: Break the big IP header files to improve compile timeNeale Ranns2-5/+38
2020-08-25ip-neighbor: skip probe for disabled interfacesMatthew Smith1-0/+6
2020-07-31ip-neighbor: Allow to replace dynamic entryVladimir Isaev1-11/+13
2020-05-10ip-neighbor: fix show ip neighbor issueMichael Yu1-5/+4
2020-05-02ip-neighbor: honor walk callback return valueRuslan Babayev1-2/+4
2020-04-30ip-neighbor: Add flush APINeale Ranns4-0/+71
2020-04-28tests: implement ipaddress convenience methodsPaul Vinciguerra1-8/+8
2020-04-23ip-neighbor: Replace feature for the ip-neighbor data-baseNeale Ranns6-15/+145
2020-03-09ip-neighbor: add description to the age parameterVratko Polak1-0/+1
2020-03-06ip-neighbor: populate neighbor age via APIVladimir Ratnikov2-0/+4
2020-02-20ip-neighbor: Fix aging timeoutVladimir Isaev1-12/+19
2020-02-03fib: refresh adj pointer after fib_walk_sync due to possible reallocSteven Luong1-0/+7
2020-01-10docs: Edit FEATURE.yaml files so they can be publishedJohn DeNisco1-1/+1
2020-01-06ip-neighbor: Add FEATURE.yamlNeale Ranns1-0/+10
2019-12-31ip-neighbor: set link-type ARP on incomplete adjacenciesNeale Ranns1-1/+1
2019-12-23ip-neighbor: ip_neighbor_advertise() handles nullMatthew Smith1-2/+2
2019-12-22ip-neighbor: fix API initialization callMatthew Smith1-1/+1
2019-12-17ip: Protocol Independent IP NeighborsNeale Ranns14-0/+3720
id='n618' href='#n618'>618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
 *   All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>

#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_eal.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_lpm.h>

#include "main.h"

#ifndef APP_LCORE_IO_FLUSH
#define APP_LCORE_IO_FLUSH           1000000
#endif

#ifndef APP_LCORE_WORKER_FLUSH
#define APP_LCORE_WORKER_FLUSH       1000000
#endif

#ifndef APP_STATS
#define APP_STATS                    1000000
#endif

#define APP_IO_RX_DROP_ALL_PACKETS   0
#define APP_WORKER_DROP_ALL_PACKETS  0
#define APP_IO_TX_DROP_ALL_PACKETS   0

#ifndef APP_IO_RX_PREFETCH_ENABLE
#define APP_IO_RX_PREFETCH_ENABLE    1
#endif

#ifndef APP_WORKER_PREFETCH_ENABLE
#define APP_WORKER_PREFETCH_ENABLE   1
#endif

#ifndef APP_IO_TX_PREFETCH_ENABLE
#define APP_IO_TX_PREFETCH_ENABLE    1
#endif

#if APP_IO_RX_PREFETCH_ENABLE
#define APP_IO_RX_PREFETCH0(p)       rte_prefetch0(p)
#define APP_IO_RX_PREFETCH1(p)       rte_prefetch1(p)
#else
#define APP_IO_RX_PREFETCH0(p)
#define APP_IO_RX_PREFETCH1(p)
#endif

#if APP_WORKER_PREFETCH_ENABLE
#define APP_WORKER_PREFETCH0(p)      rte_prefetch0(p)
#define APP_WORKER_PREFETCH1(p)      rte_prefetch1(p)
#else
#define APP_WORKER_PREFETCH0(p)
#define APP_WORKER_PREFETCH1(p)
#endif

#if APP_IO_TX_PREFETCH_ENABLE
#define APP_IO_TX_PREFETCH0(p)       rte_prefetch0(p)
#define APP_IO_TX_PREFETCH1(p)       rte_prefetch1(p)
#else
#define APP_IO_TX_PREFETCH0(p)
#define APP_IO_TX_PREFETCH1(p)
#endif

static inline void
app_lcore_io_rx_buffer_to_send (
	struct app_lcore_params_io *lp,
	uint32_t worker,
	struct rte_mbuf *mbuf,
	uint32_t bsz)
{
	uint32_t pos;
	int ret;

	pos = lp->rx.mbuf_out[worker].n_mbufs;
	lp->rx.mbuf_out[worker].array[pos ++] = mbuf;
	if (likely(pos < bsz)) {
		lp->rx.mbuf_out[worker].n_mbufs = pos;
		return;
	}

	ret = rte_ring_sp_enqueue_bulk(
		lp->rx.rings[worker],
		(void **) lp->rx.mbuf_out[worker].array,
		bsz,
		NULL);

	if (unlikely(ret == 0)) {
		uint32_t k;
		for (k = 0; k < bsz; k ++) {
			struct rte_mbuf *m = lp->rx.mbuf_out[worker].array[k];
			rte_pktmbuf_free(m);
		}
	}

	lp->rx.mbuf_out[worker].n_mbufs = 0;
	lp->rx.mbuf_out_flush[worker] = 0;

