aboutsummaryrefslogtreecommitdiffstats
path: root/src/vnet/udp/udp_encap_node.c
AgeCommit message (Expand)AuthorFilesLines
2018-03-21UDP Encap countersNeale Ranns1-0/+15
2017-11-07UDP Encapsulation.Neale Ranns1-0/+280
href='#n70'>70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/*
 *------------------------------------------------------------------
 * Copyright (c) 2019 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

#include <vlib/vlib.h>
#include <vnet/plugin/plugin.h>
#include <vnet/crypto/crypto.h>
#include <x86intrin.h>
#include <crypto_ia32/crypto_ia32.h>
#include <crypto_ia32/aesni.h>

#if __GNUC__ > 4  && !__clang__ && CLIB_DEBUG == 0
#pragma GCC optimize ("O3")
#endif

typedef struct
{
  __m128i encrypt_key[15];
  __m128i decrypt_key[15];
} aes_cbc_key_data_t;

static_always_inline void
aes_cbc_dec (__m128i * k, u8 * src, u8 * dst, u8 * iv, int count,
	     aesni_key_size_t rounds)
{
  __m128i r0, r1, r2, r3, c0, c1, c2, c3, f;
  int i;

  f = _mm_loadu_si128 ((__m128i *) iv);

  while (count >= 64)
    {
      _mm_prefetch (src + 128, _MM_HINT_T0);
      _mm_prefetch (dst + 128, _MM_HINT_T0);

      c0 = _mm_loadu_si128 (((__m128i *) src + 0));
      c1 = _mm_loadu_si128 (((__m128i *) src + 1));
      c2 = _mm_loadu_si128 (((__m128i *) src + 2));
      c3 = _mm_loadu_si128 (((__m128i *) src + 3));

      r0 = c0 ^ k[0];
      r1 = c1 ^ k[0];
      r2 = c2 ^ k[0];
      r3 = c3 ^ k[0];

      for (i = 1; i < rounds; i++)
	{
	  r0 = _mm_aesdec_si128 (r0, k[i]);
	  r1 = _mm_aesdec_si128 (r1, k[i]);
	  r2 = _mm_aesdec_si128 (r2, k[i]);
	  r3 = _mm_aesdec_si128 (r3, k[i]);
	}

      r0 = _mm_aesdeclast_si128 (r0, k[i]);
      r1 = _mm_aesdeclast_si128 (r1, k[i]);
      r2 = _mm_aesdeclast_si128 (r2, k[i]);
      r3 = _mm_aesdeclast_si128 (r3, k[i]);

      _mm_storeu_si128 ((__m128i *) dst + 0, r0 ^ f);
      _mm_storeu_si128 ((__m128i *) dst + 1, r1 ^ c0);
      _mm_storeu_si128 ((__m128i *) dst + 2, r2 ^ c1);
      _mm_storeu_si128 ((__m128i *) dst + 3, r3 ^ c2);

      f = c3;

      count -= 64;
      src += 64;
      dst += 64;
    }

  while (count > 0)
    {
      c0 = _mm_loadu_si128 (((__m128i *) src));
      r0 = c0 ^ k[0];
      for (i = 1; i < rounds; i++)
	r0 = _mm_aesdec_si128 (r0, k[i]);
      r0 = _mm_aesdeclast_si128 (r0, k[i]);
      _mm_storeu_si128 ((__m128i *) dst, r0 ^ f);
      f = c0;
      count -= 16;
      src += 16;
      dst += 16;
    }
}

static_always_inline u32
aesni_ops_enc_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[],
		       u32 n_ops, aesni_key_size_t ks)
{
  crypto_ia32_main_t *cm = &crypto_ia32_main;
  crypto_ia32_per_thread_data_t *ptd = vec_elt_at_index (cm->per_thread_data,
							 vm->thread_index);
  int rounds = AESNI_KEY_ROUNDS (ks);
  u8 dummy[8192];
  u8 *src[4] = { };
  u8 *dst[4] = { };
  vnet_crypto_key_index_t key_index[4] = { ~0, ~0, ~0, ~0 };
  u32x4 dummy_mask = { };
  u32x4 len = { };
  u32 i, j, count, n_left = n_ops;
  __m128i r[4] = { }, k[4][rounds + 1];

more:
  for (i = 0; i < 4; i++)
    if (len[i] == 0)
      {
	if (n_left == 0)
	  {
	    /* no more work to enqueue, so we are enqueueing dummy buffer */
	    src[i] = dst[i] = dummy;
	    len[i] = sizeof (dummy);
	    dummy_mask[i] = 0;
	  }
	else
	  {
	    if (ops[0]->flags & VNET_CRYPTO_OP_FLAG_INIT_IV)
	      {
		r[i] = ptd->cbc_iv[i];
		_mm_storeu_si128 ((__m128i *) ops[0]->iv, r[i]);
		ptd->cbc_iv[i] = _mm_aesenc_si128 (r[i], r[i]);
	      }
	    else
	      r[i] = _mm_loadu_si128 ((__m128i *) ops[0]->iv);
	    src[i] = ops[0]->src;
	    dst[i] = ops[0]->dst;
	    len[i] = ops[0]->len;
	    dummy_mask[i] = ~0;
	    if (key_index[i] != ops[0]->key_index)
	      {
		aes_cbc_key_data_t *kd;
		key_index[i] = ops[0]->key_index;
		kd = (aes_cbc_key_data_t *) cm->key_data[key_index[i]];
		clib_memcpy_fast (k[i], kd->encrypt_key,
				  (rounds + 1) * sizeof (__m128i));
	      }
	    ops[0]->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
	    n_left--;
	    ops++;
	  }
      }

  count = u32x4_min_scalar (len);

  ASSERT (count % 16 == 0);

  for (i = 0; i < count; i += 16)
    {
      r[0] ^= _mm_loadu_si128 ((__m128i *) (src[0] + i)) ^ k[0][0];
      r[1] ^= _mm_loadu_si128 ((__m128i *) (src[1] + i)) ^ k[1][0];
      r[2] ^= _mm_loadu_si128 ((__m128i *) (src[2] + i)) ^ k[2][0];
      r[3] ^= _mm_loadu_si128 ((__m128i *) (src[3] + i)) ^ k[3][0];

      for (j = 1; j < rounds; j++)
	{
	  r[0] = _mm_aesenc_si128 (r[0], k[0][j]);
	  r[1] = _mm_aesenc_si128 (r[1], k[1][j]);
	  r[2] = _mm_aesenc_si128 (r[2], k[2][j]);
	  r[3] = _mm_aesenc_si128 (r[3], k[3][j]);
	}

      r[0] = _mm_aesenclast_si128 (r[0], k[0][j]);
      r[1] = _mm_aesenclast_si128 (r[1], k[1][j]);
      r[2] = _mm_aesenclast_si128 (r[2], k[2][j]);
      r[3] = _mm_aesenclast_si128 (r[3], k[3][j]);

      _mm_storeu_si128 ((__m128i *) (dst[0] + i), r[0]);
      _mm_storeu_si128 ((__m128i *) (dst[1] + i), r[1]);
      _mm_storeu_si128 ((__m128i *) (dst[2] + i), r[2]);
      _mm_storeu_si128 ((__m128i *) (dst[3] + i), r[3]);
    }

  for (i = 0; i < 4; i++)
    {
      src[i] += count;
      dst[i] += count;
      len[i] -= count;
    }

  if (n_left > 0)
    goto more;

  if (!u32x4_is_all_zero (len & dummy_mask))
    goto more;

  return n_ops;
}

static_always_inline u32
aesni_ops_dec_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[],
		       u32 n_ops, aesni_key_size_t ks)
{
  crypto_ia32_main_t *cm = &crypto_ia32_main;
  int rounds = AESNI_KEY_ROUNDS (ks);
  vnet_crypto_op_t *op = ops[0];
  aes_cbc_key_data_t *kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index];
  u32 n_left = n_ops;

  ASSERT (n_ops >= 1);

decrypt:
  aes_cbc_dec (kd->decrypt_key, op->src, op->dst, op->iv, op->len, rounds);
  op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;

  if (--n_left)
    {
      op += 1;
      kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index];
      goto decrypt;
    }

  return n_ops;
}

static_always_inline void *
aesni_cbc_key_exp (vnet_crypto_key_t * key, aesni_key_size_t ks)
{
  aes_cbc_key_data_t *kd;
  kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES);
  aes_key_expand (kd->encrypt_key, key->data, ks);
  aes_key_expand (kd->decrypt_key, key->data, ks);
  aes_key_enc_to_dec (kd->decrypt_key, ks);
  return kd;
}

#define foreach_aesni_cbc_handler_type _(128) _(192) _(256)

#define _(x) \
static u32 aesni_ops_dec_aes_cbc_##x \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \
{ return aesni_ops_dec_aes_cbc (vm, ops, n_ops, AESNI_KEY_##x); } \
static u32 aesni_ops_enc_aes_cbc_##x \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \
{ return aesni_ops_enc_aes_cbc (vm, ops, n_ops, AESNI_KEY_##x); } \
static void * aesni_cbc_key_exp_##x (vnet_crypto_key_t *key) \
{ return aesni_cbc_key_exp (key, AESNI_KEY_##x); }

foreach_aesni_cbc_handler_type;
#undef _

#include <fcntl.h>

clib_error_t *
#ifdef __AVX512F__
crypto_ia32_aesni_cbc_init_avx512 (vlib_main_t * vm)
#elif __AVX2__
crypto_ia32_aesni_cbc_init_avx2 (vlib_main_t * vm)
#else
crypto_ia32_aesni_cbc_init_sse42 (vlib_main_t * vm)
#endif
{
  crypto_ia32_main_t *cm = &crypto_ia32_main;
  crypto_ia32_per_thread_data_t *ptd;
  clib_error_t *err = 0;
  int fd;

  if ((fd = open ("/dev/urandom", O_RDONLY)) < 0)
    return clib_error_return_unix (0, "failed to open '/dev/urandom'");

  /* *INDENT-OFF* */
  vec_foreach (ptd, cm->per_thread_data)
    {
      for (int i = 0; i < 4; i++)
	{
	  if (read(fd, ptd->cbc_iv, sizeof (ptd->cbc_iv)) !=
	      sizeof (ptd->cbc_iv))
	    {
	      err = clib_error_return_unix (0, "'/dev/urandom' read failure");
	      goto error;
	    }
	}
    }
  /* *INDENT-ON* */

#define _(x) \
  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
				    VNET_CRYPTO_OP_AES_##x##_CBC_ENC, \
				    aesni_ops_enc_aes_cbc_##x); \
  vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
				    VNET_CRYPTO_OP_AES_##x##_CBC_DEC, \
				    aesni_ops_dec_aes_cbc_##x); \
  cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_CBC] = aesni_cbc_key_exp_##x;
  foreach_aesni_cbc_handler_type;
#undef _

error:
  close (fd);
  return err;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */