summaryrefslogtreecommitdiffstats
path: root/docs/usecases/trafficgen.rst
blob: 82dba96c171a0d4374d7937140f1b807f5945230 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
Stateless Traffic Gen with VPP
==============================

It’s simple to configure vpp as a high-performance stateless traffic
generator. A couple of vpp worker threads running on an older system can
easily generate 20 MPPS’ worth of traffic.

In the configurations shown below, we connect a vpp traffic generator
and a vpp UUT using two 40 gigabit ethernet ports on each system:

::

    +-------------------+           +-------------------+
    | traffic generator |           | UUT               |
    | port 0            | <=======> | port 0            |
    | 192.168.40.2/24   |           | 192.168.40.1/24   |
    +-------------------+           +-------------------+

    +-------------------+           +-------------------+
    | traffic generator |           | UUT               |
    | port 1            | <=======> | port 1            |
    | 192.168.41.2/24   |           | 192.168.41.1/24   |
    +-------------------+           +-------------------+

Traffic Generator Setup Script
------------------------------

::

    set int ip address FortyGigabitEthernet2/0/0 192.168.40.2/24
    set int ip address FortyGigabitEthernet2/0/1 192.168.41.2/24
    set int state FortyGigabitEthernet2/0/0 up
    set int state FortyGigabitEthernet2/0/1 up

    comment { send traffic to the VPP UUT }

    packet-generator new {
        name worker0
        worker 0
        limit 0
        rate 1.2e7
        size 128-128
        tx-interface FortyGigabitEthernet2/0/0
        node FortyGigabitEthernet2/0/0-output
        data { IP4: 1.2.40 -> 3cfd.fed0.b6c8
               UDP: 192.168.40.10 -> 192.168.50.10
               UDP: 1234 -> 2345
               incrementing 114
        }
    }

    packet-generator new {
        name worker1
        worker 1
        limit 0
        rate 1.2e7
        size 128-128
        tx-interface FortyGigabitEthernet2/0/1
        node FortyGigabitEthernet2/0/1-output
        data { IP4: 1.2.4 -> 3cfd.fed0.b6c9
               UDP: 192.168.41.10 -> 192.168.51.10
               UDP: 1234 -> 2345
               incrementing 114
        }
    }

    comment { delete return traffic on sight }

    ip route add 192.168.50.0/24 via drop
    ip route add 192.168.51.0/24 via drop

Note 1: the destination MAC addresses shown in the configuration (e.g.
3cfd.fed0.b6c8 and 3cfd.fed0.b6c9) **must** match the vpp UUT port MAC
addresses.

Note 2: this script assumes that /etc/vpp/startup.conf and/or the
command-line in use specifies (at least) two worker threads. Uncomment
“workers 2” in the cpu configuration section of /etc/vpp/startup.conf:

::

    ## Specify a number of workers to be created
    ## Workers are pinned to N consecutive CPU cores while skipping "skip-cores" CPU core(s)
    ## and main thread's CPU core
    workers 2

Any plausible packet generator script - including one which replays pcap
captures - can be used.

UUT Setup Script
----------------

The vpp UUT uses a couple of static routes to forward traffic back to
the traffic generator:

::

    set int ip address FortyGigabitEthernet2/0/0 192.168.40.1/24
    set int ip address FortyGigabitEthernet2/0/1 192.168.41.1/24
    set int state FortyGigabitEthernet2/0/0 up
    set int state FortyGigabitEthernet2/0/1 up

    ip route add 192.168.50.10/32 via 192.168.41.2
    ip route add 192.168.51.10/32 via 192.168.40.2
39 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
/*
 * Copyright (c) 2015 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
  Copyright (c) 2001-2005 Eliot Dresselhaus

  Permission is hereby granted, free of charge, to any person obtaining
  a copy of this software and associated documentation files (the
  "Software"), to deal in the Software without restriction, including
  without limitation the rights to use, copy, modify, merge, publish,
  distribute, sublicense, and/or sell copies of the Software, and to
  permit persons to whom the Software is furnished to do so, subject to
  the following conditions:

  The above copyright notice and this permission notice shall be
  included in all copies or substantial portions of the Software.

