Age | Commit message (Collapse) | Author | Files | Lines |
|
This patch updates the "show ipsec spd" cli to display
policies maintained by fast path bihash table.
Type: feature
Signed-off-by: Piotr Bronowski <piotrx.bronowski@intel.com>
Change-Id: I58b9f92f3132dc9809b50786dc912e09c4b84d81
|
|
Currently 0 has been used as the wildcard representing ANY type of
protocol. However 0 is valid value of ip protocol (HOPOPT) and therefore
it should not be used as a wildcard. Instead 255 is used which is
guaranteed by IANA to be reserved and not used as a protocol id.
Type: improvement
Signed-off-by: Piotr Bronowski <piotrx.bronowski@intel.com>
Change-Id: I2320bae6fe380cb999dc5a9187beb68fda2d31eb
|
|
Adding flow cache support to improve inbound IPv4/IPSec Security Policy
Database (SPD) lookup performance. By enabling the flow cache in startup
conf, this replaces a linear O(N) SPD search, with an O(1) hash table
search.
This patch is the ipsec4_input_node counterpart to
https://gerrit.fd.io/r/c/vpp/+/31694, and shares much of the same code,
theory and mechanism of action.
Details about the flow cache:
Mechanism:
1. First packet of a flow will undergo linear search in SPD
table. Once a policy match is found, a new entry will be added
into the flow cache. From 2nd packet onwards, the policy lookup
will happen in flow cache.
2. The flow cache is implemented using a hash table without collision
handling. This will avoid the logic to age out or recycle the old
flows in flow cache. Whenever a collision occurs, the old entry
will be overwritten by the new entry. Worst case is when all the
256 packets in a batch result in collision, falling back to linear
search. Average and best case will be O(1).
3. The size of flow cache is fixed and decided based on the number
of flows to be supported. The default is set to 1 million flows,
but is configurable by a startup.conf option.
4. Whenever a SPD rule is added/deleted by the control plane, all
current flow cache entries will be invalidated. As the SPD API is
not mp-safe, the data plane will wait for the control plane
operation to complete.
Cache invalidation is via an epoch counter that is incremented on
policy add/del and stored with each entry in the flow cache. If the
epoch counter in the flow cache does not match the current count,
the entry is considered stale, and we fall back to linear search.
The following configurable options are available through startup
conf under the ipsec{} entry:
1. ipv4-inbound-spd-flow-cache on/off - enable SPD flow cache
(default off)
2. ipv4-inbound-spd-hash-buckets %d - set number of hash buckets
(default 4,194,304: ~1 million flows with 25% load factor)
Performance with 1 core, 1 ESP Tunnel, null-decrypt then bypass,
94B (null encrypted packet) for different SPD policy matching indices:
SPD Policy index : 2 10 100 1000
Throughput : Mbps/Mbps Mbps/Mbps Mbps/Mbps Mbps/Mbps
(Baseline/Optimized)
ARM TX2 : 300/290 230/290 70/290 8.5/290
Type: improvement
Signed-off-by: Zachary Leaf <zachary.leaf@arm.com>
Signed-off-by: mgovind <govindarajan.Mohandoss@arm.com>
Tested-by: Jieqiang Wang <jieqiang.wang@arm.com>
Change-Id: I8be2ad4715accbb335c38cd933904119db75827b
|
|
Adding flow cache support to improve outbound IPv4/IPSec SPD lookup
performance. Details about flow cache:
Mechanism:
1. First packet of a flow will undergo linear search in SPD
table. Once a policy match is found, a new entry will be added
into the flow cache. From 2nd packet onwards, the policy lookup
will happen in flow cache.
2. The flow cache is implemented using bihash without collision
handling. This will avoid the logic to age out or recycle the old
flows in flow cache. Whenever a collision occurs, old entry will
be overwritten by the new entry. Worst case is when all the 256
packets in a batch result in collision and fall back to linear
search. Average and best case will be O(1).
3. The size of flow cache is fixed and decided based on the number
of flows to be supported. The default is set to 1 million flows.
This can be made as a configurable option as a next step.
4. Whenever a SPD rule is added/deleted by the control plane, the
flow cache entries will be completely deleted (reset) in the
control plane. The assumption here is that SPD rule add/del is not
a frequent operation from control plane. Flow cache reset is done,
by putting the data plane in fall back mode, to bypass flow cache
and do linear search till the SPD rule add/delete operation is
complete. Once the rule is successfully added/deleted, the data
plane will be allowed to make use of the flow cache. The flow
cache will be reset only after flushing out the inflight packets
from all the worker cores using
vlib_worker_wait_one_loop().
Details about bihash usage:
1. A new bihash template (16_8) is added to support IPv4 5 tuple.
BIHASH_KVP_PER_PAGE and BIHASH_KVP_AT_BUCKET_LEVEL are set
to 1 in the new template. It means only one KVP is supported
per bucket.
2. Collision handling is avoided by calling
BV (clib_bihash_add_or_overwrite_stale) function.
Through the stale callback function pointer, the KVP entry
will be overwritten during collision.
3. Flow cache reset is done using
BV (clib_bihash_foreach_key_value_pair) function.
Through the callback function pointer, the KVP value is reset
to ~0ULL.
MRR performance numbers with 1 core, 1 ESP Tunnel, null-encrypt,
64B for different SPD policy matching indices:
SPD Policy index : 1 10 100 1000
Throughput : MPPS/MPPS MPPS/MPPS MPPS/MPPS KPPS/MPPS
(Baseline/Optimized)
ARM Neoverse N1 : 5.2/4.84 4.55/4.84 2.11/4.84 329.5/4.84
ARM TX2 : 2.81/2.6 2.51/2.6 1.27/2.6 176.62/2.6
INTEL SKX : 4.93/4.48 4.29/4.46 2.05/4.48 336.79/4.47
Next Steps:
Following can be made as a configurable option through startup
conf at IPSec level:
1. Enable/Disable Flow cache.
2. Bihash configuration like number of buckets and memory size.
3. Dual/Quad loop unroll can be applied around bihash to further
improve the performance.
4. The same flow cache logic can be applied for IPv6 as well as in
IPSec inbound direction. A deeper and wider flow cache using
bihash_40_8 can replace existing bihash_16_8, to make it
common for both IPv4 and IPv6 in both outbound and
inbound directions.
Following changes are made based on the review comments:
1. ON/OFF flow cache through startup conf. Default: OFF
2. Flow cache stale entry detection using epoch counter.
3. Avoid host order endianness conversion during flow cache
lookup.
4. Move IPSec startup conf to a common file.
5. Added SPD flow cache unit test case
6. Replaced bihash with vectors to implement flow cache.
7. ipsec_add_del_policy API is not mpsafe. Cleaned up
inflight packets check in control plane.
Type: improvement
Signed-off-by: mgovind <govindarajan.Mohandoss@arm.com>
Signed-off-by: Zachary Leaf <zachary.leaf@arm.com>
Tested-by: Jieqiang Wang <jieqiang.wang@arm.com>
Change-Id: I62b4d6625fbc6caf292427a5d2046aa5672b2006
|
|
Type: feature
Gaps in the sequence numbers received on an SA indicate packets that were lost.
Gaps are identified using the anti-replay window that records the sequences seen.
Publish the number of lost packets in the stats segment at /net/ipsec/sa/lost
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I8af1c09b7b25a705e18bf82e1623b3ce19e5a74d
|
|
Type: fix
two problems;
1 - just because anti-reply is not enabled doesn't mean the high sequence
number should not be used.
- fix, there needs to be some means to detect a wrapped packet, so we
use a window size of 2^30.
2 - The SA object was used as a scratch pad for the high-sequence
number used during decryption. That means that once the batch has been
processed the high-sequence number used is lost. This means it is not
possible to distinguish this case:
if (seq < IPSEC_SA_ANTI_REPLAY_WINDOW_LOWER_BOUND (tl))
{
...
if (post_decrypt)
{
if (hi_seq_used == sa->seq_hi)
/* the high sequence number used to succesfully decrypt this
* packet is the same as the last-sequnence number of the SA.
* that means this packet did not cause a wrap.
* this packet is thus out of window and should be dropped */
return 1;
else
/* The packet decrypted with a different high sequence number
* to the SA, that means it is the wrap packet and should be
* accepted */
return 0;
}
- fix: don't use the SA as a scratch pad, use the 'packet_data' - the
same place that is used as the scratch pad for the low sequence number.
other consequences:
- An SA doesn't have seq and last_seq, it has only seq; the sequence
numnber of the last packet tx'd or rx'd.
- there's 64bits of space available on the SA's first cache line. move
the AES CTR mode IV there.
- test the ESN/AR combinations to catch the bugs this fixes. This
doubles the amount of tests, but without AR on they only run for 2
seconds. In the AR tests, the time taken to wait for packets that won't
arrive is dropped from 1 to 0.2 seconds thus reducing the runtime of
these tests from 10-15 to about 5 sceonds.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: Iaac78905289a272dc01930d70decd8109cf5e7a5
|
|
Type: refactor
this allows the ipsec_sa_get funtion to be moved from ipsec.h to
ipsec_sa.h where it belongs.
Also use ipsec_sa_get throughout the code base.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I2dce726c4f7052b5507dd8dcfead0ed5604357df
|
|
support
Type: feature
attmpet 2. this includes changes in ah_encrypt that don't use
uninitialised memory when doing tunnel mode fixups.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: Ie3cb776f5c415c93b8a5ee22f22586fd0181110d
|
|
This reverts commit c7eaa711f3e25580687df0618e9ca80d3dc85e5f.
Reason for revert: The jenkins job named 'vpp-merge-master-ubuntu1804-x86_64' had 2 IPv6 AH tests fail after the change was merged. Those 2 tests also failed the next time that job ran after an unrelated change was merged.
Change-Id: I0e2c3ee895114029066c82624e79807af575b6c0
Signed-off-by: Matthew Smith <mgsmith@netgate.com>
|
|
support
Type: feature
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I6d4a9b187daa725d4b2cbb66e11616802d44d2d3
|
|
Type: improvement
AN SA is uni-drectional therefore it can be used only for encrypt or
decrypt, not both. So it only needs one thread ID. free up some space on
the 1st cacheline.
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: I21cb7cff70a763cbe2bffead860b574bc80b3136
|
|
Type: fix
Signed-off-by: Neale Ranns <neale@graphiant.com>
Change-Id: Ib08fe356e4dc710dd60a96736c48b27129f06786
|
|
ipsec_{crypto,integ}_alg_t are packed and smaller than u32. Callers are
using those enums so unformat functions should too instead of u32 to
not overflow the stack.
Type: fix
Change-Id: Ifc86366f1928ca6352f06f390a88ac64668289d5
Signed-off-by: Benoît Ganne <bganne@cisco.com>
|
|
Type: feature
- use tunnel_encap_decap_flags to control the copying of DSCP/ECN/etc
during IPSEC tunnel mode encap.
- use DSCP value to have fixed encap value.
Signed-off-by: Neale Ranns <nranns@cisco.com>
Change-Id: If4f51fd4c1dcbb0422aac9bd078e5c14af5bf11f
|
|
Type: feature
Signed-off-by: Neale Ranns <nranns@cisco.com>
Change-Id: Iae9fe35cfbce4c675fa25e0800c0f4629a83e012
|
|
Type: improvement
Change-Id: I0c82722dfce990345fe6eeecdb335678543367e0
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Type: feature
Signed-off-by: Neale Ranns <nranns@cisco.com>
Change-Id: Ie8bd50df163aea2798e9f9d35a13dcadc4a4a4b2
|
|
Type: feature
thus allowing NAT traversal,
Signed-off-by: Neale Ranns <nranns@cisco.com>
Change-Id: Ie8650ceeb5074f98c68d2d90f6adc2f18afeba08
Signed-off-by: Paul Vinciguerra <pvinci@vinciconsulting.com>
|
|
Type: feature
Signed-off-by: Neale Ranns <nranns@cisco.com>
Change-Id: Iaba2ab11bfaa1c8db4023434e3043ac39500f938
|
|
the sequence number increment and the anti-replay window
checks must be atomic. Given the vector nature of VPP we
can't simply use atomic increments for sequence numbers,
since a vector on thread 1 with lower sequence numbers could
be 'overtaken' by packets on thread 2 with higher sequence
numbers.
The anti-replay logic requires a critical section, not just
atomics, and we don't want that.
So when the SA see the first packet it is bound to that worker
all subsequent packets, that arrive on a different worker,
are subject to a handoff.
Type: feature
Change-Id: Ia20a8645fb50622ea6235ab015a537f033d531a4
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
APIs for dedicated IPSec tunnels will remain in this release and are
used to programme the IPIP tunnel protect. APIs will be removed in a
future release.
see:
https://wiki.fd.io/view/VPP/IPSec
Type: feature
Change-Id: I0f01f597946fdd15dfa5cae3643104d5a9c83089
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
If specified, shows keys, otherwise redacts. This change sets this flag
in the existing CLI code (thus maintaining the old behavior). The use
case for not specifying the insecure flag (and thus redacting the keys
from the show output) is for log messages.
Type: feature
Signed-off-by: Christian E. Hopps <chopps@chopps.org>
Change-Id: I8c0ab6a9a8aba7c687a2559fa1a23fac9d0aa111
|
|
Type: feature
Change-Id: I87cc1168466f267e8c4bbec318401982f4bdf03a
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
- this remove the need to iterate through all state when deleting an SA
- and ensures that if the SA is deleted by the client is remains for use
in any state until that state is also removed.
Type: feature
Change-Id: I438cb67588cb65c701e49a7a9518f88641925419
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Type: fix
Fixes: 231c4696872cb344f28648949603840136c0795d
This reverts commit 231c4696872cb344f28648949603840136c0795d.
Change-Id: I136344555983dd10a31dbc000ee40e2de2c91291
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Print the SPI in hexadecimal and decimal.
Type: feature
Change-Id: I012e94f9147058064e06c6bb4622ab6b6507957d
Signed-off-by: Guillaume Solignac <gsoligna@cisco.com>
|
|
please consult the new tunnel proposal at:
https://wiki.fd.io/view/VPP/IPSec
Type: feature
Change-Id: I52857fc92ae068b85f59be08bdbea1bd5932e291
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
An SA can be used only for ESP or AH nver both, so it needs only one
coresponding DPO.
Type: refactor
Change-Id: I689060f795ee352245a0eaed0890a6b234c63d71
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Because of the initialisation of the end of the range, the command show ipsec spd
on an ipv4 SPD didn't work correctly.
Change-Id: I3582382197bb6edef4fb077aac1e927ef4581cbf
Signed-off-by: Guillaume Solignac <gsoligna@cisco.com>
|
|
hi->name is not NULL-terminated. Use specialized format function which
does the right thing.
Change-Id: Iadda51461af0c1ad4f38a6d24b76e816020f35c8
Signed-off-by: Benoît Ganne <bganne@cisco.com>
|
|
Change-Id: Ia8cea13f7b937294e6a080a55fb2ceff30063acf
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I4d1d22cb24564896264e77c1810804ea3f54cb37
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Id2ddb77b4ec3dd543d6e638bc882923f2bac011d
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I48a4b0a16f71cbab04dd0955d3ec4001074b57ed
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I0b47590400aebea09aa1b27de753be638e1ba870
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Icdcbac7453baa837a9c0c4a2401dff4a6aa6cba0
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Ib828ea5106f3ae280e4ce233f2462dee363580b7
Signed-off-by: Damjan Marion <damarion@cisco.com>
|
|
Change-Id: I81ecdf9fdcfcb017117b47dc031f93208e004d7c
Signed-off-by: Damjan Marion <damarion@cisco.com>
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: Id546c56a4904d13d4278055f3c5a5e4548e2efd0
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I4bfde738f9585b045cb5ba62cf51b141d639b1b2
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I5e981f12ff44243623cfd18d5e0ae06a7dfd1eb8
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
1. fix wrong assignemnt of lik/rik
2. keys initialized to 0, to avoid using random data
in stack. could cause memory overlapped then crash
3. show sa->id in hex format
Change-Id: Id0430aa49bb55c27cee4f97f8c0e4ec87515dcd2
Signed-off-by: Kingwel Xie <kingwel.xie@ericsson.com>
|
|
1) stats are accessed via the stat segment which is more condusive to
monitoring
2) stats are accurate in the presence of multiple threads. There's no
guarantee that an SA is access from only one worker.
Change-Id: Id5e217ea253ddfc9480aaedb0d008dea031b1148
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
in the same maaner as with other tunnel tyeps we use
the FIB to cache and track the destination used to reach
the tunnel endpoint. Post encap we can then ship the packet
straight to this adjacency and thus elide the costly second
lookup.
- SA add and del function so they can be used both directly
from the API and for tunnels.
- API change for the SA dump to use the SA type
- ipsec_key_t type for convenience (copying, [un]formating)
- no matching tunnel counters in ipsec-if-input
Change-Id: I9d144a59667f7bf96442f4ca66bef5c1d3c7f1ea
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
- return the stats_index of each SPD in the create API call
- no ip_any in the API as this creates 2 SPD entries. client must add both v4 and v6 explicitly
- only one pool of SPD entries (rhter than one per-SPD) to support this
- no packets/bytes in the dump API. Polling the stats segment is much more efficient
(if the SA lifetime is based on packet/bytes)
- emit the policy index in the packet trace and CLI commands.
Change-Id: I7eaf52c9d0495fa24450facf55229941279b8569
Signed-off-by: Neale Ranns <nranns@cisco.com>
|
|
Change-Id: I7b51f88292e057c6443b12224486f2d0c9f8ae23
Signed-off-by: Damjan Marion <damarion@cisco.com>
|