summaryrefslogtreecommitdiffstats
path: root/test/test_pppoe.py
AgeCommit message (Expand)AuthorFilesLines
2019-04-11Tests: Refactor tearDown show command logging, add lifecycle markers.Paul Vinciguerra1-4/+5
2019-04-10Tests Cleanup: Fix missing calls to setUpClass/tearDownClass.Paul Vinciguerra1-0/+4
2019-03-01Tests: Remove all wildcard imports.Paul Vinciguerra1-10/+6
2018-12-18PAPI: Add MACAddress object wrapper for vl_api_mac_address_tOle Troan1-1/+0
2018-12-10Test framework: StringIO fixes for Python3Ole Troan1-2/+2
2018-04-18Fix PPPoE test case issuesHongjun Ni1-1/+1
2017-11-17Replace tap interface using general interfaceHongjun Ni1-2/+2
2017-08-21PPPoE usses a midchain adjacency stack on an interface-tx DPONeale Ranns1-1/+2
2017-08-09Add PPPoE PluginHongjun Ni1-0/+605
d='n204' href='#n204'>204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/*-
 *   BSD LICENSE
 *
 *   Copyright(c) 2016 Intel Corporation. All rights reserved.
 *
 *   Redistribution and use in source and binary forms, with or without
 *   modification, are permitted provided that the following conditions
 *   are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in
 *       the documentation and/or other materials provided with the
 *       distribution.
 *     * Neither the name of Intel Corporation nor the names of its
 *       contributors may be used to endorse or promote products derived
 *       from this software without specific prior written permission.
 *
 *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <rte_common.h>
#include <rte_config.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>

#include "rte_kasumi_pmd_private.h"

#define KASUMI_KEY_LENGTH 16
#define KASUMI_IV_LENGTH 8
#define KASUMI_DIGEST_LENGTH 4
#define KASUMI_MAX_BURST 4
#define BYTE_LEN 8

/**
 * Global static parameter used to create a unique name for each KASUMI
 * crypto device.
 */
static unsigned unique_name_id;

static inline int
create_unique_device_name(char *name, size_t size)
{
	int ret;

	if (name == NULL)
		return -EINVAL;

	ret = snprintf(name, size, "%s_%u", RTE_STR(CRYPTODEV_NAME_KASUMI_PMD),
			unique_name_id++);
	if (ret < 0)
		return ret;
	return 0;
}

/** Get xform chain order. */
static enum kasumi_operation
kasumi_get_mode(const struct rte_crypto_sym_xform *xform)
{
	if (xform == NULL)
		return KASUMI_OP_NOT_SUPPORTED;

	if (xform->next)
		if (xform->next->next != NULL)
			return KASUMI_OP_NOT_SUPPORTED;

	if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
		if (xform->next == NULL)
			return KASUMI_OP_ONLY_AUTH;
		else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
			return KASUMI_OP_AUTH_CIPHER;
		else
			return KASUMI_OP_NOT_SUPPORTED;
	}

	if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
		if (xform->next == NULL)
			return KASUMI_OP_ONLY_CIPHER;
		else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
			return KASUMI_OP_CIPHER_AUTH;
		else
			return KASUMI_OP_NOT_SUPPORTED;
	}

	return KASUMI_OP_NOT_SUPPORTED;
}


/** Parse crypto xform chain and set private session parameters. */
int
kasumi_set_session_parameters(struct kasumi_session *sess,
		const struct rte_crypto_sym_xform *xform)
{
	const struct rte_crypto_sym_xform *auth_xform = NULL;
	const struct rte_crypto_sym_xform *cipher_xform = NULL;
	int mode;