  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/

#include <vppinfra/hash.h>
#include <vppinfra/error.h>
#include <vppinfra/mem.h>
#include <vppinfra/byte_order.h>	/* for clib_arch_is_big_endian */

always_inline void
zero_pair (hash_t * h, hash_pair_t * p)
{
  memset (p, 0, hash_pair_bytes (h));
}

always_inline void
init_pair (hash_t * h, hash_pair_t * p)
{
  memset (p->value, ~0, hash_value_bytes (h));
}

always_inline hash_pair_union_t *
get_pair (void *v, uword i)
{
  hash_t *h = hash_header (v);
  hash_pair_t *p;
  ASSERT (i < vec_len (v));
  p = v;
  p += i << h->log2_pair_size;
  return (hash_pair_union_t *) p;
}

always_inline void
set_is_user (void *v, uword i, uword is_user)
{
  hash_t *h = hash_header (v);
  uword i0 = i / BITS (h->is_user[0]);
  uword i1 = (uword) 1 << (i % BITS (h->is_user[0]));
  if (is_user)
    h->is_user[i0] |= i1;
  else
    h->is_user[i0] &= ~i1;
}

static u8 *hash_format_pair_default (u8 * s, va_list * args);

#if uword_bits == 64

static inline u64
zap64 (u64 x, word n)
{
#define _(n) (((u64) 1 << (u64) (8*(n))) - (u64) 1)
  static u64 masks_little_endian[] = {
    0, _(1), _(2), _(3), _(4), _(5), _(6), _(7),
  };
  static u64 masks_big_endian[] = {
    0, ~_(7), ~_(6), ~_(5), ~_(4), ~_(3), ~_(2), ~_(1),
  };
#undef _
  if (clib_arch_is_big_endian)
    return x & masks_big_endian[n];
  else
    return x & masks_little_endian[n];
}

static inline u64
hash_memory64 (void *p, word n_bytes, u64 state)
{
  u64 *q = p;
  u64 a, b, c, n;

  a = b = 0x9e3779b97f4a7c13LL;
  c = state;
  n = n_bytes;

  while (n >= 3 * sizeof (u64))
    {
      a += clib_mem_unaligned (q + 0, u64);
      b += clib_mem_unaligned (q + 1, u64);
      c += clib_mem_unaligned (q + 2, u64);
      hash_mix64 (a, b, c);
      n -= 3 * sizeof (u64);
      q += 3;
    }

  c += n_bytes;
  switch (n / sizeof (u64))
    {
    case 2:
      a += clib_mem_unaligned (q + 0, u64);
      b += clib_mem_unaligned (q + 1, u64);
      if (n % sizeof (u64))
	c += zap64 (clib_mem_unaligned (q + 2, u64), n % sizeof (u64)) << 8;
      break;

    case 1:
      a += clib_mem_unaligned (q + 0, u64);
      if (n % sizeof (u64))
	b += zap64 (clib_mem_unaligned (q + 1, u64), n % sizeof (u64));
      break;

    case 0:
      if (n % sizeof (u64))
	a += zap64 (clib_mem_unaligned (q + 0, u64), n % sizeof (u64));
      break;
    }

  hash_mix64 (a, b, c);

  return c;
}

#else /* if uword_bits == 64 */

static inline u32
zap32 (u32 x, word n)
{
#define _(n) (((u32) 1 << (u32) (8*(n))) - (u32) 1)
  static u32 masks_little_endian[] = {
    0, _(1), _(2), _(3),
  };
  static u32 masks_big_endian[] = {
    0, ~_(3), ~_(2), ~_(1),
  };
#undef _
  if (clib_arch_is_big_endian)
    return x & masks_big_endian[n];
  else
    return x & masks_little_endian[n];
}

static inline u32
hash_memory32 (void *p, word n_bytes, u32 state)
{
  u32 *q = p;
  u32 a, b, c, n;

  a = b = 0x9e3779b9;
  c = state;
  n = n_bytes;

  while (n >= 3 * sizeof (u32))
    {
      a += clib_mem_unaligned (q + 0, u32);
      b += clib_mem_unaligned (q + 1, u32);
      c += clib_mem_unaligned (q + 2, u32);
      hash_mix32 (a, b, c);
      n -= 3 * sizeof (u32);
      q += 3;
    }

  c += n_bytes;
  switch (n / sizeof (u32))
    {
    case 2:
      a += clib_mem_unaligned (q + 0, u32);
      b += clib_mem_unaligned (q + 1, u32);
      if (n % sizeof (u32))
	c += zap32 (clib_mem_unaligned (q + 2, u32), n % sizeof (u32)) << 8;
      break;

    case 1:
      a += clib_mem_unaligned (q + 0, u32);
      if (n % sizeof (u32))
	b += zap32 (clib_mem_unaligned (q + 1, u32), n % sizeof (u32));
      break;

    case 0:
      if (n % sizeof (u32))
	a += zap32 (clib_mem_unaligned (q + 0, u32), n % sizeof (u32));
      break;
    }

  hash_mix32 (a, b, c);

  return c;
}
#endif

uword
hash_memory (void *p, word n_bytes, uword state)
{
  uword *q = p;

#if uword_bits == 64
  return hash_memory64 (q, n_bytes, state);
#else
  return hash_memory32 (q, n_bytes, state);
#endif
}

#if uword_bits == 64
always_inline uword
hash_uword (uword x)
{
  u64 a, b, c;

  a = b = 0x9e3779b97f4a7c13LL;
  c = 0;
  a += x;
  hash_mix64 (a, b, c);
  return c;
}
#else
always_inline uword
hash_uword (uword x)
{
  u32 a, b, c;

  a = b = 0x9e3779b9;
  c = 0;
  a += x;
  hash_mix32 (a, b, c);
  return c;
}
#endif

/* Call sum function.  Hash code will be sum function value
   modulo the prime length of the hash table. */
always_inline uword
key_sum (hash_t * h, uword key)
{
  uword sum;
  switch (pointer_to_uword ((void *) h->key_sum))
    {
    case KEY_FUNC_NONE:
      sum = hash_uword (key);
      break;

    case KEY_FUNC_POINTER_UWORD:
      sum = hash_uword (*uword_to_pointer (key, uword *));
      break;

    case KEY_FUNC_POINTER_U32:
      sum = hash_uword (*uword_to_pointer (key, u32 *));
      break;

    case KEY_FUNC_STRING:
      sum = string_key_sum (h, key);
      break;

    default:
      sum = h->key_sum (h, key);
      break;
    }

  return sum;
}

always_inline uword
key_equal1 (hash_t * h, uword key1, uword key2, uword e)
{
  switch (pointer_to_uword ((void *) h->key_equal))
    {
    case KEY_FUNC_NONE:
      break;

    case KEY_FUNC_POINTER_UWORD:
      e =
	*uword_to_pointer (key1, uword *) == *uword_to_pointer (key2,
								uword *);
      break;

    case KEY_FUNC_POINTER_U32:
      e = *uword_to_pointer (key1, u32 *) == *uword_to_pointer (key2, u32 *);
      break;

    case KEY_FUNC_STRING:
      e = string_key_equal (h, key1, key2);
      break;

    default:
      e = h->key_equal (h, key1, key2);
      break;
    }
  return e;
}

/* Compares two keys: returns 1 if equal, 0 if not. */
always_inline uword
key_equal (hash_t * h, uword key1, uword key2)
{
  uword e = key1 == key2;
  if (CLIB_DEBUG > 0 && key1 == key2)
    ASSERT (key_equal1 (h, key1, key2, e));
  if (!e)
    e = key_equal1 (h, key1, key2, e);
  return e;
}

static hash_pair_union_t *
get_indirect (void *v, hash_pair_indirect_t * pi, uword key)
{
  hash_t *h = hash_header (v);
  hash_pair_t *p0, *p1;

  p0 = p1 = pi->pairs;
  if (h->log2_pair_size > 0)
    p1 = hash_forward (h, p0, indirect_pair_get_len (pi));
  else
    p1 += vec_len (p0);

  while (p0 < p1)
    {
      if (key_equal (h, p0->key, key))
	return (hash_pair_union_t *) p0;
      p0 = hash_forward1 (h, p0);
    }

  return (hash_pair_union_t *) 0;
}

static hash_pair_union_t *
set_indirect_is_user (void *v, uword i, hash_pair_union_t * p, uword key)
{
  hash_t *h = hash_header (v);
  hash_pair_t *q;
  hash_pair_indirect_t *pi = &p->indirect;
  uword log2_bytes = 0;

  if (h->log2_pair_size == 0)
    q = vec_new (hash_pair_t, 2);
  else
    {
      log2_bytes = 1 + hash_pair_log2_bytes (h);
      q = clib_mem_alloc (1ULL << log2_bytes);
    }
  clib_memcpy (q, &p->direct, hash_pair_bytes (h));

  pi->pairs = q;
  if (h->log2_pair_size > 0)
    indirect_pair_set (pi, log2_bytes, 2);

  set_is_user (v, i, 0);

  /* First element is used by existing pair, second will be used by caller. */
  q = hash_forward1 (h, q);
  q->key = key;
  init_pair (h, q);
  return (hash_pair_union_t *) q;
}

static hash_pair_union_t *
set_indirect (void *v, hash_pair_indirect_t * pi, uword key,
	      uword * found_key)
{
  hash_t *h = hash_header (v);
  hash_pair_t *new_pair;
  hash_pair_union_t *q;

  q = get_indirect (v, pi, key);
  if (q)
    {
      *found_key = 1;
      return q;
    }

  if (h->log2_pair_size == 0)
    vec_add2 (pi->pairs, new_pair, 1);
  else
    {
      uword len, new_len, log2_bytes;

      len = indirect_pair_get_len (pi);
      log2_bytes = indirect_pair_get_log2_bytes (pi);

      new_len = len + 1;
      if (new_len * hash_pair_bytes (h) > (1ULL << log2_bytes))
	{
	  pi->pairs = clib_mem_realloc (pi->pairs,
					1ULL << (log2_bytes + 1),
					1ULL << log2_bytes);
	  log2_bytes++;
	}

      indirect_pair_set (pi, log2_bytes, new_len);
      new_pair = pi->pairs + (len << h->log2_pair_size);
    }
  new_pair->key = key;
  init_pair (h, new_pair);
  *found_key = 0;
  return (hash_pair_union_t *) new_pair;
}

static void
unset_indirect (void *v, uword i, hash_pair_t * q)
{
  hash_t *h = hash_header (v);
  hash_pair_union_t *p = get_pair (v, i);
  hash_pair_t *e;
  hash_pair_indirect_t *pi = &p->indirect;
  uword len, is_vec;

  is_vec = h->log2_pair_size == 0;

  ASSERT (!hash_is_user (v, i));
  len = is_vec ? vec_len (pi->pairs) : indirect_pair_get_len (pi);
  e = hash_forward (h, pi->pairs, len - 1);
  ASSERT (q >= pi->pairs && q <= e);

  /* We have two or fewer pairs and we are delete one pair.
     Make indirect pointer direct and free indirect memory. */
  if (len <= 2)
    {
      hash_pair_t *r = pi->pairs;

      if (len == 2)
	{
	  clib_memcpy (p, q == r ? hash_forward1 (h, r) : r,
		       hash_pair_bytes (h));
	  set_is_user (v, i, 1);
	}
      else
	zero_pair (h, &p->direct);

      if (is_vec)
	vec_free (r);
      else if (r)
	clib_mem_free (r);
    }
  else
    {
      /* If deleting a pair we need to keep non-null pairs together. */
      if (q < e)
	clib_memcpy (q, e, hash_pair_bytes (h));
      else
	zero_pair (h, q);
      if (is_vec)
	_vec_len (pi->pairs) -= 1;
      else
	indirect_pair_set (pi, indirect_pair_get_log2_bytes (pi), len - 1);
    }
}

enum lookup_opcode
{
  GET = 1,
  SET = 2,
  UNSET = 3,
};

static hash_pair_t *
lookup (void *v, uword key, enum lookup_opcode op,
	void *new_value, void *old_value)
{
  hash_t *h = hash_header (v);
  hash_pair_union_t *p = 0;
  uword found_key = 0;
  uword i;

  if (!v)
    return 0;

  i = key_sum (h, key) & (_vec_len (v) - 1);
  p = get_pair (v, i);

  if (hash_is_user (v, i))
    {
      found_key = key_equal (h, p->direct.key, key);
      if (found_key)
	{
	  if (op == UNSET)
	    {
	      set_is_user (v, i, 0);
	      if (old_value)
		clib_memcpy (old_value, p->direct.value,
			     hash_value_bytes (h));
	      zero_pair (h, &p->direct);
	    }
	}
      else
	{
	  if (op == SET)
	    p = set_indirect_is_user (v, i, p, key);
	  else
	    p = 0;
	}
    }
  else
    {
      hash_pair_indirect_t *pi = &p->indirect;

      if (op == SET)
	{
	  if (!pi->pairs)
	    {
	      p->direct.key = key;
	      set_is_user (v, i, 1);
	    }
	  else
	    p = set_indirect (v, pi, key, &found_key);
	}
      else
	{
	  p = get_indirect (v, pi, key);
	  found_key = p != 0;
	  if (found_key && op == UNSET)
	    {
	      if (old_value)
		clib_memcpy (old_value, &p->direct.value,
			     hash_value_bytes (h));

	      unset_indirect (v, i, &p->direct);

	      /* Nullify p (since it's just been deleted).
	         Otherwise we might be tempted to play with it. */
	      p = 0;
	    }
	}
    }

  if (op == SET && p != 0)
    {
      /* Save away old value for caller. */
      if (old_value && found_key)
	clib_memcpy (old_value, &p->direct.value, hash_value_bytes (h));
      clib_memcpy (&p->direct.value, new_value, hash_value_bytes (h));
    }

  if (op == SET)
    h->elts += !found_key;
  if (op == UNSET)
    h->elts -= found_key;

  return &p->direct;
}

/* Fetch value of key. */
uword *
_hash_get (void *v, uword key)
{
  hash_t *h = hash_header (v);
  hash_pair_t *p;

  /* Don't even search table if its empty. */
  if (!v || h->elts == 0)
    return 0;

  p = lookup (v, key, GET, 0, 0);
  if (!p)
    return 0;
  if (h->log2_pair_size == 0)
    return &p->key;
  else
    return &p->value[0];
}

hash_pair_t *
_hash_get_pair (void *v, uword key)
{
  return lookup (v, key, GET, 0, 0);
}

hash_pair_t *
hash_next (void *v, hash_next_t * hn)
{
  hash_t *h = hash_header (v);
  hash_pair_t *p;

  while (1)
    {
      if (hn->i == 0 && hn->j == 0)
	{
	  /* Save flags. */
	  hn->f = h->flags;

	  /* Prevent others from re-sizing hash table. */
	  h->flags |=
	    (HASH_FLAG_NO_AUTO_GROW
	     | HASH_FLAG_NO_AUTO_SHRINK | HASH_FLAG_HASH_NEXT_IN_PROGRESS);
	}
      else if (hn->i >= hash_capacity (v))
	{
	  /* Restore flags. */
	  h->flags = hn->f;
	  memset (hn, 0, sizeof (hn[0]));
	  return 0;
	}

      p = hash_forward (h, v, hn->i);
      if (hash_is_user (v, hn->i))
	{
	  hn->i++;
	  return p;
	}
      else
	{
	  hash_pair_indirect_t *pi = (void *) p;
	  uword n;

	  if (h->log2_pair_size > 0)
	    n = indirect_pair_get_len (pi);
	  else
	    n = vec_len (pi->pairs);

	  if (hn->j >= n)
	    {
	      hn->i++;
	      hn->j = 0;
	    }
	  else
	    return hash_forward (h, pi->pairs, hn->j++);
	}
    }
}

