aboutsummaryrefslogtreecommitdiffstats
path: root/test/vpp_bier.py
AgeCommit message (Expand)AuthorFilesLines
2023-11-03tests: refactor asf framework codeDave Wallace1-1/+0
2022-05-10tests: replace pycodestyle with blackKlement Sekera1-78/+62
2021-05-13tests: move test source to vpp/testDave Wallace1-0/+293
2020-12-23tests: move bier tests to src/vnet/bier/testDave Wallace1-293/+0
2019-06-18fib: fib api updatesNeale Ranns1-36/+17
2019-03-29tests: refactor vpp_object.pyPaul Vinciguerra1-15/+0
2018-09-14BIER API and load-balancing fixesNeale Ranns1-19/+58
2018-03-20FIB Interpose SourceNeale Ranns1-1/+2
2018-03-09MPLS Unifom modeNeale Ranns1-3/+26
2018-02-06BIER: fix support for longer bit-string lengthsNeale Ranns1-2/+5
2017-12-09BIER in non-MPLS netowrksNeale Ranns1-12/+6
2017-11-09BIERNeale Ranns1-0/+267
a> 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
# Copyright (c) 2024 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Prepare data for Plotly Dash applications.
"""

import botocore
import logging
import resource
import awswrangler as wr
import pandas as pd
import pyarrow as pa

from yaml import load, FullLoader, YAMLError
from datetime import datetime, timedelta
from time import time
from pytz import UTC
from awswrangler.exceptions import EmptyDataFrame, NoFilesFound
from pyarrow.lib import ArrowInvalid, ArrowNotImplementedError

from ..utils.constants import Constants as C


# If True, pyarrow.Schema is generated. See also condition in the method
# _write_parquet_schema.
# To generate schema, select only one data set in data.yaml file.
GENERATE_SCHEMA = False


class Data:
    """Gets the data from parquets and stores it for further use by dash
    applications.
    """

    def __init__(self, data_spec_file: str) -> None:
        """Initialize the Data object.

        :param data_spec_file: Path to file specifying the data to be read from
            parquets.
        :type data_spec_file: str
        :raises RuntimeError: if it is not possible to open data_spec_file or it
            is not a valid yaml file.
        """

        # Inputs:
        self._data_spec_file = data_spec_file

        # Specification of data to be read from parquets:
        self._data_spec = list()

        # Data frame to keep the data:
        self._data = {
            "statistics": pd.DataFrame(),
            "trending": pd.DataFrame(),
            "iterative": pd.DataFrame(),
            "coverage": pd.DataFrame()
        }

        # Read from files:
        try:
            with open(self._data_spec_file, "r") as file_read:
                self._data_spec = load(file_read, Loader=FullLoader)
        except IOError as err:
            raise RuntimeError(
                f"Not possible to open the file {self._data_spec_file,}\n{err}"
            )
        except YAMLError as err:
            raise RuntimeError(
                f"An error occurred while parsing the specification file "
                f"{self._data_spec_file,}\n"
                f"{err}"
            )

    @property
    def data(self):
        return self._data

    @staticmethod
    def _get_list_of_files(
            path,
            last_modified_begin=None,
            last_modified_end=None,
            days=None
        ) -> list:
        """Get list of interested files stored in S3 compatible storage and
        returns it.

        :param path: S3 prefix (accepts Unix shell-style wildcards)
            (e.g. s3://bucket/prefix) or list of S3 objects paths
            (e.g. [s3://bucket/key0, s3://bucket/key1]).
        :param last_modified_begin: Filter the s3 files by the Last modified
            date of the object. The filter is applied only after list all s3
            files.
        :param last_modified_end: Filter the s3 files by the Last modified date
            of the object. The filter is applied only after list all s3 files.
        :param days: Number of days to filter.
        :type path: Union[str, List[str]]
        :type last_modified_begin: datetime, optional
        :type last_modified_end: datetime, optional
        :type days: integer, optional
        :returns: List of file names.
        :rtype: list
        """
        file_list = list()
        if days:
            last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)
        try:
            file_list = wr.s3.list_objects(
                path=path,
                suffix="parquet",
                last_modified_begin=last_modified_begin,
                last_modified_end=last_modified_end
            )
            logging.debug("\n".join(file_list))
        except NoFilesFound as err:
            logging.error(f"No parquets found.\n{err}")
        except EmptyDataFrame as err:
            logging.error(f"No data.\n{err}")

        return file_list

    def _validate_columns(self, data_type: str) -> str:
        """Check if all columns are present in the dataframe.

