summaryrefslogtreecommitdiffstats
path: root/src/vnet/ipsec/ipsec_input.c
AgeCommit message (Expand)AuthorFilesLines
2021-06-29ipsec: increment SPD policy counters for bypass and discard actions in ipsec4...Zachary Leaf1-0/+20
2021-02-26ipsec: move the IPSec SA pool out of ipsec_mainNeale Ranns1-2/+2
2021-02-10ipsec: Use the new tunnel API types to add flow label and TTL copyNeale Ranns1-4/+4
2021-02-09Revert "ipsec: Use the new tunnel API types to add flow label and TTL copy"Matthew Smith1-4/+4
2021-02-08ipsec: Use the new tunnel API types to add flow label and TTL copyNeale Ranns1-4/+4
2020-04-24ipsec: add input node bypass/discard functionalityShivaShankarK1-163/+256
2019-11-05ipsec: ipsec-input: check for too-short packetsBenoît Ganne1-12/+25
2019-09-02ipsec ip tcp l2: multiarch nodes cannot be declared as staticDamjan Marion1-4/+4
2019-07-11ipsec: Revert "IPSEC: remove double byte swap of IP addresses"Neale Ranns1-10/+18
2019-06-25ipsec: print spi in hexadecimalGuillaume Solignac1-2/+2
2019-04-10IPSEC: remove double byte swap of IP addressesNeale Ranns1-18/+10
2019-03-29IPSEC-GRE: fixes and API update to common types.Neale Ranns1-4/+0
2019-03-27ipsec: compress ipsec_sa_t so data used by dataplane code fits in cachelineDamjan Marion1-2/+2
2019-02-22IPSEC: header exportsNeale Ranns1-0/+1
2019-02-11ipsec: multi-arch, next-node-index cleanupKingwel Xie1-12/+43
2019-02-05IPSEC: SPD counters in the stats sgementNeale Ranns1-67/+84
2018-12-12Change ipsec feature node namesPierre Pfister1-3/+3
2018-11-26Fix IPSec CLI key parsingPierre Pfister1-2/+9
2018-10-29migrate ipsec to new multiarch infraKlement Sekera1-11/+7
2018-10-22ipsec: split ipsec nodes into ip4/ip6 nodesKlement Sekera1-36/+35
2018-10-03ipsec: add missing ipv6 ah code & ipv6 testsKlement Sekera1-6/+28
2018-07-19Remove unused argument to vlib_feature_nextDamjan Marion1-8/+2
2018-05-10Change the way IP header pointer is calculated in esp_decrypt nodesSzymon Sliwa1-0/+4
2018-05-09ipsec: support UDP encap/decap for NAT traversalKlement Sekera1-3/+13
2017-11-28IPSec AH protocol enhancement in VPP native core“mukeshyadav1984”1-11/+52
2017-02-17ipsec: changed ipsec-input-ip6 node to be a sibling of ipsec-input-ip4, fixes...Radu Nicolau1-6/+1
2017-01-27dpdk: rework cryptodev ipsec build and setupSergio Gonzalez Monroy1-22/+2
2016-12-28Reorganize source tree to use single autotools instanceDamjan Marion1-0/+455
ref='#n361'>361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
# Copyright (c) 2021 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generation of Continuous Performance Trending and Analysis.
"""

import re
import logging
import csv

from collections import OrderedDict
from datetime import datetime
from copy import deepcopy

import prettytable
import plotly.offline as ploff
import plotly.graph_objs as plgo
import plotly.exceptions as plerr

from pal_utils import archive_input_data, execute_command, classify_anomalies


# Command to build the html format of the report
HTML_BUILDER = u'sphinx-build -v -c sphinx_conf/trending -a ' \
               u'-b html -E ' \
               u'-t html ' \
               u'-D version="{date}" ' \
               u'{working_dir} ' \
               u'{build_dir}/'

# .css file for the html format of the report
THEME_OVERRIDES = u"""/* override table width restrictions */
.wy-nav-content {
    max-width: 1200px !important;
}
.rst-content blockquote {
    margin-left: 0px;
    line-height: 18px;
    margin-bottom: 0px;
}
.wy-menu-vertical a {
    display: inline-block;
    line-height: 18px;
    padding: 0 2em;
    display: block;
    position: relative;
    font-size: 90%;
    color: #d9d9d9
}
.wy-menu-vertical li.current a {
    color: gray;
    border-right: solid 1px #c9c9c9;
    padding: 0 3em;
}
.wy-menu-vertical li.toctree-l2.current > a {
    background: #c9c9c9;
    padding: 0 3em;
}
.wy-menu-vertical li.toctree-l2.current li.toctree-l3 > a {
    display: block;
    background: #c9c9c9;
    padding: 0 4em;
}
.wy-menu-vertical li.toctree-l3.current li.toctree-l4 > a {
    display: block;
    background: #bdbdbd;
    padding: 0 5em;
}
.wy-menu-vertical li.on a, .wy-menu-vertical li.current > a {
    color: #404040;
    padding: 0 2em;
    font-weight: bold;
    position: relative;
    background: #fcfcfc;
    border: none;
        border-top-width: medium;
        border-bottom-width: medium;
        border-top-style: none;
        border-bottom-style: none;
        border-top-color: currentcolor;
        border-bottom-color: currentcolor;
    padding-left: 2em -4px;
}
"""

COLORS = (
    u"#1A1110",
    u"#DA2647",
    u"#214FC6",
    u"#01786F",
    u"#BD8260",
    u"#FFD12A",
    u"#A6E7FF",
    u"#738276",
    u"#C95A49",
    u"#FC5A8D",
    u"#CEC8EF",
    u"#391285",
    u"#6F2DA8",
    u"#FF878D",
    u"#45A27D",
    u"#FFD0B9",
    u"#FD5240",
    u"#DB91EF",
    u"#44D7A8",
    u"#4F86F7",
    u"#84DE02",
    u"#FFCFF1",
    u"#614051"
)


def generate_cpta(spec, data):
    """Generate all formats and versions of the Continuous Performance Trending
    and Analysis.

    :param spec: Specification read from the specification file.
    :param data: Full data set.
    :type spec: Specification
    :type data: InputData
    """

    logging.info(u"Generating the Continuous Performance Trending and Analysis "
                 u"...")

    ret_code = _generate_all_charts(spec, data)

    cmd = HTML_BUILDER.format(
        date=datetime.utcnow().strftime(u'%Y-%m-%d %H:%M UTC'),
        working_dir=spec.environment[u'paths'][u'DIR[WORKING,SRC]'],
        build_dir=spec.environment[u'paths'][u'DIR[BUILD,HTML]'])
    execute_command(cmd)

    with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE]'], u'w') as \
            css_file:
        css_file.write(THEME_OVERRIDES)

    with open(spec.environment[u'paths'][u'DIR[CSS_PATCH_FILE2]'], u'w') as \
            css_file:
        css_file.write(THEME_OVERRIDES)

    if spec.environment.get(u"archive-inputs", False):
        archive_input_data(spec)

    logging.info(u"Done.")

    return ret_code


def _generate_trending_traces(in_data, job_name, build_info,
                              name=u"", color=u"", incl_tests=u"mrr"):
    """Generate the trending traces:
     - samples,
     - outliers, regress, progress
     - average of normal samples (trending line)

    :param in_data: Full data set.
    :param job_name: The name of job which generated the data.
    :param build_info: Information about the builds.
    :param name: Name of the plot
    :param color: Name of the color for the plot.
    :param incl_tests: Included tests, accepted values: mrr, ndr, pdr
    :type in_data: OrderedDict
    :type job_name: str
    :type build_info: dict
    :type name: str
    :type color: str
    :type incl_tests: str
    :returns: Generated traces (list) and the evaluated result.
    :rtype: tuple(traces, result)
    """

    if incl_tests not in (u"mrr", u"ndr", u"pdr", u"pdr-lat"):
        return list(), None

    data_x = list(in_data.keys())
    data_y_pps = list()
    data_y_mpps = list()
    data_y_stdev = list()
    if incl_tests == u"pdr-lat":
        for item in in_data.values():
            data_y_pps.append(float(item.get(u"lat_1", u"nan")) / 1e6)
            data_y_stdev.append(float(u"nan"))
            data_y_mpps.append(float(item.get(u"lat_1", u"nan")) / 1e6)
        multi = 1.0
    else:
        for item in in_data.values():
            data_y_pps.append(float(item[u"receive-rate"]))
            data_y_stdev.append(float(item[u"receive-stdev"]) / 1e6)
            data_y_mpps.append(float(item[u"receive-rate"]) / 1e6)
        multi = 1e6
    hover_text = list()
    xaxis = list()
    for index, key in enumerate(data_x):
        str_key = str(key)
        date = build_info[job_name][str_key][0]
        hover_str = (u"date: {date}<br>"
                     u"{property} [Mpps]: <val><br>"
                     u"<stdev>"
                     u"{sut}-ref: {build}<br>"
                     u"csit-ref: {test}-{period}-build-{build_nr}<br>"
                     u"testbed: {testbed}")
        if incl_tests == u"mrr":
            hover_str = hover_str.replace(
                u"<stdev>", f"stdev [Mpps]: {data_y_stdev[index]:.3f}<br>"
            )
        else:
            hover_str = hover_str.replace(u"<stdev>", u"")
        if incl_tests == u"pdr-lat":
            hover_str = hover_str.replace(u"<val>", u"{value:.1e}")
        else:
            hover_str = hover_str.replace(u"<val>", u"{value:.3f}")
        if u"-cps" in name:
            hover_str = hover_str.replace(u"[Mpps]", u"[Mcps]").\
                replace(u"throughput", u"connection rate")
        if u"vpp" in job_name:
            hover_str = hover_str.format(
                date=date,
                property=u"average" if incl_tests == u"mrr" else u"throughput",
                value=data_y_mpps[index],
                sut=u"vpp",
                build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
                test=incl_tests,
                period=u"daily" if incl_tests == u"mrr" else u"weekly",
                build_nr=str_key,
                testbed=build_info[job_name][str_key][2])
        elif u"dpdk" in job_name:
            hover_str = hover_str.format(
                date=date,
                property=u"average" if incl_tests == u"mrr" else u"throughput",
                value=data_y_mpps[index],
                sut=u"dpdk",
                build=build_info[job_name][str_key][1].rsplit(u'~', 1)[0],
                test=incl_tests,
                period=u"weekly",
                build_nr=str_key,
                testbed=build_info[job_name][str_key][2])
        elif u"trex" in job_name:
            hover_str = hover_str.format(
                date=date,
                property=u"average" if incl_tests == u"mrr" else u"throughput",
                value=data_y_mpps[index],
                sut=u"trex",
                build=u"",
                test=incl_tests,
                period=u"daily" if incl_tests == u"mrr" else u"weekly",
                build_nr=str_key,
                testbed=build_info[job_name][str_key][2])
        if incl_tests == u"pdr-lat":
            hover_str = hover_str.replace(
                u"throughput [Mpps]", u"latency [s]"
            )
        hover_text.append(hover_str)
        xaxis.append(datetime(int(date[0:4]), int(date[4:6]), int(date[6:8]),
                              int(date[9:11]), int(date[12:])))

    data_pd = OrderedDict()
    for key, value in zip(xaxis, data_y_pps):
        data_pd[key] = value

    try:
        anomaly_classification, avgs_pps, stdevs_pps = \
            classify_anomalies(data_pd)
    except ValueError as err:
        logging.info(f"{err} Skipping")
        return list(), None
    avgs_mpps = [avg_pps / multi for avg_pps in avgs_pps]
    stdevs_mpps = [stdev_pps / multi for stdev_pps in stdevs_pps]

    anomalies = OrderedDict()
    anomalies_colors = list()
    anomalies_avgs = list()
    anomaly_color = {
        u"regression": 0.0,
        u"normal": 0.5,
        u"progression": 1.0
    }
    if anomaly_classification:
        for index, (key, value) in enumerate(data_pd.items()):
            if anomaly_classification[index] in (u"regression", u"progression"):
                anomalies[key] = value / multi
                anomalies_colors.append(
                    anomaly_color[anomaly_classification[index]])
                anomalies_avgs.append(avgs_mpps[index])
        anomalies_colors.extend([0.0, 0.5, 1.0])

    # Create traces

    trace_samples = plgo.Scatter(
        x=xaxis,
        y=data_y_mpps,
        mode=u"markers",
        line={
            u"width": 1
        },
        showlegend=True,
        legendgroup=name,
        name=f"{name}",
        marker={
            u"size": 5,
            u"color": color,
            u"symbol": u"circle",
        },
        text=hover_text,
        hoverinfo=u"text+name"
    )
    traces = [trace_samples, ]

    trend_hover_text = list()
    for idx in range(len(data_x)):
        if incl_tests == u"pdr-lat":
            trend_hover_str = (
                f"trend [s]: {avgs_mpps[idx]:.1e}<br>"
            )
        else:
            trend_hover_str = (
                f"trend [Mpps]: {avgs_mpps[idx]:.3f}<br>"
                f"stdev [Mpps]: {stdevs_mpps[idx]:.3f}"
            )
        trend_hover_text.append(trend_hover_str)

    trace_trend = plgo.Scatter(
        x=xaxis,
        y=avgs_mpps,
        mode=u"lines",
        line={
            u"shape": u"linear",
            u"width": 1,
            u"color": color,
        },
        showlegend=False,
        legendgroup=name,
        name=f"{name}",
        text=trend_hover_text,
        hoverinfo=u"text+name"
    )
    traces.append(trace_trend)

    if incl_tests == u"pdr-lat":
        colorscale = [
            [0.00, u"green"],
            [0.33, u"green"],
            [0.33, u"white"],
            [0.66, u"white"],
            [0.66, u"red"],
            [1.00, u"red"]
        ]
        ticktext = [u"Progression", u"Normal", u"Regression"]
    else:
        colorscale = [
            [0.00, u"red"],
            [0.33, u"red"],
            [0.33, u"white"],
            [0.66, u"white"],
            [0.66, u"green"],
            [1.00, u"green"]
        ]
        ticktext = [u"Regression", u"Normal", u"Progression"]
    trace_anomalies = plgo.Scatter(
        x=list(anomalies.keys()),
        y=anomalies_avgs,
        mode=u"markers",
        hoverinfo=u"none",
        showlegend=False,
        legendgroup=name,
        name=f"{name}-anomalies",
        marker={
            u"size": 15,
            u"symbol": u"circle-open",
            u"color": anomalies_colors,
            u"colorscale": colorscale,
            u"showscale": True,
            u"line": {
                u"width": 2
            },
            u"colorbar": {
                u"y": 0.5,
                u"len": 0.8,
                u"title": u"Circles Marking Data Classification",
                u"titleside": u"right",
                u"titlefont": {
                    u"size": 14
                },
                u"tickmode": u"array",
                u"tickvals": [0.167, 0.500, 0.833],
                u"ticktext": ticktext,
                u"ticks": u"",
                u"ticklen": 0,
                u"tickangle": -90,
                u"thickness": 10
            }
        }
    )
    traces.append(trace_anomalies)

    if anomaly_classification:
        return traces, anomaly_classification[-1]

    return traces, None


def _generate_all_charts(spec, input_data):
    """Generate all charts specified in the specification file.

    :param spec: Specification.
    :param input_data: Full data set.
    :type spec: Specification
    :type input_data: InputData
    """

    def _generate_chart(graph):
        """Generates the chart.

        :param graph: The graph to be generated
        :type graph: dict
        :returns: Dictionary with the job name, csv table with results and
            list of tests classification results.
        :rtype: dict
        """

        logging.info(f"  Generating the chart {graph.get(u'title', u'')} ...")

        job_name = list(graph[u"data"].keys())[0]

        # Transform the data
        logging.info(
            f"    Creating the data set for the {graph.get(u'type', u'')} "
            f"{graph.get(u'title', u'')}."
        )

        data = input_data.filter_tests_by_name(
            graph,
            params=[u"type", u"result", u"throughput", u"latency", u"tags"],
            continue_on_error=True
        )

        if data is None or data.empty:
            logging.error(u"No data.")
            return dict()

        return_lst = list()

        for ttype in graph.get(u"test-type", (u"mrr", )):
            for core in graph.get(u"core", tuple()):
                csv_tbl = list()
                csv_tbl_lat_1 = list()
                csv_tbl_lat_2 = list()
                res = dict()
                chart_data = dict()
                chart_tags = dict()
                for item in graph.get(u"include", tuple()):
                    reg_ex = re.compile(str(item.format(core=core)).lower())
                    for job, job_data in data.items():
                        if job != job_name:
                            continue
                        for index, bld in job_data.items():
                            for test_id, test in bld.items():
                                if not re.match(reg_ex, str(test_id).lower()):
                                    continue
                                if chart_data.get(test_id, None) is None:
                                    chart_data[test_id] = OrderedDict()
                                try:
                                    lat_1 = u""
                                    lat_2 = u""
                                    if ttype == u"mrr":
                                        rate = test[u"result"][u"receive-rate"]
                                        stdev = \
                                            test[u"result"][u"receive-stdev"]
                                    elif ttype == u"ndr":
                                        rate = \
                                            test["throughput"][u"NDR"][u"LOWER"]
                                        stdev = float(u"nan")
                                    elif ttype == u"pdr":
                                        rate = \
                                            test["throughput"][u"PDR"][u"LOWER"]
                                        stdev = float(u"nan")
                                        lat_1 = test[u"latency"][u"PDR50"]\
                                            [u"direction1"][u"avg"]
                                        lat_2 = test[u"latency"][u"PDR50"]\
                                            [u"direction2"][u"avg"]
                                    else:
                                        continue
                                    chart_data[test_id][int(index)] = {
                                        u"receive-rate": rate,
                                        u"receive-stdev": stdev
                                    }
                                    if ttype == u"pdr":
                                        chart_data[test_id][int(index)].update(
                                            {
                                                u"lat_1": lat_1,
                                                u"lat_2": lat_2
                                            }
                                        )
                                    chart_tags[test_id] = \
                                        test.get(u"tags", None)
                                except (KeyError, TypeError):
                                    pass

                # Add items to the csv table:
                for tst_name, tst_data in chart_data.items():
                    tst_lst = list()
                    tst_lst_lat_1 = list()
                    tst_lst_lat_2 = list()
                    for bld in builds_dict[job_name]:
                        itm = tst_data.get(int(bld), dict())
                        # CSIT-1180: Itm will be list, compute stats.
                        try:
                            tst_lst.append(str(itm.get(u"receive-rate", u"")))
                            if ttype == u"pdr":
                                tst_lst_lat_1.append(
                                    str(itm.get(u"lat_1", u""))
                                )
                                tst_lst_lat_2.append(
                                    str(itm.get(u"lat_2", u""))
                                )
                        except AttributeError:
                            tst_lst.append(u"")
                            if ttype == u"pdr":
                                tst_lst_lat_1.append(u"")
                                tst_lst_lat_2.append(u"")
                    csv_tbl.append(f"{tst_name}," + u",".join(tst_lst) + u'\n')
                    csv_tbl_lat_1.append(
                        f"{tst_name}," + u",".join(tst_lst_lat_1) + u"\n"
                    )
                    csv_tbl_lat_2.append(
                        f"{tst_name}," + u",".join(tst_lst_lat_2) + u"\n"
                    )

                # Generate traces:
                traces = list()
                traces_lat = list()
                index = 0
                groups = graph.get(u"groups", None)
                visibility = list()

                if groups:
                    for group in groups:
                        visible = list()
                        for tag in group:
                            for tst_name, test_data in chart_data.items():
                                if not test_data:
                                    logging.warning(
                                        f"No data for the test {tst_name}"
                                    )
                                    continue
                                if tag not in chart_tags[tst_name]:
                                    continue
                                try:
                                    trace, rslt = _generate_trending_traces(
                                        test_data,
                                        job_name=job_name,
                                        build_info=build_info,
                                        name=u'-'.join(tst_name.split(u'.')[-1].
                                                       split(u'-')[2:-1]),
                                        color=COLORS[index],
                                        incl_tests=ttype
                                    )
                                except IndexError:
                                    logging.error(f"Out of colors: index: "
                                                  f"{index}, test: {tst_name}")
                                    index += 1
                                    continue
                                traces.extend(trace)
                                visible.extend(
                                    [True for _ in range(len(trace))]
                                )
                                res[tst_name] = rslt
                                index += 1
                                break
                        visibility.append(visible)
                else:
                    for tst_name, test_data in chart_data.items():
                        if not test_data:
                            logging.warning(f"No data for the test {tst_name}")
                            continue
                        try:
                            trace, rslt = _generate_trending_traces(
                                test_data,
                                job_name=job_name,
                                build_info=build_info,
                                name=u'-'.join(
                                    tst_name.split(u'.')[-1].split(u'-')[2:-1]),
                                color=COLORS[index],
                                incl_tests=ttype
                            )
                            if ttype == u"pdr":
                                trace_lat, _ = _generate_trending_traces(
                                    test_data,
                                    job_name=job_name,
                                    build_info=build_info,
                                    name=u'-'.join(
                                        tst_name.split(u'.')[-1].split(
                                            u'-')[2:-1]),
                                    color=COLORS[index],
                                    incl_tests=u"pdr-lat"
                                )
                                traces_lat.extend(trace_lat)
                        except IndexError:
                            logging.error(
                                f"Out of colors: index: "
                                f"{index}, test: {tst_name}"
                            )
                            index += 1
                            continue
                        traces.extend(trace)
                        res[tst_name] = rslt
                        index += 1

                if traces:
                    # Generate the chart:
                    try:
                        layout = deepcopy(graph[u"layout"])
                    except KeyError as err:
                        logging.error(u"Finished with error: No layout defined")
                        logging.error(repr(err))
                        return dict()
                    if groups:
                        show = list()
                        for i in range(len(visibility)):
                            visible = list()
                            for vis_idx, _ in enumerate(visibility):
                                for _ in range(len(visibility[vis_idx])):
                                    visible.append(i == vis_idx)
                            show.append(visible)

                        buttons = list()
                        buttons.append(dict(
                            label=u"All",
                            method=u"update",
                            args=[{u"visible":
                                       [True for _ in range(len(show[0]))]}, ]
                        ))
                        for i in range(len(groups)):
                            try:
                                label = graph[u"group-names"][i]
                            except (IndexError, KeyError):
                                label = f"Group {i + 1}"
                            buttons.append(dict(
                                label=label,
                                method=u"update",
                                args=[{u"visible": show[i]}, ]
                            ))