	/* Select Crypto operation - hash then cipher / cipher then hash */
	mode = kasumi_get_mode(xform);

	switch (mode) {
	case KASUMI_OP_CIPHER_AUTH:
		auth_xform = xform->next;
		/* Fall-through */
	case KASUMI_OP_ONLY_CIPHER:
		cipher_xform = xform;
		break;
	case KASUMI_OP_AUTH_CIPHER:
		cipher_xform = xform->next;
		/* Fall-through */
	case KASUMI_OP_ONLY_AUTH:
		auth_xform = xform;
	}

	if (mode == KASUMI_OP_NOT_SUPPORTED) {
		KASUMI_LOG_ERR("Unsupported operation chain order parameter");
		return -EINVAL;
	}

	if (cipher_xform) {
		/* Only KASUMI F8 supported */
		if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8)
			return -EINVAL;
		/* Initialize key */
		sso_kasumi_init_f8_key_sched(xform->cipher.key.data,
				&sess->pKeySched_cipher);
	}

	if (auth_xform) {
		/* Only KASUMI F9 supported */
		if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9)
			return -EINVAL;
		sess->auth_op = auth_xform->auth.op;
		/* Initialize key */
		sso_kasumi_init_f9_key_sched(xform->auth.key.data,
				&sess->pKeySched_hash);
	}


	sess->op = mode;

	return 0;
}

/** Get KASUMI session. */
static struct kasumi_session *
kasumi_get_session(struct kasumi_qp *qp, struct rte_crypto_op *op)
{
	struct kasumi_session *sess;

	if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_WITH_SESSION) {
		if (unlikely(op->sym->session->dev_type !=
				RTE_CRYPTODEV_KASUMI_PMD))
			return NULL;

		sess = (struct kasumi_session *)op->sym->session->_private;
	} else  {
		struct rte_cryptodev_session *c_sess = NULL;

		if (rte_mempool_get(qp->sess_mp, (void **)&c_sess))
			return NULL;

		sess = (struct kasumi_session *)c_sess->_private;

		if (unlikely(kasumi_set_session_parameters(sess,
				op->sym->xform) != 0))
			return NULL;
	}

	return sess;
}

/** Encrypt/decrypt mbufs with same cipher key. */
static uint8_t
process_kasumi_cipher_op(struct rte_crypto_op **ops,
		struct kasumi_session *session,
		uint8_t num_ops)
{
	unsigned i;
	uint8_t processed_ops = 0;
	uint8_t *src[num_ops], *dst[num_ops];
	uint64_t IV[num_ops];
	uint32_t num_bytes[num_ops];

	for (i = 0; i < num_ops; i++) {
		/* Sanity checks. */
		if (ops[i]->sym->cipher.iv.length != KASUMI_IV_LENGTH) {
			ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			KASUMI_LOG_ERR("iv");
			break;
		}

		src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
				(ops[i]->sym->cipher.data.offset >> 3);
		dst[i] = ops[i]->sym->m_dst ?
			rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) +
				(ops[i]->sym->cipher.data.offset >> 3) :
			rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
				(ops[i]->sym->cipher.data.offset >> 3);
		IV[i] = *((uint64_t *)(ops[i]->sym->cipher.iv.data));
		num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;

		processed_ops++;
	}

	if (processed_ops != 0)
		sso_kasumi_f8_n_buffer(&session->pKeySched_cipher, IV,
			src, dst, num_bytes, processed_ops);

	return processed_ops;
}

/** Encrypt/decrypt mbuf (bit level function). */
static uint8_t
process_kasumi_cipher_op_bit(struct rte_crypto_op *op,
		struct kasumi_session *session)
{
	uint8_t *src, *dst;
	uint64_t IV;
	uint32_t length_in_bits, offset_in_bits;

	/* Sanity checks. */
	if (unlikely(op->sym->cipher.iv.length != KASUMI_IV_LENGTH)) {
		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
		KASUMI_LOG_ERR("iv");
		return 0;
	}

	offset_in_bits = op->sym->cipher.data.offset;
	src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
	if (op->sym->m_dst == NULL) {
		op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
		KASUMI_LOG_ERR("bit-level in-place not supported\n");
		return 0;
	}
	dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
	IV = *((uint64_t *)(op->sym->cipher.iv.data));
	length_in_bits = op->sym->cipher.data.length;

	sso_kasumi_f8_1_buffer_bit(&session->pKeySched_cipher, IV,
			src, dst, length_in_bits, offset_in_bits);

	return 1;
}

/** Generate/verify hash from mbufs with same hash key. */
static int
process_kasumi_hash_op(struct rte_crypto_op **ops,
		struct kasumi_session *session,
		uint8_t num_ops)
{
	unsigned i;
	uint8_t processed_ops = 0;
	uint8_t *src, *dst;
	uint32_t length_in_bits;
	uint32_t num_bytes;
	uint32_t shift_bits;
	uint64_t IV;
	uint8_t direction;

	for (i = 0; i < num_ops; i++) {
		if (unlikely(ops[i]->sym->auth.aad.length != KASUMI_IV_LENGTH)) {
			ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			KASUMI_LOG_ERR("aad");
			break;
		}

		if (unlikely(ops[i]->sym->auth.digest.length != KASUMI_DIGEST_LENGTH)) {
			ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			KASUMI_LOG_ERR("digest");
			break;
		}

		/* Data must be byte aligned */
		if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
			ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
			KASUMI_LOG_ERR("offset");
			break;
		}

		length_in_bits = ops[i]->sym->auth.data.length;

		src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
				(ops[i]->sym->auth.data.offset >> 3);
		/* IV from AAD */
		IV = *((uint64_t *)(ops[i]->sym->auth.aad.data));
		/* Direction from next bit after end of message */
		num_bytes = (length_in_bits >> 3) + 1;
		shift_bits = (BYTE_LEN - 1 - length_in_bits) % BYTE_LEN;
		direction = (src[num_bytes - 1] >> shift_bits) & 0x01;

		if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
			dst = (uint8_t *)rte_pktmbuf_append(ops[i]->sym->m_src,
					ops[i]->sym->auth.digest.length);

			sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
					IV, src,
					length_in_bits,	dst, direction);
			/* Verify digest. */
			if (memcmp(dst, ops[i]->sym->auth.digest.data,
					ops[i]->sym->auth.digest.length) != 0)
				ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;

			/* Trim area used for digest from mbuf. */
			rte_pktmbuf_trim(ops[i]->sym->m_src,
					ops[i]->sym->auth.digest.length);
		} else  {
			dst = ops[i]->sym->auth.digest.data;

			sso_kasumi_f9_1_buffer_user(&session->pKeySched_hash,
					IV, src,
					length_in_bits, dst, direction);
		}
		processed_ops++;
	}

	return processed_ops;
}

/** Process a batch of crypto ops which shares the same session. */
static int
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
		struct kasumi_qp *qp, uint8_t num_ops,
		uint16_t *accumulated_enqueued_ops)
{
	unsigned i;
	unsigned enqueued_ops, processed_ops;

	switch (session->op) {
	case KASUMI_OP_ONLY_CIPHER:
		processed_ops = process_kasumi_cipher_op(ops,
				session, num_ops);
		break;
	case KASUMI_OP_ONLY_AUTH:
		processed_ops = process_kasumi_hash_op(ops, session,
				num_ops);
		break;
	case KASUMI_OP_CIPHER_AUTH:
		processed_ops = process_kasumi_cipher_op(ops, session,
				num_ops);
		process_kasumi_hash_op(ops, session, processed_ops);
		break;
	case KASUMI_OP_AUTH_CIPHER:
		processed_ops = process_kasumi_hash_op(ops, session,
				num_ops);
		process_kasumi_cipher_op(ops, session, processed_ops);
		break;
	default:
		/* Operation not supported. */
		processed_ops = 0;
	}

	for (i = 0; i < num_ops; i++) {
		/*
		 * If there was no error/authentication failure,
		 * change status to successful.
		 */
		if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
			ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
		/* Free session if a session-less crypto op. */
		if (ops[i]->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
			rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
			ops[i]->sym->session = NULL;
		}
	}

	enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops,
				(void **)ops, processed_ops);
	qp->qp_stats.enqueued_count += enqueued_ops;
	*accumulated_enqueued_ops += enqueued_ops;

	return enqueued_ops;
}

/** Process a crypto op with length/offset in bits. */
static int
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
		struct kasumi_qp *qp, uint16_t *accumulated_enqueued_ops)
{
	unsigned enqueued_op, processed_op;

	switch (session->op) {
	case KASUMI_OP_ONLY_CIPHER:
		processed_op = process_kasumi_cipher_op_bit(op,
				session);
		break;
	case KASUMI_OP_ONLY_AUTH:
		processed_op = process_kasumi_hash_op(&op, session, 1);
		break;
	case KASUMI_OP_CIPHER_AUTH:
		processed_op = process_kasumi_cipher_op_bit(op, session);
		if (processed_op == 1)
			process_kasumi_hash_op(&op, session, 1);
		break;
	case KASUMI_OP_AUTH_CIPHER:
		processed_op = process_kasumi_hash_op(&op, session, 1);
		if (processed_op == 1)
			process_kasumi_cipher_op_bit(op, session);
		break;
	default:
		/* Operation not supported. */
		processed_op = 0;
	}

	/*
	 * If there was no error/authentication failure,
	 * change status to successful.
	 */
	if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
		op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;

	/* Free session if a session-less crypto op. */
	if (op->sym->sess_type == RTE_CRYPTO_SYM_OP_SESSIONLESS) {
		rte_mempool_put(qp->sess_mp, op->sym->session);
		op->sym->session = NULL;
	}

	enqueued_op = rte_ring_enqueue_burst(qp->processed_ops, (void **)&op,
				processed_op);
	qp->qp_stats.enqueued_count += enqueued_op;
	*accumulated_enqueued_ops += enqueued_op;

	return enqueued_op;
}

static uint16_t
kasumi_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
		uint16_t nb_ops)
{
	struct rte_crypto_op *c_ops[nb_ops];
	struct rte_crypto_op *curr_c_op;

	struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
	struct kasumi_qp *qp = queue_pair;
	unsigned i;
	uint8_t burst_size = 0;
	uint16_t enqueued_ops = 0;
	uint8_t processed_ops;

	for (i = 0; i < nb_ops; i++) {
		curr_c_op = ops[i];

		/* Set status as enqueued (not processed yet) by default. */
		curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;

		curr_sess = kasumi_get_session(qp, curr_c_op);
		if (unlikely(curr_sess == NULL ||
				curr_sess->op == KASUMI_OP_NOT_SUPPORTED)) {
			curr_c_op->status =
					RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
			break;
		}

		/* If length/offset is at bit-level, process this buffer alone. */
		if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
				|| ((ops[i]->sym->cipher.data.offset
					% BYTE_LEN) != 0)) {
			/* Process the ops of the previous session. */
			if (prev_sess != NULL) {
				processed_ops = process_ops(c_ops, prev_sess,
						qp, burst_size, &enqueued_ops);
				if (processed_ops < burst_size) {
					burst_size = 0;
					break;
				}

				burst_size = 0;
				prev_sess = NULL;
			}

			processed_ops = process_op_bit(curr_c_op, curr_sess,
						qp, &enqueued_ops);
			if (processed_ops != 1)
				break;

			continue;
		}

		/* Batch ops that share the same session. */
		if (prev_sess == NULL) {
			prev_sess = curr_sess;
			c_ops[burst_size++] = curr_c_op;
		} else if (curr_sess == prev_sess) {
			c_ops[burst_size++] = curr_c_op;
			/*
			 * When there are enough ops to process in a batch,
			 * process them, and start a new batch.
			 */
			if (burst_size == KASUMI_MAX_BURST) {
				processed_ops = process_ops(c_ops, prev_sess,
						qp, burst_size, &enqueued_ops);
				if (processed_ops < burst_size) {
					burst_size = 0;
					break;
				}

				burst_size = 0;
				prev_sess = NULL;
			}
		} else {
			/*
			 * Different session, process the ops
			 * of the previous session.
			 */
			processed_ops = process_ops(c_ops, prev_sess,
					qp, burst_size, &enqueued_ops);
			if (processed_ops < burst_size) {
				burst_size = 0;
				break;
			}

			burst_size = 0;
			prev_sess = curr_sess;

			c_ops[burst_size++] = curr_c_op;
		}
	}

	if (burst_size != 0) {
		/* Process the crypto ops of the last session. */
		processed_ops = process_ops(c_ops, prev_sess,
				qp, burst_size, &enqueued_ops);
	}

	qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops;
	return enqueued_ops;
}

static uint16_t
kasumi_pmd_dequeue_burst(void *queue_pair,
		struct rte_crypto_op **c_ops, uint16_t nb_ops)
{
	struct kasumi_qp *qp = queue_pair;

	unsigned nb_dequeued;

	nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
			(void **)c_ops, nb_ops);
	qp->qp_stats.dequeued_count += nb_dequeued;

	return nb_dequeued;
}

static int cryptodev_kasumi_uninit(const char *name);

static int
cryptodev_kasumi_create(const char *name,
		struct rte_crypto_vdev_init_params *init_params)
{
	struct rte_cryptodev *dev;
	char crypto_dev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
	struct kasumi_private *internals;
	uint64_t cpu_flags = 0;

	/* Check CPU for supported vector instruction set */
	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
		cpu_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
	else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
		cpu_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
	else {
		KASUMI_LOG_ERR("Vector instructions are not supported by CPU");
		return -EFAULT;
	}

	/* Create a unique device name. */
	if (create_unique_device_name(crypto_dev_name,
			RTE_CRYPTODEV_NAME_MAX_LEN) != 0) {
		KASUMI_LOG_ERR("failed to create unique cryptodev name");
		return -EINVAL;
	}

	dev = rte_cryptodev_pmd_virtual_dev_init(crypto_dev_name,
			sizeof(struct kasumi_private), init_params->socket_id);
	if (dev == NULL) {
		KASUMI_LOG_ERR("failed to create cryptodev vdev");
		goto init_error;
	}

	dev->dev_type = RTE_CRYPTODEV_KASUMI_PMD;
	dev->dev_ops = rte_kasumi_pmd_ops;

	/* Register RX/TX burst functions for data path. */
	dev->dequeue_burst = kasumi_pmd_dequeue_burst;
	dev->enqueue_burst = kasumi_pmd_enqueue_burst;

	dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
			RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
			cpu_flags;

	internals = dev->data->dev_private;

	internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
	internals->max_nb_sessions = init_params->max_nb_sessions;

	return 0;
init_error:
	KASUMI_LOG_ERR("driver %s: cryptodev_kasumi_create failed", name);

	cryptodev_kasumi_uninit(crypto_dev_name);
	return -EFAULT;
}

static int
cryptodev_kasumi_init(const char *name,
		const char *input_args)
{
	struct rte_crypto_vdev_init_params init_params = {
		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_QUEUE_PAIRS,
		RTE_CRYPTODEV_VDEV_DEFAULT_MAX_NB_SESSIONS,
		rte_socket_id()
	};

	rte_cryptodev_parse_vdev_init_params(&init_params, input_args);

	RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
			init_params.socket_id);
	RTE_LOG(INFO, PMD, "  Max number of queue pairs = %d\n",
			init_params.max_nb_queue_pairs);
	RTE_LOG(INFO, PMD, "  Max number of sessions = %d\n",
			init_params.max_nb_sessions);

	return cryptodev_kasumi_create(name, &init_params);
}

static int
cryptodev_kasumi_uninit(const char *name)
{
	if (name == NULL)
		return -EINVAL;

	RTE_LOG(INFO, PMD, "Closing KASUMI crypto device %s"
			" on numa socket %u\n",
			name, rte_socket_id());

	return 0;
}

static struct rte_driver cryptodev_kasumi_pmd_drv = {
	.type = PMD_VDEV,
	.init = cryptodev_kasumi_init,
	.uninit = cryptodev_kasumi_uninit
};

PMD_REGISTER_DRIVER(cryptodev_kasumi_pmd_drv, CRYPTODEV_NAME_KASUMI_PMD);
DRIVER_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
	"max_nb_queue_pairs=<int> "
	"max_nb_sessions=<int> "
	"socket_id=<int>");