#if APP_STATS
	lp->rx.rings_iters[worker] ++;
	if (likely(ret == 0)) {
		lp->rx.rings_count[worker] ++;
	}
	if (unlikely(lp->rx.rings_iters[worker] == APP_STATS)) {
		unsigned lcore = rte_lcore_id();

		printf("\tI/O RX %u out (worker %u): enq success rate = %.2f\n",
			lcore,
			(unsigned)worker,
			((double) lp->rx.rings_count[worker]) / ((double) lp->rx.rings_iters[worker]));
		lp->rx.rings_iters[worker] = 0;
		lp->rx.rings_count[worker] = 0;
	}
#endif
}

static inline void
app_lcore_io_rx(
	struct app_lcore_params_io *lp,
	uint32_t n_workers,
	uint32_t bsz_rd,
	uint32_t bsz_wr,
	uint8_t pos_lb)
{
	struct rte_mbuf *mbuf_1_0, *mbuf_1_1, *mbuf_2_0, *mbuf_2_1;
	uint8_t *data_1_0, *data_1_1 = NULL;
	uint32_t i;

	for (i = 0; i < lp->rx.n_nic_queues; i ++) {
		uint16_t port = lp->rx.nic_queues[i].port;
		uint8_t queue = lp->rx.nic_queues[i].queue;
		uint32_t n_mbufs, j;

		n_mbufs = rte_eth_rx_burst(
			port,
			queue,
			lp->rx.mbuf_in.array,
			(uint16_t) bsz_rd);

		if (unlikely(n_mbufs == 0)) {
			continue;
		}

#if APP_STATS
		lp->rx.nic_queues_iters[i] ++;
		lp->rx.nic_queues_count[i] += n_mbufs;
		if (unlikely(lp->rx.nic_queues_iters[i] == APP_STATS)) {
			struct rte_eth_stats stats;
			unsigned lcore = rte_lcore_id();

			rte_eth_stats_get(port, &stats);

			printf("I/O RX %u in (NIC port %u): NIC drop ratio = %.2f avg burst size = %.2f\n",
				lcore,
				port,
				(double) stats.imissed / (double) (stats.imissed + stats.ipackets),
				((double) lp->rx.nic_queues_count[i]) / ((double) lp->rx.nic_queues_iters[i]));
			lp->rx.nic_queues_iters[i] = 0;
			lp->rx.nic_queues_count[i] = 0;
		}
#endif

#if APP_IO_RX_DROP_ALL_PACKETS
		for (j = 0; j < n_mbufs; j ++) {
			struct rte_mbuf *pkt = lp->rx.mbuf_in.array[j];
			rte_pktmbuf_free(pkt);
		}

		continue;
#endif

		mbuf_1_0 = lp->rx.mbuf_in.array[0];
		mbuf_1_1 = lp->rx.mbuf_in.array[1];
		data_1_0 = rte_pktmbuf_mtod(mbuf_1_0, uint8_t *);
		if (likely(n_mbufs > 1)) {
			data_1_1 = rte_pktmbuf_mtod(mbuf_1_1, uint8_t *);
		}

		mbuf_2_0 = lp->rx.mbuf_in.array[2];
		mbuf_2_1 = lp->rx.mbuf_in.array[3];
		APP_IO_RX_PREFETCH0(mbuf_2_0);
		APP_IO_RX_PREFETCH0(mbuf_2_1);

		for (j = 0; j + 3 < n_mbufs; j += 2) {
			struct rte_mbuf *mbuf_0_0, *mbuf_0_1;
			uint8_t *data_0_0, *data_0_1;
			uint32_t worker_0, worker_1;

			mbuf_0_0 = mbuf_1_0;
			mbuf_0_1 = mbuf_1_1;
			data_0_0 = data_1_0;
			data_0_1 = data_1_1;

			mbuf_1_0 = mbuf_2_0;
			mbuf_1_1 = mbuf_2_1;
			data_1_0 = rte_pktmbuf_mtod(mbuf_2_0, uint8_t *);
			data_1_1 = rte_pktmbuf_mtod(mbuf_2_1, uint8_t *);
			APP_IO_RX_PREFETCH0(data_1_0);
			APP_IO_RX_PREFETCH0(data_1_1);

			mbuf_2_0 = lp->rx.mbuf_in.array[j+4];
			mbuf_2_1 = lp->rx.mbuf_in.array[j+5];
			APP_IO_RX_PREFETCH0(mbuf_2_0);
			APP_IO_RX_PREFETCH0(mbuf_2_1);

			worker_0 = data_0_0[pos_lb] & (n_workers - 1);
			worker_1 = data_0_1[pos_lb] & (n_workers - 1);

			app_lcore_io_rx_buffer_to_send(lp, worker_0, mbuf_0_0, bsz_wr);
			app_lcore_io_rx_buffer_to_send(lp, worker_1, mbuf_0_1, bsz_wr);
		}

		/* Handle the last 1, 2 (when n_mbufs is even) or 3 (when n_mbufs is odd) packets  */
		for ( ; j < n_mbufs; j += 1) {
			struct rte_mbuf *mbuf;
			uint8_t *data;
			uint32_t worker;

			mbuf = mbuf_1_0;
			mbuf_1_0 = mbuf_1_1;
			mbuf_1_1 = mbuf_2_0;
			mbuf_2_0 = mbuf_2_1;

			data = rte_pktmbuf_mtod(mbuf, uint8_t *);

			APP_IO_RX_PREFETCH0(mbuf_1_0);

			worker = data[pos_lb] & (n_workers - 1);

			app_lcore_io_rx_buffer_to_send(lp, worker, mbuf, bsz_wr);
		}
	}
}

static inline void
app_lcore_io_rx_flush(struct app_lcore_params_io *lp, uint32_t n_workers)
{
	uint32_t worker;

	for (worker = 0; worker < n_workers; worker ++) {
		int ret;

		if (likely((lp->rx.mbuf_out_flush[worker] == 0) ||
		           (lp->rx.mbuf_out[worker].n_mbufs == 0))) {
			lp->rx.mbuf_out_flush[worker] = 1;
			continue;
		}

		ret = rte_ring_sp_enqueue_bulk(
			lp->rx.rings[worker],
			(void **) lp->rx.mbuf_out[worker].array,
			lp->rx.mbuf_out[worker].n_mbufs,
			NULL);

		if (unlikely(ret == 0)) {
			uint32_t k;
			for (k = 0; k < lp->rx.mbuf_out[worker].n_mbufs; k ++) {
				struct rte_mbuf *pkt_to_free = lp->rx.mbuf_out[worker].array[k];
				rte_pktmbuf_free(pkt_to_free);
			}
		}

		lp->rx.mbuf_out[worker].n_mbufs = 0;
		lp->rx.mbuf_out_flush[worker] = 1;
	}
}

static inline void
app_lcore_io_tx(
	struct app_lcore_params_io *lp,
	uint32_t n_workers,
	uint32_t bsz_rd,
	uint32_t bsz_wr)
{
	uint32_t worker;

	for (worker = 0; worker < n_workers; worker ++) {
		uint32_t i;

		for (i = 0; i < lp->tx.n_nic_ports; i ++) {
			uint16_t port = lp->tx.nic_ports[i];
			struct rte_ring *ring = lp->tx.rings[port][worker];
			uint32_t n_mbufs, n_pkts;
			int ret;

			n_mbufs = lp->tx.mbuf_out[port].n_mbufs;
			ret = rte_ring_sc_dequeue_bulk(
				ring,
				(void **) &lp->tx.mbuf_out[port].array[n_mbufs],
				bsz_rd,
				NULL);

			if (unlikely(ret == 0))
				continue;

			n_mbufs += bsz_rd;

#if APP_IO_TX_DROP_ALL_PACKETS
			{
				uint32_t j;
				APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[0]);
				APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[1]);

				for (j = 0; j < n_mbufs; j ++) {
					if (likely(j < n_mbufs - 2)) {
						APP_IO_TX_PREFETCH0(lp->tx.mbuf_out[port].array[j + 2]);
					}

					rte_pktmbuf_free(lp->tx.mbuf_out[port].array[j]);
				}

				lp->tx.mbuf_out[port].n_mbufs = 0;

				continue;
			}
#endif

			if (unlikely(n_mbufs < bsz_wr)) {
				lp->tx.mbuf_out[port].n_mbufs = n_mbufs;
				continue;
			}

			n_pkts = rte_eth_tx_burst(
				port,
				0,
				lp->tx.mbuf_out[port].array,
				(uint16_t) n_mbufs);

#if APP_STATS
			lp->tx.nic_ports_iters[port] ++;
			lp->tx.nic_ports_count[port] += n_pkts;
			if (unlikely(lp->tx.nic_ports_iters[port] == APP_STATS)) {
				unsigned lcore = rte_lcore_id();

				printf("\t\t\tI/O TX %u out (port %u): avg burst size = %.2f\n",
					lcore,
					port,
					((double) lp->tx.nic_ports_count[port]) / ((double) lp->tx.nic_ports_iters[port]));
				lp->tx.nic_ports_iters[port] = 0;
				lp->tx.nic_ports_count[port] = 0;
			}
#endif

			if (unlikely(n_pkts < n_mbufs)) {
				uint32_t k;
				for (k = n_pkts; k < n_mbufs; k ++) {
					struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
					rte_pktmbuf_free(pkt_to_free);
				}
			}
			lp->tx.mbuf_out[port].n_mbufs = 0;
			lp->tx.mbuf_out_flush[port] = 0;
		}
	}
}

static inline void
app_lcore_io_tx_flush(struct app_lcore_params_io *lp)
{
	uint16_t port;
	uint32_t i;

	for (i = 0; i < lp->tx.n_nic_ports; i++) {
		uint32_t n_pkts;

		port = lp->tx.nic_ports[i];
		if (likely((lp->tx.mbuf_out_flush[port] == 0) ||
		           (lp->tx.mbuf_out[port].n_mbufs == 0))) {
			lp->tx.mbuf_out_flush[port] = 1;
			continue;
		}

		n_pkts = rte_eth_tx_burst(
			port,
			0,
			lp->tx.mbuf_out[port].array,
			(uint16_t) lp->tx.mbuf_out[port].n_mbufs);

		if (unlikely(n_pkts < lp->tx.mbuf_out[port].n_mbufs)) {
			uint32_t k;
			for (k = n_pkts; k < lp->tx.mbuf_out[port].n_mbufs; k ++) {
				struct rte_mbuf *pkt_to_free = lp->tx.mbuf_out[port].array[k];
				rte_pktmbuf_free(pkt_to_free);
			}
		}

		lp->tx.mbuf_out[port].n_mbufs = 0;
		lp->tx.mbuf_out_flush[port] = 1;
	}
}

static void
app_lcore_main_loop_io(void)
{
	uint32_t lcore = rte_lcore_id();
	struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
	uint32_t n_workers = app_get_lcores_worker();
	uint64_t i = 0;

	uint32_t bsz_rx_rd = app.burst_size_io_rx_read;
	uint32_t bsz_rx_wr = app.burst_size_io_rx_write;
	uint32_t bsz_tx_rd = app.burst_size_io_tx_read;
	uint32_t bsz_tx_wr = app.burst_size_io_tx_write;

	uint8_t pos_lb = app.pos_lb;

	for ( ; ; ) {
		if (APP_LCORE_IO_FLUSH && (unlikely(i == APP_LCORE_IO_FLUSH))) {
			if (likely(lp->rx.n_nic_queues > 0)) {
				app_lcore_io_rx_flush(lp, n_workers);
			}

			if (likely(lp->tx.n_nic_ports > 0)) {
				app_lcore_io_tx_flush(lp);
			}

			i = 0;
		}

		if (likely(lp->rx.n_nic_queues > 0)) {
			app_lcore_io_rx(lp, n_workers, bsz_rx_rd, bsz_rx_wr, pos_lb);
		}

		if (likely(lp->tx.n_nic_ports > 0)) {
			app_lcore_io_tx(lp, n_workers, bsz_tx_rd, bsz_tx_wr);
		}

		i ++;
	}
}

static inline void
app_lcore_worker(
	struct app_lcore_params_worker *lp,
	uint32_t bsz_rd,
	uint32_t bsz_wr)
{
	uint32_t i;

	for (i = 0; i < lp->n_rings_in; i ++) {
		struct rte_ring *ring_in = lp->rings_in[i];
		uint32_t j;
		int ret;

		ret = rte_ring_sc_dequeue_bulk(
			ring_in,
			(void **) lp->mbuf_in.array,
			bsz_rd,
			NULL);

		if (unlikely(ret == 0))
			continue;

#if APP_WORKER_DROP_ALL_PACKETS
		for (j = 0; j < bsz_rd; j ++) {
			struct rte_mbuf *pkt = lp->mbuf_in.array[j];
			rte_pktmbuf_free(pkt);
		}

		continue;
#endif

		APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[0], unsigned char *));
		APP_WORKER_PREFETCH0(lp->mbuf_in.array[1]);

		for (j = 0; j < bsz_rd; j ++) {
			struct rte_mbuf *pkt;
			struct ipv4_hdr *ipv4_hdr;
			uint32_t ipv4_dst, pos;
			uint32_t port;

			if (likely(j < bsz_rd - 1)) {
				APP_WORKER_PREFETCH1(rte_pktmbuf_mtod(lp->mbuf_in.array[j+1], unsigned char *));
			}
			if (likely(j < bsz_rd - 2)) {
				APP_WORKER_PREFETCH0(lp->mbuf_in.array[j+2]);
			}

			pkt = lp->mbuf_in.array[j];
			ipv4_hdr = rte_pktmbuf_mtod_offset(pkt,
							   struct ipv4_hdr *,
							   sizeof(struct ether_hdr));
			ipv4_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);

			if (unlikely(rte_lpm_lookup(lp->lpm_table, ipv4_dst, &port) != 0)) {
				port = pkt->port;
			}

			pos = lp->mbuf_out[port].n_mbufs;

			lp->mbuf_out[port].array[pos ++] = pkt;
			if (likely(pos < bsz_wr)) {
				lp->mbuf_out[port].n_mbufs = pos;
				continue;
			}

			ret = rte_ring_sp_enqueue_bulk(
				lp->rings_out[port],
				(void **) lp->mbuf_out[port].array,
				bsz_wr,
				NULL);

#if APP_STATS
			lp->rings_out_iters[port] ++;
			if (ret > 0) {
				lp->rings_out_count[port] += 1;
			}
			if (lp->rings_out_iters[port] == APP_STATS){
				printf("\t\tWorker %u out (NIC port %u): enq success rate = %.2f\n",
					(unsigned) lp->worker_id,
					port,
					((double) lp->rings_out_count[port]) / ((double) lp->rings_out_iters[port]));
				lp->rings_out_iters[port] = 0;
				lp->rings_out_count[port] = 0;
			}
#endif

			if (unlikely(ret == 0)) {
				uint32_t k;
				for (k = 0; k < bsz_wr; k ++) {
					struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
					rte_pktmbuf_free(pkt_to_free);
				}
			}

			lp->mbuf_out[port].n_mbufs = 0;
			lp->mbuf_out_flush[port] = 0;
		}
	}
}

static inline void
app_lcore_worker_flush(struct app_lcore_params_worker *lp)
{
	uint32_t port;

	for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
		int ret;

		if (unlikely(lp->rings_out[port] == NULL)) {
			continue;
		}

		if (likely((lp->mbuf_out_flush[port] == 0) ||
		           (lp->mbuf_out[port].n_mbufs == 0))) {
			lp->mbuf_out_flush[port] = 1;
			continue;
		}

		ret = rte_ring_sp_enqueue_bulk(
			lp->rings_out[port],
			(void **) lp->mbuf_out[port].array,
			lp->mbuf_out[port].n_mbufs,
			NULL);

		if (unlikely(ret == 0)) {
			uint32_t k;
			for (k = 0; k < lp->mbuf_out[port].n_mbufs; k ++) {
				struct rte_mbuf *pkt_to_free = lp->mbuf_out[port].array[k];
				rte_pktmbuf_free(pkt_to_free);
			}
		}

		lp->mbuf_out[port].n_mbufs = 0;
		lp->mbuf_out_flush[port] = 1;
	}
}

static void
app_lcore_main_loop_worker(void) {
	uint32_t lcore = rte_lcore_id();
	struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
	uint64_t i = 0;

	uint32_t bsz_rd = app.burst_size_worker_read;
	uint32_t bsz_wr = app.burst_size_worker_write;

	for ( ; ; ) {
		if (APP_LCORE_WORKER_FLUSH && (unlikely(i == APP_LCORE_WORKER_FLUSH))) {
			app_lcore_worker_flush(lp);
			i = 0;
		}

		app_lcore_worker(lp, bsz_rd, bsz_wr);

		i ++;
	}
}

int
app_lcore_main_loop(__attribute__((unused)) void *arg)
{
	struct app_lcore_params *lp;
	unsigned lcore;

	lcore = rte_lcore_id();
	lp = &app.lcore_params[lcore];

	if (lp->type == e_APP_LCORE_IO) {
		printf("Logical core %u (I/O) main loop.\n", lcore);
		app_lcore_main_loop_io();
	}

	if (lp->type == e_APP_LCORE_WORKER) {
		printf("Logical core %u (worker %u) main loop.\n",
			lcore,
			(unsigned) lp->worker.worker_id);
		app_lcore_main_loop_worker();
	}

	return 0;
}