summaryrefslogtreecommitdiffstats
path: root/README.md
blob: 7f429d12b31b108f0ec1907547d62a1cb0d64ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
Vector Packet Processing
========================

## Introduction

The VPP platform is an extensible framework that provides out-of-the-box
production quality switch/router functionality. It is the open source version
of Cisco's Vector Packet Processing (VPP) technology: a high performance,
packet-processing stack that can run on commodity CPUs.

The benefits of this implementation of VPP are its high performance, proven
technology, its modularity and flexibility, and rich feature set.

For more information on VPP and its features please visit the
[FD.io website](http://fd.io/) and
[What is VPP?](https://wiki.fd.io/view/VPP/What_is_VPP%3F) pages.


## Changes

Details of the changes leading up to this version of VPP can be found under
@ref release_notes.


## Directory layout

Directory name         | Description
---------------------- | -------------------------------------------
     build-data        | Build metadata
     build-root        | Build output directory
     doxygen           | Documentation generator configuration
     dpdk              | DPDK patches and build infrastructure
@ref src               | VPP source code
@ref src/plugins       | VPP bundled plugins directory
@ref src/svm           | Shared virtual memory allocation library
     src/tests         | Unit tests
     src/vat           | VPP API test program
@ref src/vlib          | VPP application library
@ref src/vlibapi       | VPP API library
@ref src/vlibmemory    | VPP Memory management
@ref src/vlibsocket    | VPP Socket I/O
@ref src/vnet          | VPP networking
@ref src/vpp           | VPP application
@ref src/vpp-api       | VPP application API bindings
@ref src/vppinfra      | VPP core library
     test              | Unit tests
@ref src/vpp/api       | Not-yet-relocated API bindings


## Getting started

In general anyone interested in building, developing or running VPP should
consult the [VPP wiki](https://wiki.fd.io/view/VPP) for more complete
documentation.

In particular, readers are recommended to take a look at [Pulling, Building,
Running, Hacking, Pushing](https://wiki.fd.io/view/VPP/Pulling,_Building,_Run
ning,_Hacking_and_Pushing_VPP_Code) which provides extensive step-by-step
coverage of the topic.

For the impatient, some salient information is distilled below.


### Quick-start: On an existing Linux host

To install system dependencies, build VPP and then install it, simply run the
build script. This should be performed a non-privileged user with `sudo`
access from the project base directory:

    ./extras/vagrant/build.sh

If you want a more fine-grained approach because you intend to do some
development work, the `Makefile` in the root directory of the source tree
provides several convenience shortcuts as `make` targets that may be of
interest. To see the available targets run:

    make


### Quick-start: Vagrant

The directory `extras/vagrant` contains a `VagrantFile` and supporting
scripts to bootstrap a working VPP inside a Vagrant-managed Virtual Machine.
This VM can then be used to test concepts with VPP or as a development
platform to extend VPP. Some obvious caveats apply when using a VM for VPP
since its performance will never match that of bare metal; if your work is
timing or performance sensitive, consider using bare metal in addition or
instead of the VM.

For this to work you will need a working installation of Vagrant. Instructions
for this can be found [on the Setting up Vagrant wiki page]
(https://wiki.fd.io/view/DEV/Setting_Up_Vagrant).


## More information

Several modules provide documentation, see @subpage user_doc for more
information.

Visit the [VPP wiki](https://wiki.fd.io/view/VPP) for details on more
advanced building strategies and development notes.


## Test Framework

There is PyDoc generated documentation available for the VPP test framework. See @subpage test_framework_doc for details.
Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */ }
# Copyright (c) 2017 Cisco and/or its affiliates.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

*** Settings ***
| Resource | resources/libraries/robot/performance/performance_setup.robot
| ...
| Force Tags | 3_NODE_SINGLE_LINK_TOPO | PERFTEST | HW_ENV | NDRPDRDISC
| ... | NIC_Intel-X520-DA2 | ETH | IP4FWD | FEATURE | ACL | ACL_STATELESS
| ... | OACL | ACL50 | 100_FLOWS
| ...
| Suite Setup | Set up 3-node performance topology with DUT's NIC model
| ... | L3 | Intel-X520-DA2
| Suite Teardown | Tear down 3-node performance topology
| ...
| Test Setup | Set up performance test
| ...
| Test Teardown | Tear down performance test with ACL
| ... | ${min_rate}pps | ${framesize} | ${traffic_profile}
| ...
| Documentation | *RFC2544: Packet throughput IPv4 test cases with ACL*
| ...
| ... | *[Top] Network Topologies:* TG-DUT1-DUT2-TG 3-node circular topology\
| ... | with single links between nodes.
| ... | *[Enc] Packet Encapsulations:* Eth-IPv4-UDP for L2 switching of IPv4.
| ... | *[Cfg] DUT configuration:* DUT1 is configured with L2 bridge domain\
| ... | and MAC learning enabled. DUT2 is configured with L2 cross-connects.\
| ... | Required ACL rules are applied to input paths of both DUT1 intefaces.\
| ... | DUT1 and DUT2 are tested with 2p10GE NIC X520 Niantic by Intel.\
| ... | *[Ver] TG verification:* TG finds and reports throughput NDR (Non Drop\
| ... | Rate) with zero packet loss tolerance or throughput PDR (Partial Drop\
| ... | Rate) with non-zero packet loss tolerance (LT) expressed in percentage\
| ... | of packets transmitted. NDR and PDR are discovered for different\
| ... | Ethernet L2 frame sizes using either binary search or linear search\
| ... | algorithms with configured starting rate and final step that determines\
| ... | throughput measurement resolution. Test packets are generated by TG on\
| ... | links to DUTs. TG traffic profile contains two L3 flow-groups\
| ... | (flow-group per direction, ${flows_per_dir} flows per flow-group) with\
| ... | all packets containing Ethernet header, IPv4 header with UDP header and\
| ... | static payload. MAC addresses are matching MAC addresses of the TG node\
| ... | interfaces.
| ... | *[Ref] Applicable standard specifications:* RFC2544.

*** Variables ***
# X520-DA2 bandwidth limit
| ${s_limit}= | ${10000000000}

# ACL test setup
| ${acl_action}= | permit
| ${acl_apply_type}= | output
| ${no_hit_aces_number}= | 50
| ${flows_per_dir}= | 100

# starting points for non-hitting ACLs
| ${src_ip_start}= | 30.30.30.1
| ${dst_ip_start}= | 40.40.40.1
| ${ip_step}= | ${1}
| ${sport_start}= | ${1000}
| ${dport_start}= | ${1000}
| ${port_step}= | ${1}
| ${trex_stream1_subnet}= | 10.10.10.0/24
| ${trex_stream2_subnet}= | 20.20.20.0/24

*** Keywords ***
| Discover NDR or PDR for IPv4 routing with ACLs
| | [Arguments] | ${wt} | ${rxq} | ${framesize} | ${min_rate} | ${search_type}
| | Set Test Variable | ${framesize}
| | Set Test Variable | ${min_rate}
| | ${max_rate}= | Calculate pps | ${s_limit} | ${framesize}
| | ${binary_min}= | Set Variable | ${min_rate}
| | ${binary_max}= | Set Variable | ${max_rate}
| | ${threshold}= | Set Variable | ${min_rate}
| | Given Add '${wt}' worker threads and '${rxq}' rxqueues in 3-node single-link circular topology
| | And Add PCI devices to DUTs in 3-node single link topology
| | ${get_framesize}= | Get Frame Size | ${framesize}
| | And Run Keyword If | ${get_framesize} < ${1522} | Add no multi seg to all DUTs
| | And Apply startup configuration on all VPP DUTs
| | ${ip_nr}= | Set Variable | 10
| | When Initialize IPv4 routing for '${ip_nr}' addresses with IPv4 ACLs on DUT1 in 3-node circular topology
| | ${traffic_profile}= | Set Variable | trex-sl-3n-ethip4udp-10u10p-conc
| | Set Test Variable | ${traffic_profile}
| | Then Run Keyword If | '${search_type}' == 'NDR'
| | ... | Find NDR using binary search and pps
| | ... | ${framesize} | ${binary_min} | ${binary_max} | ${traffic_profile}
| | ... | ${min_rate} | ${max_rate} | ${threshold}
| | ... | ELSE IF | '${search_type}' == 'PDR'
| | ... | Find PDR using binary search and pps
| | ... | ${framesize} | ${binary_min} | ${binary_max} | ${traffic_profile}
| | ... | ${min_rate} | ${max_rate} | ${threshold}
| | ... | ${perf_pdr_loss_acceptance} | ${perf_pdr_loss_acceptance_type}

*** Test Cases ***
| tc01-64B-1t1c-ethip4udp-ip4base-oacl50-stateless-flows100-ndrdisc
| | [Documentation]
| | ... | [Cfg] DUT runs IPv4 routing config with ACL with\
| | ... | 1 thread, 1 phy core, 1 receive queue per NIC port.
| | ... | [Ver] Find NDR for 64 Byte frames using binary search start at 10GE\
| | ... | linerate, step 100kpps.
| | ...
| | [Tags] | 64B | 1T1C | STHREAD | NDRDISC
| | ...
| | [Template] | Discover NDR or PDR for IPv4 routing with ACLs
| | wt=1 | rxq=1 | framesize=${64} | min_rate=${100000} | search_type=NDR

| tc02-64B-1t1c-ethip4udp-ip4base-oacl50-stateless-flows100-pdrdisc
| | [Documentation]
| | ... | [Cfg] DUT runs IPv4 routing config with ACL with\
| | ... | 1 thread, 1 phy core, 1 receive queue per NIC port.
| | ... | [Ver] Find PDR for 64 Byte frames using binary search start at 10GE\
| | ... | linerate, step 100kpps, LT=0.5%.
| | ...
| | [Tags] | 64B | 1T1C | STHREAD | PDRDISC | SKIP_PATCH
| | ...
| | [Template] | Discover NDR or PDR for IPv4 routing with ACLs
| | wt=1 | rxq=1 | framesize=${64} | min_rate=${100000} | search_type=PDR

| tc03-64B-2t2c-ethip4udp-ip4base-oacl50-stateless-flows100-ndrdisc
| | [Documentation]
| | ... | [Cfg] DUT runs IPv4 routing config with ACL with\
| | ... | 2 threads, 2 phy cores, 1 receive queue per NIC port.
| | ... | [Ver] Find NDR for 64 Byte frames using binary search start at 10GE\
| | ... | linerate, step 100kpps.
| | ...
| | [Tags] | 64B | 2T2C | MTHREAD | NDRDISC
| | ...
| | [Template] | Discover NDR or PDR for IPv4 routing with ACLs
| | wt=2 | rxq=1 | framesize=${64} | min_rate=${100000} | search_type=NDR

| tc04-64B-2t2c-ethip4udp-ip4base-oacl50-stateless-flows100-pdrdisc
| | [Documentation]
| | ... | [Cfg] DUT runs IPv4 routing config with ACL with\
| | ... | 2 threads, 2 phy cores, 1 receive queue per NIC port.
| | ... | [Ver] Find PDR for 64 Byte frames using binary search start at 10GE\
| | ... | linerate, step 100kpps, LT=0.5%.
| | ...
| | [Tags] | 64B | 2T2C | MTHREAD | PDRDISC | SKIP_PATCH
| | ...
| | [Template] | Discover NDR or PDR for IPv4 routing with ACLs
| | wt=2 | rxq=1 | framesize=${64} | min_rate=${100000} | search_type=PDR