Age | Commit message (Collapse) | Author | Files | Lines |
|
Type: fix
Signed-off-by: Frédéric Perrin <fred@fperrin.net>
Change-Id: I45191b7316c88038bcd57d62aeb07bb109cf4a4d
|
|
Using pre-shared keys is usually a bad idea, one should use eg. IKEv2
instead, but one does not always have the choice.
For AES-CBC, the IV must be unpredictable (see NIST SP800-38a Appendix
C) whereas for AES-CTR or AES-GCM, the IV should never be reused with
the same key material (see NIST SP800-38a Appendix B and NIST SP800-38d
section 8).
If one uses pre-shared keys and VPP is restarted, the IV counter
restarts at 0 and the same IVs are generated with the same pre-shared
keys materials.
To fix those issues we follow the recommendation from NIST SP800-38a
and NIST SP800-38d:
- we use a PRNG (not cryptographically secured) to generate IVs to
avoid generating the same IV sequence between VPP restarts. The PRNG is
chosen so that there is a low chance of generating the same sequence
- for AES-CBC, the generated IV is encrypted as part of the message.
This makes the (predictable) PRNG-generated IV unpredictable as it is
encrypted with the secret key
- for AES-CTR and GCM, we use the IV as-is as predictable IVs are fine
Most of the changes in this patch are caused by the need to shoehorn an
additional state of 2 u64 for the PRNG in the 1st cacheline of the SA
object.
Type: improvement
Change-Id: I2af89c21ae4b2c4c33dd21aeffcfb79c13c9d84c
Signed-off-by: Benoît Ganne <bganne@cisco.com>
|
|
Error counters are added on a per-node basis. In Ipsec, it is
useful to also track the errors that occured per SA.
Type: feature
Change-Id: Iabcdcb439f67ad3c6c202b36ffc44ab39abac1bc
Signed-off-by: Arthur de Kerhor <arthurdekerhor@gmail.com>
|
|
Type: improvement
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: Ica7de5a493389c6f53b7cf04e06939473a63d2b9
|
|
Type: feature
Gaps in the sequence numbers received on an SA indicate packets that were lost.
Gaps are identified using the anti-replay window that records the sequences seen.
Publish the number of lost packets in the stats segment at /net/ipsec/sa/lost
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I8af1c09b7b25a705e18bf82e1623b3ce19e5a74d
|
|
Type: fix
two problems;
1 - just because anti-reply is not enabled doesn't mean the high sequence
number should not be used.
- fix, there needs to be some means to detect a wrapped packet, so we
use a window size of 2^30.
2 - The SA object was used as a scratch pad for the high-sequence
number used during decryption. That means that once the batch has been
processed the high-sequence number used is lost. This means it is not
possible to distinguish this case:
if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl))
{
...
if (post_decrypt)
{
if (hi_seq_used == sa->seq_hi)
/* the high sequence number used to succesfully decrypt this
* packet is the same as the last-sequnence number of the SA.
* that means this packet did not cause a wrap.
* this packet is thus out of window and should be dropped */
return 1;
else
/* The packet decrypted with a different high sequence number
* to the SA, that means it is the wrap packet and should be
* accepted */
return 0;
}
- fix: don't use the SA as a scratch pad, use the 'packet_data' - the
same place that is used as the scratch pad for the low sequence number.
other consequences:
- An SA doesn't have seq and last_seq, it has only seq; the sequence
numnber of the last packet tx'd or rx'd.
- there's 64bits of space available on the SA's first cache line. move
the AES CTR mode IV there.
- test the ESN/AR combinations to catch the bugs this fixes. This
doubles the amount of tests, but without AR on they only run for 2
seconds. In the AR tests, the time taken to wait for packets that won't
arrive is dropped from 1 to 0.2 seconds thus reducing the runtime of
these tests from 10-15 to about 5 sceonds.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: Iaac78905289a272dc01930d70decd8109cf5e7a5
|
|
Type: refactor
this allows the ipsec_sa_get funtion to be moved from ipsec.h to
ipsec_sa.h where it belongs.
Also use ipsec_sa_get throughout the code base.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I2dce726c4f7052b5507dd8dcfead0ed5604357df
|
|
Type: refactor
- remove the extern declaration of the nodes. keep the use of them to
the files that declare them
- remove duplicate declaration of ipsec_set_async_mode
- remove unsued ipsec_add_feature
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I6ce7bb4517b508a8f02b11f3bc819e1c5d539c02
|
|
Type: improvement
negates the need to load the SA in the handoff node.
don't prefetch the packet data, it's not needed.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I340472dc437f050cc1c3c11dfeb47ab09c609624
|
|
Type: improvement
AN SA is uni-drectional therefore it can be used only for encrypt or
decrypt, not both. So it only needs one thread ID. free up some space on
the 1st cacheline.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I21cb7cff70a763cbe2bffead860b574bc80b3136
|
|
Type: fix
Change-Id: I5cb9a3845ddbc5f4de4eb4e9c481f606fe5cec9a
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
the sequence number increment and the anti-replay window
checks must be atomic. Given the vector nature of VPP we
can't simply use atomic increments for sequence numbers,
since a vector on thread 1 with lower sequence numbers could
be 'overtaken' by packets on thread 2 with higher sequence
numbers.
The anti-replay logic requires a critical section, not just
atomics, and we don't want that.
So when the SA see the first packet it is bound to that worker
all subsequent packets, that arrive on a different worker,
are subject to a handoff.
Type: feature
Change-Id: Ia20a8645fb50622ea6235ab015a537f033d531a4
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Type: fix
Change-Id: I5a5461652f8115fa1270e20f748178fb5f5450f2
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Type: fix
Change-Id: I1fa8c5326d6f22cfb8dd40e97d8a22d11a716922
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Type: fix
Several Fixes:
1 - Anti-replay did not work with GCM becuase it overwrote the sequence
number in the ESP header. To fix i added the seq num to the per-packet
data so it is preserved
2 - The high sequence number was not byte swapped during ESP encrypt.
3 - openssl engine was the only one to return FAIL_DECRYPT for bad GCM
the others return BAD_HMAC. removed the former
4 - improved tracing to show the low and high seq numbers
5 - documented the anti-replay window checks
6 - fixed scapy patch for ESN support for GCM
7 - tests for anti-reply (w/ and w/o ESN) for each crypto algo
Change-Id: Id65d96b6d1d4dd821b2ab557e87468fff6d70e5b
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
please consult the new tunnel proposal at:
https://wiki.fd.io/view/VPP/IPSec
Type: feature
Change-Id: I52857fc92ae068b85f59be08bdbea1bd5932e291
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
This patch refactors AH decrypt node in such way that it calls crypto
backend only once per node call.
Type: refactor
Change-Id: I0dc72ff699042a151e64d44f76f791c5136ec009
Signed-off-by: Filip Tehlar <ftehlar@cisco.com>
|
|
Change-Id: Id406eb8c69a89c57305d8f138e8e6730037aa799
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Idb661261c2191adda963a7815822fd7a27a9e7a0
Signed-off-by: Damjan Marion <damarion@cisco.com>
|
|
Change-Id: Icdcbac7453baa837a9c0c4a2401dff4a6aa6cba0
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Ib73352d6be26d639a7f9d47ca0570a1248bff04a
Signed-off-by: Damjan Marion <damarion@cisco.com>
|
|
Change-Id: I81ecdf9fdcfcb017117b47dc031f93208e004d7c
Signed-off-by: Damjan Marion <damarion@cisco.com>
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Iad6c4b867961ec8036110a4e15a829ddb93193ed
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Ie8986bd3652d25c4befe681cea77df95aba37ebc
Signed-off-by: Damjan Marion <damarion@cisco.com>
|
|
Change-Id: Ibf320b3e7b054b686f3af9a55afd5d5bda9b1048
Signed-off-by: Damjan Marion <damarion@cisco.com>
Signed-off-by: Filip Tehlar <ftehlar@cisco.com>
|
|
ipsec_proto_main moved to ipsec.c
fix missing '\0' of backend name
Change-Id: I90760b3045973a46792c2f098d9b0b1b3d209ad0
Signed-off-by: Kingwel Xie <kingwel.xie@ericsson.com>
|
|
Change-Id: I7d48a4e236c6e7b11b0c9750a30fb68e829d64a5
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
1) stats are accessed via the stat segment which is more condusive to
monitoring
2) stats are accurate in the presence of multiple threads. There's no
guarantee that an SA is access from only one worker.
Change-Id: Id5e217ea253ddfc9480aaedb0d008dea031b1148
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
in the same maaner as with other tunnel tyeps we use
the FIB to cache and track the destination used to reach
the tunnel endpoint. Post encap we can then ship the packet
straight to this adjacency and thus elide the costly second
lookup.
- SA add and del function so they can be used both directly
from the API and for tunnels.
- API change for the SA dump to use the SA type
- ipsec_key_t type for convenience (copying, [un]formating)
- no matching tunnel counters in ipsec-if-input
Change-Id: I9d144a59667f7bf96442f4ca66bef5c1d3c7f1ea
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Ibb55427ed49d0277854a352922c6c4bb007bf072
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Change-Id: Ia5d45db73e4bdb32214ed4f365d5eec8e28115f3
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I45b97cfd0c3785bfbf6d142d362bd3d4d56bae00
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Ibef46e068cd72415af28920b0146adf48105bf68
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Change-Id: Ied34720ca5a6e6e717eea4e86003e854031b6eab
Signed-off-by: Dave Barach <dave@barachs.net>
|
|
Change-Id: I5105b688ef3df2c949ba09e1e90c1b8913502388
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Change-Id: Ic6b27659f1fe9e8df39e80a0441305e4e952195a
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Change-Id: I89e90193ded1beb6cb0950c15737f9467efac1c3
Signed-off-by: Klement Sekera <ksekera@cisco.com>
|
|
Change-Id: Iec5804d768485f4015bbf732d8d19ef2f24e6939
Signed-off-by: “mukeshyadav1984” <mukyadav@cisco.com>
|