                        layout[u"updatemenus"] = list([
                            dict(
                                active=0,
                                type=u"dropdown",
                                direction=u"down",
                                xanchor=u"left",
                                yanchor=u"bottom",
                                x=-0.12,
                                y=1.0,
                                buttons=buttons
                            )
                        ])

                    name_file = (
                        f"{spec.cpta[u'output-file']}/"
                        f"{graph[u'output-file-name']}.html"
                    )
                    name_file = name_file.format(core=core, test_type=ttype)

                    logging.info(f"    Writing the file {name_file}")
                    plpl = plgo.Figure(data=traces, layout=layout)
                    try:
                        ploff.plot(
                            plpl,
                            show_link=False,
                            auto_open=False,
                            filename=name_file
                        )
                    except plerr.PlotlyEmptyDataError:
                        logging.warning(u"No data for the plot. Skipped.")

                if traces_lat:
                    try:
                        layout = deepcopy(graph[u"layout"])
                        layout[u"yaxis"][u"title"] = u"Latency [s]"
                        layout[u"yaxis"][u"tickformat"] = u".3s"
                    except KeyError as err:
                        logging.error(u"Finished with error: No layout defined")
                        logging.error(repr(err))
                        return dict()
                    name_file = (
                        f"{spec.cpta[u'output-file']}/"
                        f"{graph[u'output-file-name']}-lat.html"
                    )
                    name_file = name_file.format(core=core, test_type=ttype)

                    logging.info(f"    Writing the file {name_file}")
                    plpl = plgo.Figure(data=traces_lat, layout=layout)
                    try:
                        ploff.plot(
                            plpl,
                            show_link=False,
                            auto_open=False,
                            filename=name_file
                        )
                    except plerr.PlotlyEmptyDataError:
                        logging.warning(u"No data for the plot. Skipped.")

                return_lst.append(
                    {
                        u"job_name": job_name,
                        u"csv_table": csv_tbl,
                        u"csv_lat_1": csv_tbl_lat_1,
                        u"csv_lat_2": csv_tbl_lat_2,
                        u"results": res
                    }
                )

        return return_lst

    builds_dict = dict()
    for job, builds in spec.input.items():
        if builds_dict.get(job, None) is None:
            builds_dict[job] = list()
        for build in builds:
            if build[u"status"] not in (u"failed", u"not found", u"removed",
                                        None):
                builds_dict[job].append(str(build[u"build"]))

    # Create "build ID": "date" dict:
    build_info = dict()
    tb_tbl = spec.environment.get(u"testbeds", None)
    for job_name, job_data in builds_dict.items():
        if build_info.get(job_name, None) is None:
            build_info[job_name] = OrderedDict()
        for build in job_data:
            testbed = u""
            tb_ip = input_data.metadata(job_name, build).get(u"testbed", u"")
            if tb_ip and tb_tbl:
                testbed = tb_tbl.get(tb_ip, u"")
            build_info[job_name][build] = (
                input_data.metadata(job_name, build).get(u"generated", u""),
                input_data.metadata(job_name, build).get(u"version", u""),
                testbed
            )

    anomaly_classifications = dict()

    # Create the table header:
    csv_tables = dict()
    csv_tables_l1 = dict()
    csv_tables_l2 = dict()
    for job_name in builds_dict:
        if csv_tables.get(job_name, None) is None:
            csv_tables[job_name] = list()
        if csv_tables_l1.get(job_name, None) is None:
            csv_tables_l1[job_name] = list()
        if csv_tables_l2.get(job_name, None) is None:
            csv_tables_l2[job_name] = list()
        header = f"Build Number:,{u','.join(builds_dict[job_name])}\n"
        csv_tables[job_name].append(header)
        csv_tables_l1[job_name].append(header)
        csv_tables_l2[job_name].append(header)
        build_dates = [x[0] for x in build_info[job_name].values()]
        header = f"Build Date:,{u','.join(build_dates)}\n"
        csv_tables[job_name].append(header)
        csv_tables_l1[job_name].append(header)
        csv_tables_l2[job_name].append(header)
        versions = [x[1] for x in build_info[job_name].values()]
        header = f"Version:,{u','.join(versions)}\n"
        csv_tables[job_name].append(header)
        csv_tables_l1[job_name].append(header)
        csv_tables_l2[job_name].append(header)
        testbed = [x[2] for x in build_info[job_name].values()]
        header = f"Test bed:,{u','.join(testbed)}\n"
        csv_tables[job_name].append(header)
        csv_tables_l1[job_name].append(header)
        csv_tables_l2[job_name].append(header)

    for chart in spec.cpta[u"plots"]:
        results = _generate_chart(chart)
        if not results:
            continue

        for result in results:
            csv_tables[result[u"job_name"]].extend(result[u"csv_table"])
            csv_tables_l1[result[u"job_name"]].extend(result[u"csv_lat_1"])
            csv_tables_l2[result[u"job_name"]].extend(result[u"csv_lat_2"])

            if anomaly_classifications.get(result[u"job_name"], None) is None:
                anomaly_classifications[result[u"job_name"]] = dict()
            anomaly_classifications[result[u"job_name"]].\
                update(result[u"results"])

    # Write the tables:
    for job_name, csv_table in csv_tables.items():
        file_name = f"{spec.cpta[u'output-file']}/{job_name}-trending"
        with open(f"{file_name}.csv", u"wt") as file_handler:
            file_handler.writelines(csv_table)

        txt_table = None
        with open(f"{file_name}.csv", u"rt") as csv_file:
            csv_content = csv.reader(csv_file, delimiter=u',', quotechar=u'"')
            line_nr = 0
            for row in csv_content:
                if txt_table is None:
                    txt_table = prettytable.PrettyTable(row)
                else:
                    if line_nr > 1:
                        for idx, item in enumerate(row):
                            try:
                                row[idx] = str(round(float(item) / 1000000, 2))
                            except ValueError:
                                pass
                    try:
                        txt_table.add_row(row)
                    # PrettyTable raises Exception
                    except Exception as err:
                        logging.warning(
                            f"Error occurred while generating TXT table:\n{err}"
                        )
                line_nr += 1
            txt_table.align[u"Build Number:"] = u"l"
        with open(f"{file_name}.txt", u"wt") as txt_file:
            txt_file.write(str(txt_table))

    for job_name, csv_table in csv_tables_l1.items():
        file_name = f"{spec.cpta[u'output-file']}/{job_name}-lat-P50-50-d1"
        with open(f"{file_name}.csv", u"wt") as file_handler:
            file_handler.writelines(csv_table)
    for job_name, csv_table in csv_tables_l2.items():
        file_name = f"{spec.cpta[u'output-file']}/{job_name}-lat-P50-50-d2"
        with open(f"{file_name}.csv", u"wt") as file_handler:
            file_handler.writelines(csv_table)

    # Evaluate result:
    if anomaly_classifications:
        result = u"PASS"
        for job_name, job_data in anomaly_classifications.items():
            file_name = \
                f"{spec.cpta[u'output-file']}/regressions-{job_name}.txt"
            with open(file_name, u'w') as txt_file:
                for test_name, classification in job_data.items():
                    if classification == u"regression":
                        txt_file.write(test_name + u'\n')
                    if classification in (u"regression", u"outlier"):
                        result = u"FAIL"
            file_name = \
                f"{spec.cpta[u'output-file']}/progressions-{job_name}.txt"
            with open(file_name, u'w') as txt_file:
                for test_name, classification in job_data.items():
                    if classification == u"progression":
                        txt_file.write(test_name + u'\n')
    else:
        result = u"FAIL"

    logging.info(f"Partial results: {anomaly_classifications}")
    logging.info(f"Result: {result}")

    return result