        :param data_type: The data type defined in data.yaml
        :type data_type: str
        :returns: Error message if validation fails, otherwise empty string.
        :rtype: str
        """
        defined_columns = set()
        for data_set in self._data_spec:
            if data_set.get("data_type", str()) == data_type:
                defined_columns.update(data_set.get("columns", set()))

        if not defined_columns:
            return "No columns defined in the data set(s)."

        if self.data[data_type].empty:
            return "No data."

        ret_msg = str()
        for col in defined_columns:
            if col not in self.data[data_type].columns:
                if not ret_msg:
                    ret_msg = "Missing columns: "
                else:
                    ret_msg += ", "
                ret_msg += f"{col}"
        return ret_msg

    @staticmethod
    def _write_parquet_schema(
            path,
            partition_filter=None,
            columns=None,
            validate_schema=False,
            last_modified_begin=None,
            last_modified_end=None,
            days=None
        ) -> None:
        """Auxiliary function to write parquet schemas. Use it instead of
        "_create_dataframe_from_parquet" in "read_all_data".

        :param path: S3 prefix (accepts Unix shell-style wildcards)
            (e.g. s3://bucket/prefix) or list of S3 objects paths
            (e.g. [s3://bucket/key0, s3://bucket/key1]).
        :param partition_filter: Callback Function filters to apply on PARTITION
            columns (PUSH-DOWN filter). This function MUST receive a single
            argument (Dict[str, str]) where keys are partitions names and values
            are partitions values. Partitions values will be always strings
            extracted from S3. This function MUST return a bool, True to read
            the partition or False to ignore it. Ignored if dataset=False.
        :param columns: Names of columns to read from the file(s).
        :param validate_schema: Check that individual file schemas are all the
            same / compatible. Schemas within a folder prefix should all be the
            same. Disable if you have schemas that are different and want to
            disable this check.
        :param last_modified_begin: Filter the s3 files by the Last modified
            date of the object. The filter is applied only after list all s3
            files.
        :param last_modified_end: Filter the s3 files by the Last modified date
            of the object. The filter is applied only after list all s3 files.
        :param days: Number of days to filter.
        :type path: Union[str, List[str]]
        :type partition_filter: Callable[[Dict[str, str]], bool], optional
        :type columns: List[str], optional
        :type validate_schema: bool, optional
        :type last_modified_begin: datetime, optional
        :type last_modified_end: datetime, optional
        :type days: integer, optional
        """
        if days:
            last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)

        df = wr.s3.read_parquet(
            path=path,
            path_suffix="parquet",
            ignore_empty=True,
            validate_schema=validate_schema,
            use_threads=True,
            dataset=True,
            columns=columns,
            partition_filter=partition_filter,
            last_modified_begin=last_modified_begin,
            last_modified_end=last_modified_end,
            chunked=1
        )

        for itm in df:
            try:
                # Specify the condition or remove it:
                if all((
                        pd.api.types.is_string_dtype(itm["column_name"]),
                        pd.api.types.is_string_dtype(itm["telemetry"][0])
                    )):
                    schema = pa.Schema.from_pandas(itm)
                    pa.parquet.write_metadata(
                        schema, f"{C.PATH_TO_SCHEMAS}_tmp_schema"
                    )
                    logging.info(schema.to_string(
                        truncate_metadata=False,
                        show_field_metadata=True,
                        show_schema_metadata=True
                    ))
                    break
            except KeyError:
                pass

    @staticmethod
    def _create_dataframe_from_parquet(
            path,
            partition_filter=None,
            columns=None,
            validate_schema=False,
            last_modified_begin=None,
            last_modified_end=None,
            days=None,
            schema=None
        ) -> pd.DataFrame:
        """Read parquet stored in S3 compatible storage and returns Pandas
        Dataframe.

        :param path: S3 prefix (accepts Unix shell-style wildcards)
            (e.g. s3://bucket/prefix) or list of S3 objects paths
            (e.g. [s3://bucket/key0, s3://bucket/key1]).
        :param partition_filter: Callback Function filters to apply on PARTITION
            columns (PUSH-DOWN filter). This function MUST receive a single
            argument (Dict[str, str]) where keys are partitions names and values
            are partitions values. Partitions values will be always strings
            extracted from S3. This function MUST return a bool, True to read
            the partition or False to ignore it. Ignored if dataset=False.
        :param columns: Names of columns to read from the file(s).
        :param validate_schema: Check that individual file schemas are all the
            same / compatible. Schemas within a folder prefix should all be the
            same. Disable if you have schemas that are different and want to
            disable this check.
        :param last_modified_begin: Filter the s3 files by the Last modified
            date of the object. The filter is applied only after list all s3
            files.
        :param last_modified_end: Filter the s3 files by the Last modified date
            of the object. The filter is applied only after list all s3 files.
        :param days: Number of days to filter.
        :param schema: Path to schema to use when reading data from the parquet.
        :type path: Union[str, List[str]]
        :type partition_filter: Callable[[Dict[str, str]], bool], optional
        :type columns: List[str], optional
        :type validate_schema: bool, optional
        :type last_modified_begin: datetime, optional
        :type last_modified_end: datetime, optional
        :type days: integer, optional
        :type schema: string
        :returns: Pandas DataFrame or None if DataFrame cannot be fetched.
        :rtype: DataFrame
        """
        df = pd.DataFrame()
        start = time()
        if days:
            last_modified_begin = datetime.now(tz=UTC) - timedelta(days=days)
        try:
            wr.config.botocore_config = botocore.config.Config(
                max_pool_connections=C.MAX_POOL_SIZE
            )
            df = wr.s3.read_parquet(
                path=path,
                path_suffix="parquet",
                ignore_empty=True,
                schema=schema,
                validate_schema=validate_schema,
                use_threads=True,
                dataset=True,
                columns=columns,
                partition_filter=partition_filter,
                last_modified_begin=last_modified_begin,
                last_modified_end=last_modified_end,
                dtype_backend="pyarrow"
            )

            df.info(verbose=True, memory_usage="deep")
            logging.debug(
                f"\nCreation of dataframe {path} took: {time() - start}\n"
            )
        except (ArrowInvalid, ArrowNotImplementedError) as err:
            logging.error(f"Reading of data from parquets FAILED.\n{repr(err)}")
        except NoFilesFound as err:
            logging.error(
                f"Reading of data from parquets FAILED.\n"
                f"No parquets found in specified time period.\n"
                f"Nr of days: {days}\n"
                f"last_modified_begin: {last_modified_begin}\n"
                f"{repr(err)}"
            )
        except EmptyDataFrame as err:
            logging.error(
                f"Reading of data from parquets FAILED.\n"
                f"No data in parquets in specified time period.\n"
                f"Nr of days: {days}\n"
                f"last_modified_begin: {last_modified_begin}\n"
                f"{repr(err)}"
            )

        return df

    def read_all_data(self, days: int=None) -> dict:
        """Read all data necessary for all applications.

        :param days: Number of days to filter. If None, all data will be
            downloaded.
        :type days: int
        :returns: A dictionary where keys are names of parquets and values are
            the pandas dataframes with fetched data.
        :rtype: dict(str: pandas.DataFrame)
        """

        data_lists = {
            "statistics": list(),
            "trending": list(),
            "iterative": list(),
            "coverage": list()
        }

        logging.info("\n\nReading data:\n" + "-" * 13 + "\n")
        for data_set in self._data_spec:
            logging.info(
                f"\n\nReading data for {data_set['data_type']} "
                f"{data_set['partition_name']} {data_set.get('release', '')}\n"
            )
            schema_file = data_set.get("schema", None)
            if schema_file:
                try:
                    schema = pa.parquet.read_schema(
                        f"{C.PATH_TO_SCHEMAS}{schema_file}"
                    )
                except FileNotFoundError as err:
                    logging.error(repr(err))
                    logging.error("Proceeding without schema.")
                    schema = None
            else:
                schema = None
            partition_filter = lambda part: True \
                if part[data_set["partition"]] == data_set["partition_name"] \
                    else False
            if data_set["data_type"] in ("trending", "statistics"):
                time_period = days
            else:
                time_period = None

            if GENERATE_SCHEMA:
                # Generate schema:
                Data._write_parquet_schema(
                    path=data_set["path"],
                    partition_filter=partition_filter,
                    columns=data_set.get("columns", None),
                    days=time_period
                )
                return

            # Read data:
            data = Data._create_dataframe_from_parquet(
                path=data_set["path"],
                partition_filter=partition_filter,
                columns=data_set.get("columns", None),
                days=time_period,
                schema=schema
            )
            if data_set["data_type"] in ("iterative", "coverage"):
                data["release"] = data_set["release"]
                data["release"] = data["release"].astype("category")

            data_lists[data_set["data_type"]].append(data)

        logging.info(
            "\n\nData post-processing, validation and summary:\n" +
            "-" * 45 + "\n"
        )
        for key in self._data.keys():
            logging.info(f"\n\nDataframe {key}:\n")
            if len(data_lists[key]) == 0:
                self._data[key] = pd.DataFrame()
            elif len(data_lists[key]) == 1:
                self._data[key] = data_lists[key][0]
            else:
                self._data[key] = pd.concat(
                    data_lists[key],
                    ignore_index=True,
                    copy=False
                )
            self._data[key].info(verbose=True, memory_usage="deep")
            err_msg = self._validate_columns(key)
            if err_msg:
                self._data[key] = pd.DataFrame()
                logging.error(
                    f"Data validation FAILED.\n"
                    f"{err_msg}\n"
                    "Generated dataframe replaced by an empty dataframe."
                )

        mem_alloc = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000
        logging.info(f"\n\nMemory allocation: {mem_alloc:.0f}MB\n")

        return self._data