/* Remove key from table. */
void *
_hash_unset (void *v, uword key, void *old_value)
{
  hash_t *h;

  if (!v)
    return v;

  (void) lookup (v, key, UNSET, 0, old_value);

  h = hash_header (v);
  if (!(h->flags & HASH_FLAG_NO_AUTO_SHRINK))
    {
      /* Resize when 1/4 full. */
      if (h->elts > 32 && 4 * (h->elts + 1) < vec_len (v))
	v = hash_resize (v, vec_len (v) / 2);
    }

  return v;
}

void *
_hash_create (uword elts, hash_t * h_user)
{
  hash_t *h;
  uword log2_pair_size;
  void *v;

  /* Size of hash is power of 2 >= ELTS and larger than
     number of bits in is_user bitmap elements. */
  elts = clib_max (elts, BITS (h->is_user[0]));
  elts = 1ULL << max_log2 (elts);

  log2_pair_size = 1;
  if (h_user)
    log2_pair_size = h_user->log2_pair_size;

  v = _vec_resize (0,
		   /* vec len: */ elts,
		   /* data bytes: */
		   (elts << log2_pair_size) * sizeof (hash_pair_t),
		   /* header bytes: */
		   sizeof (h[0]) +
		   (elts / BITS (h->is_user[0])) * sizeof (h->is_user[0]),
		   /* alignment */ sizeof (hash_pair_t));
  h = hash_header (v);

  if (h_user)
    h[0] = h_user[0];

  h->log2_pair_size = log2_pair_size;
  h->elts = 0;

  /* Default flags to never shrinking hash tables.
     Shrinking tables can cause "jackpot" cases. */
  if (!h_user)
    h->flags = HASH_FLAG_NO_AUTO_SHRINK;

  if (!h->format_pair)
    {
      h->format_pair = hash_format_pair_default;
      h->format_pair_arg = 0;
    }

  return v;
}

void *
_hash_free (void *v)
{
  hash_t *h = hash_header (v);
  hash_pair_union_t *p;
  uword i;

  if (!v)
    return v;

  /* We zero all freed memory in case user would be tempted to use it. */
  for (i = 0; i < hash_capacity (v); i++)
    {
      if (hash_is_user (v, i))
	continue;
      p = get_pair (v, i);
      if (h->log2_pair_size == 0)
	vec_free (p->indirect.pairs);
      else if (p->indirect.pairs)
	clib_mem_free (p->indirect.pairs);
    }

  vec_free_header (h);

  return 0;
}

static void *
hash_resize_internal (void *old, uword new_size, uword free_old)
{
  void *new;
  hash_pair_t *p;

  new = 0;
  if (new_size > 0)
    {
      hash_t *h = old ? hash_header (old) : 0;
      new = _hash_create (new_size, h);
      /* *INDENT-OFF* */
      hash_foreach_pair (p, old, {
	new = _hash_set3 (new, p->key, &p->value[0], 0);
      });
      /* *INDENT-ON* */
    }

  if (free_old)
    hash_free (old);
  return new;
}

void *
hash_resize (void *old, uword new_size)
{
  return hash_resize_internal (old, new_size, 1);
}

void *
hash_dup (void *old)
{
  return hash_resize_internal (old, vec_len (old), 0);
}

void *
_hash_set3 (void *v, uword key, void *value, void *old_value)
{
  hash_t *h;

  if (!v)
    v = hash_create (0, sizeof (uword));

  h = hash_header (v);
  (void) lookup (v, key, SET, value, old_value);

  if (!(h->flags & HASH_FLAG_NO_AUTO_GROW))
    {
      /* Resize when 3/4 full. */
      if (4 * (h->elts + 1) > 3 * vec_len (v))
	v = hash_resize (v, 2 * vec_len (v));
    }

  return v;
}

uword
vec_key_sum (hash_t * h, uword key)
{
  void *v = uword_to_pointer (key, void *);
  return hash_memory (v, vec_len (v) * h->user, 0);
}

uword
vec_key_equal (hash_t * h, uword key1, uword key2)
{
  void *v1 = uword_to_pointer (key1, void *);
  void *v2 = uword_to_pointer (key2, void *);
  uword l1 = vec_len (v1);
  uword l2 = vec_len (v2);
  return l1 == l2 && 0 == memcmp (v1, v2, l1 * h->user);
}

u8 *
vec_key_format_pair (u8 * s, va_list * args)
{
  void *CLIB_UNUSED (user_arg) = va_arg (*args, void *);
  void *v = va_arg (*args, void *);
  hash_pair_t *p = va_arg (*args, hash_pair_t *);
  hash_t *h = hash_header (v);
  void *u = uword_to_pointer (p->key, void *);
  int i;

  switch (h->user)
    {
    case 1:
      s = format (s, "%v", u);
      break;

    case 2:
      {
	u16 *w = u;
	for (i = 0; i < vec_len (w); i++)
	  s = format (s, "0x%x, ", w[i]);
	break;
      }

    case 4:
      {
	u32 *w = u;
	for (i = 0; i < vec_len (w); i++)
	  s = format (s, "0x%x, ", w[i]);
	break;
      }

    case 8:
      {
	u64 *w = u;
	for (i = 0; i < vec_len (w); i++)
	  s = format (s, "0x%Lx, ", w[i]);
	break;
      }

    default:
      s = format (s, "0x%U", format_hex_bytes, u, vec_len (u) * h->user);
      break;
    }

  if (hash_value_bytes (h) > 0)
    s = format (s, " -> 0x%wx", p->value[0]);

  return s;
}

uword
mem_key_sum (hash_t * h, uword key)
{
  uword *v = uword_to_pointer (key, void *);
  return hash_memory (v, h->user, 0);
}

uword
mem_key_equal (hash_t * h, uword key1, uword key2)
{
  void *v1 = uword_to_pointer (key1, void *);
  void *v2 = uword_to_pointer (key2, void *);
  return v1 && v2 && 0 == memcmp (v1, v2, h->user);
}

uword
string_key_sum (hash_t * h, uword key)
{
  char *v = uword_to_pointer (key, char *);
  return hash_memory (v, strlen (v), 0);
}

uword
string_key_equal (hash_t * h, uword key1, uword key2)
{
  void *v1 = uword_to_pointer (key1, void *);
  void *v2 = uword_to_pointer (key2, void *);
  return v1 && v2 && 0 == strcmp (v1, v2);
}

u8 *
string_key_format_pair (u8 * s, va_list * args)
{
  void *CLIB_UNUSED (user_arg) = va_arg (*args, void *);
  void *v = va_arg (*args, void *);
  hash_pair_t *p = va_arg (*args, hash_pair_t *);
  hash_t *h = hash_header (v);
  void *u = uword_to_pointer (p->key, void *);

  s = format (s, "%s", u);

  if (hash_value_bytes (h) > 0)
    s =
      format (s, " -> 0x%8U", format_hex_bytes, &p->value[0],
	      hash_value_bytes (h));

  return s;
}

static u8 *
hash_format_pair_default (u8 * s, va_list * args)
{
  void *CLIB_UNUSED (user_arg) = va_arg (*args, void *);
  void *v = va_arg (*args, void *);
  hash_pair_t *p = va_arg (*args, hash_pair_t *);
  hash_t *h = hash_header (v);

  s = format (s, "0x%08x", p->key);
  if (hash_value_bytes (h) > 0)
    s =
      format (s, " -> 0x%8U", format_hex_bytes, &p->value[0],
	      hash_value_bytes (h));
  return s;
}

uword
hash_bytes (void *v)
{
  uword i, bytes;
  hash_t *h = hash_header (v);

  if (!v)
    return 0;

  bytes = vec_capacity (v, hash_header_bytes (v));

  for (i = 0; i < hash_capacity (v); i++)
    {
      if (!hash_is_user (v, i))
	{
	  hash_pair_union_t *p = get_pair (v, i);
	  if (h->log2_pair_size > 0)
	    bytes += 1 << indirect_pair_get_log2_bytes (&p->indirect);
	  else
	    bytes += vec_capacity (p->indirect.pairs, 0);
	}
    }
  return bytes;
}

u8 *
format_hash (u8 * s, va_list * va)
{
  void *v = va_arg (*va, void *);
  int verbose = va_arg (*va, int);
  hash_pair_t *p;
  hash_t *h = hash_header (v);
  uword i;

  s = format (s, "hash %p, %wd elts, capacity %wd, %wd bytes used,\n",
	      v, hash_elts (v), hash_capacity (v), hash_bytes (v));

  {
    uword *occupancy = 0;

    /* Count number of buckets with each occupancy. */
    for (i = 0; i < hash_capacity (v); i++)
      {
	uword j;

	if (hash_is_user (v, i))
	  {
	    j = 1;
	  }
	else
	  {
	    hash_pair_union_t *p = get_pair (v, i);
	    if (h->log2_pair_size > 0)
	      j = indirect_pair_get_len (&p->indirect);
	    else
	      j = vec_len (p->indirect.pairs);
	  }

	vec_validate (occupancy, j);
	occupancy[j]++;
      }

    s = format (s, "  profile ");
    for (i = 0; i < vec_len (occupancy); i++)
      s = format (s, "%wd%c", occupancy[i],
		  i + 1 == vec_len (occupancy) ? '\n' : ' ');

    s = format (s, "  lookup # of compares: ");
    for (i = 1; i < vec_len (occupancy); i++)
      s = format (s, "%wd: .%03d%c", i,
		  (1000 * i * occupancy[i]) / hash_elts (v),
		  i + 1 == vec_len (occupancy) ? '\n' : ' ');

    vec_free (occupancy);
  }

  if (verbose)
    {
      /* *INDENT-OFF* */
      hash_foreach_pair (p, v, {
	s = format (s, "  %U\n", h->format_pair, h->format_pair_arg, v, p);
      });
      /* *INDENT-ON* */
    }

  return s;
}

static uword
unformat_hash_string_internal (unformat_input_t * input,
			       va_list * va, int is_vec)
{
  uword *hash = va_arg (*va, uword *);
  int *result = va_arg (*va, int *);
  u8 *string = 0;
  uword *p;

  if (!unformat (input, is_vec ? "%v%_" : "%s%_", &string))
    return 0;

  p = hash_get_mem (hash, string);
  if (p)
    *result = *p;

  vec_free (string);
  return p ? 1 : 0;
}

uword
unformat_hash_vec_string (unformat_input_t * input, va_list * va)
{
  return unformat_hash_string_internal (input, va, /* is_vec */ 1);
}

uword
unformat_hash_string (unformat_input_t * input, va_list * va)
{
  return unformat_hash_string_internal (input, va, /* is_vec */ 0);
}

clib_error_t *
hash_validate (void *v)
{
  hash_t *h = hash_header (v);
  uword i, j;
  uword *keys = 0;
  clib_error_t *error = 0;

#define CHECK(x) if ((error = ERROR_ASSERT (x))) goto done;

  for (i = 0; i < hash_capacity (v); i++)
    {
      hash_pair_union_t *pu = get_pair (v, i);

      if (hash_is_user (v, i))
	{
	  CHECK (pu->direct.key != 0);
	  vec_add1 (keys, pu->direct.key);
	}
      else
	{
	  hash_pair_t *p;
	  hash_pair_indirect_t *pi = &pu->indirect;
	  uword n;

	  n = h->log2_pair_size > 0
	    ? indirect_pair_get_len (pi) : vec_len (pi->pairs);

	  for (p = pi->pairs; n-- > 0; p = hash_forward1 (h, p))
	    {
	      /* Assert key uniqueness. */
	      for (j = 0; j < vec_len (keys); j++)
		CHECK (keys[j] != p->key);
	      vec_add1 (keys, p->key);
	    }
	}
    }

  CHECK (vec_len (keys) == h->elts);

  vec_free (keys);
done:
  return error;
}

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */