summaryrefslogtreecommitdiffstats
path: root/src/vnet/span
AgeCommit message (Expand)AuthorFilesLines
2020-02-26span: API cleanupJakub Grajciar2-13/+23
2019-12-10api: multiple connections per processDave Barach1-1/+1
2019-03-29SPAN: Add pending frame on current thread, not on mainIgor Mikhailov (imichail)1-6/+5
2019-03-06span: migrate old MULTIARCH macros to VLIB_NODE_FNFilip Tehlar1-30/+13
2019-01-11Fix 'show interface span' field lengthIgor Mikhailov (imichail)1-2/+2
2018-10-23c11 safe string handling supportDave Barach1-1/+1
2018-09-24Trivial: Clean up some typos.Paul Vinciguerra4-8/+8
2018-07-19Remove unused argument to vlib_feature_nextDamjan Marion1-3/+3
2018-04-25span: crash in span_mirror [VPP-1254]Steven1-2/+7
2018-03-12SPAN: Add 'is_l2" flag to DETAILS response messages.Jon Loeliger2-0/+3
2018-02-15Optimize GRE Tunnel and add support for ERSPAN encapJohn Lo1-3/+12
2018-01-23VPPAPIGEN: vppapigen replacement in Python PLY.Ole Troan1-1/+1
2018-01-11api: remove transport specific code from handlersFlorin Coras1-4/+4
2018-01-09api: refactor vlibmemoryFlorin Coras1-1/+1
2017-10-24Add extern to *_main global variable declarations in header files.Dave Wallace2-1/+3
2017-10-09vppapigen: support per-file (major,minor,patch) version stampsDave Barach1-0/+2
2017-08-01SPAN/API:enable L2 dumpEyal Bari2-6/+10
2017-07-31SPAN/CLI:fix disable + add errorsEyal Bari1-16/+44
2017-07-24SPAN:add l2 mirrorEyal Bari5-127/+260
2017-07-14vnet_buffer_t flags cleanupDamjan Marion1-2/+2
2017-04-25"autoreply" flag: autogenerate standard xxx_reply_t messagesDave Barach1-9/+1
2017-03-26Rename "show interfaces" -> "show interface"Dave Barach1-1/+1
2017-03-10Fix coverity CIDs 161048, 163895Pavel Kotucek1-2/+0
2017-03-06span: wrong destination interface in tracingPavel Kotucek1-28/+18
2017-02-24VPP-650: handle buffer failure in vlib_buffer_copy(...)Dave Barach1-4/+8
2017-01-25span: tx functionalityPavel Kotucek1-2/+2
2016-12-28Repair Doxygen build infrastructureChris Luke1-1/+1
2016-12-28Reorganize source tree to use single autotools instanceDamjan Marion6-0/+823
weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */ }
#!/usr/bin/env python3

# Copyright (c) 2023 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""ETL script running on top of the s3://"""

from datetime import datetime, timedelta
from json import load
from os import environ
from pytz import utc

import awswrangler as wr
from awswrangler.exceptions import EmptyDataFrame
from awsglue.context import GlueContext
from boto3 import session
from pyspark.context import SparkContext
from pyspark.sql.functions import col, lit, regexp_replace
from pyspark.sql.types import StructType


S3_LOGS_BUCKET="fdio-logs-s3-cloudfront-index"
S3_DOCS_BUCKET="fdio-docs-s3-cloudfront-index"
PATH=f"s3://{S3_LOGS_BUCKET}/vex-yul-rot-jenkins-1/csit-*-perf-*"
SUFFIX="info.json.gz"
IGNORE_SUFFIX=[
    "suite.info.json.gz",
    "setup.info.json.gz",
    "teardown.info.json.gz",
    "suite.output.info.json.gz",
    "setup.output.info.json.gz",
    "teardown.output.info.json.gz"
]
LAST_MODIFIED_END=utc.localize(
    datetime.strptime(
        f"{datetime.now().year}-{datetime.now().month}-{datetime.now().day}",
        "%Y-%m-%d"
    )
)
LAST_MODIFIED_BEGIN=LAST_MODIFIED_END - timedelta(1)


def flatten_frame(nested_sdf):
    """Unnest Spark DataFrame in case there nested structered columns.

    :param nested_sdf: Spark DataFrame.
    :type nested_sdf: DataFrame
    :returns: Unnest DataFrame.
    :rtype: DataFrame
    """
    stack = [((), nested_sdf)]
    columns = []
    while len(stack) > 0:
        parents, sdf = stack.pop()
        for column_name, column_type in sdf.dtypes:
            if column_type[:6] == "struct":
                projected_sdf = sdf.select(column_name + ".*")
                stack.append((parents + (column_name,), projected_sdf))
            else:
                columns.append(
                    col(".".join(parents + (column_name,))) \
                        .alias("_".join(parents + (column_name,)))
                )
    return nested_sdf.select(columns)


def process_json_to_dataframe(schema_name, paths):
    """Processes JSON to Spark DataFrame.

    :param schema_name: Schema name.
    :type schema_name: string
    :param paths: S3 paths to process.
    :type paths: list
    :returns: Spark DataFrame.
    :rtype: DataFrame
    """
    drop_subset = [
        "dut_type", "dut_version",
        "passed",
        "test_name_long", "test_name_short",
        "test_type",
        "version"
    ]

    # load schemas
    with open(f"iterative_{schema_name}.json", "r", encoding="UTF-8") as f_schema:
        schema = StructType.fromJson(load(f_schema))

    # create empty DF out of schemas
    sdf = spark.createDataFrame([], schema)

    # filter list
    filtered = [path for path in paths if schema_name in path]

    # select
    for path in filtered:
        print(path)

        sdf_loaded = spark \
            .read \
            .option("multiline", "true") \
            .schema(schema) \
            .json(path) \
            .withColumn("job", lit(path.split("/")[4])) \
            .withColumn("build", lit(path.split("/")[5]))
        sdf = sdf.unionByName(sdf_loaded, allowMissingColumns=True)

    # drop rows with all nulls and drop rows with null in critical frames
    sdf = sdf.na.drop(how="all")
    sdf = sdf.na.drop(how="any", thresh=None, subset=drop_subset)

    # flatten frame
    sdf = flatten_frame(sdf)

    return sdf


# create SparkContext and GlueContext
spark_context = SparkContext.getOrCreate()
spark_context.setLogLevel("WARN")
glue_context = GlueContext(spark_context)
spark = glue_context.spark_session

# files of interest
paths = wr.s3.list_objects(
    path=PATH,
    suffix=SUFFIX,
    last_modified_begin=LAST_MODIFIED_BEGIN,
    last_modified_end=LAST_MODIFIED_END,
    ignore_suffix=IGNORE_SUFFIX,
    ignore_empty=True
)

filtered_paths = [path for path in paths if "report-iterative-2310" in path]

out_sdf = process_json_to_dataframe("ndrpdr", filtered_paths)
out_sdf.printSchema()
out_sdf = out_sdf \
    .withColumn("year", lit(datetime.now().year)) \
    .withColumn("month", lit(datetime.now().month)) \
    .withColumn("day", lit(datetime.now().day)) \
    .repartition(1)

try:
    wr.s3.to_parquet(
        df=out_sdf.toPandas(),
        path=f"s3://{S3_DOCS_BUCKET}/csit/parquet/iterative_rls2310",
        dataset=True,
        partition_cols=["test_type", "year", "month", "day"],
        compression="snappy",
        use_threads=True,
        mode="overwrite_partitions",
        boto3_session=session.Session(
            aws_access_key_id=environ["OUT_AWS_ACCESS_KEY_ID"],
            aws_secret_access_key=environ["OUT_AWS_SECRET_ACCESS_KEY"],
            region_name=environ["OUT_AWS_DEFAULT_REGION"]
        )
    )
except EmptyDataFrame:
    pass