summaryrefslogtreecommitdiffstats
path: root/doxygen/Makefile
blob: 0661fc9ec843b4fd9b8a4f3cfca6999932e39a99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) 2016 Comcast Cable Communications Management, LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at:
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# Build the documentation
#

# Default target
.PHONY: all
all: doxygen

# These should be passed in by the root Makefile
WS_ROOT ?= $(CURDIR)/..
BR ?= $(WS_ROOT)/build-root

# We support MacOS for docs generation
ifeq ($(shell uname),Darwin)
OS_ID = darwin
endif

# Work out the OS if we haven't already
OS_ID ?= $(shell grep '^ID=' /etc/os-release | cut -f2- -d= | sed -e 's/\"//g')

# Package dependencies
DOC_DEB_DEPENDS = doxygen graphviz python-pyparsing python-jinja2
DOC_RPM_DEPENDS = doxygen graphviz pyparsing python-jinja2
DOC_SUSE_RPM_DEPENDS = doxygen graphviz python-pyparsing python-Jinja2
DOC_MAC_BIN_DEPENDS = doxygen dot git
DOC_MAC_PY_DEPENDS = pyparsing jinja2

# Doxygen configuration and our utility scripts
DOXY_DIR ?= $(WS_ROOT)/doxygen

# Primary source directories
DOXY_SRC ?= src
DOXY_SRC_DIRECTORIES = \
	$(DOXY_SRC)/vppinfra \
	$(DOXY_SRC)/svm \
	$(DOXY_SRC)/vlib \
	$(DOXY_SRC)/vlibapi \
	$(DOXY_SRC)/vlibmemory \
	$(DOXY_SRC)/vlibsocket \
	$(DOXY_SRC)/vnet \
	$(DOXY_SRC)/vpp \
	$(DOXY_SRC)/vpp-api \
	$(DOXY_SRC)/examples

# Input directories and files
DOXY_INPUT ?= \
	$(wildcard $(WS_ROOT)/*.md) \
	$(wildcard $(DOXY_DIR)/*.md) \
	$(DOXY_SRC_DIRECTORIES) \
	$(DOXY_SRC)/plugins \
	extras

# Strip leading workspace path from input names
DOXY_INPUT := $(subst $(WS_ROOT)/,,$(DOXY_INPUT))

# Files to exclude, from pre-Doxygen steps, eg because they're
# selectively compiled.
# Examples would be to exclude non-DPDK related sources when
# there's a DPDK equivalent that conflicts.
# These must be left-anchored paths for the regexp below to work.
DOXY_EXCLUDE ?= \
	$(DOXY_SRC)/vpp-api/lua

# Generate a regexp for filenames to exclude
DOXY_EXCLUDE_REGEXP = ($(subst .,\.,$(shell echo '$(strip $(DOXY_EXCLUDE))' | sed -e 's/ /|/g')))

# Include all the normal source directories in the include file path
DOXY_INCLUDE_PATH = $(DOXY_SRC_DIRECTORIES)

# Find API header directories and include them in the header path.
# This is only useful if VPP and plugins are already built; nothing
# here depends on those targets. We don't build documentation for these
# header files, they're just added to the INCLUDE search path for Doxygen.
_vpp_br = $(shell find "$(BR)" -maxdepth 1 -type d \
	'(' -name build-vpp_debug-native -o -name build-vpp-native ')' -print \
	| sed -e 's@^$(WS_ROOT)/*@@' -e 1q)
ifneq ($(strip $(_vpp_br)),)
DOXY_INCLUDE_PATH += \
	$(_vpp_br)/vlib-api \
	$(_vpp_br)/vpp
# Also include any plugin directories that exist
DOXY_INCLUDE_PATH += \
	$(shell find $(WS_ROOT)/$(_vpp_br)/plugins -maxdepth 1 -type d | sed -e 's@^$(WS_ROOT)/*@@')
endif

# Discover if we have CPP available
_cpp = $(shell which cpp)
ifneq ($(strip $(_cpp)),)
# Add whatever directories CPP normally includes to the header path
DOXY_INCLUDE_PATH += $(shell set -e; $(_cpp) -v </dev/null 2>&1 | awk 'f&&/^ /{print $$1} /^\#include/{f=1}')
endif

# Target directory for doxygen output
DOXY_OUTPUT ?= $(BR)/docs

# Siphoned fragments end up in here
SIPHON_INPUT ?= $(DOXY_OUTPUT)/siphon_fragments

# Siphoned fragements are processed into here
SIPHON_OUTPUT ?= $(DOXY_OUTPUT)/siphon_docs

# Extra document inputs that are processed in addition to DOXY_INPUT
EXTRA_DOXY_INPUT += $(SIPHON_OUTPUT)

# All the siphon types we know about
SIPHONS ?= clicmd syscfg

SIPHON_FILES = $(addprefix $(SIPHON_INPUT)/,$(addsuffix .siphon,$(SIPHONS)))
SIPHON_DOCS = $(addprefix $(SIPHON_OUTPUT)/,$(addsuffix .md,$(SIPHONS)))
SIPHON_ITEMLIST = $(addprefix $(SIPHON_OUTPUT)/,$(addsuffix .itemlist,$(filter clicmd,$(SIPHONS))))

$(BR)/.doxygen-bootstrap.ok: Makefile
	@echo "Checking whether dependencies for Doxygen are installed..."
ifeq ($(OS_ID),ubuntu)
	@set -e; inst=; \
		for i in $(DOC_DEB_DEPENDS); do \
			dpkg-query --show $$i >/dev/null 2>&1 || inst="$$inst $$i"; \
		done; \
		if [ "$$inst" ]; then \
			sudo apt-get update; \
			sudo apt-get $(CONFIRM) $(FORCE) install $$inst; \
		fi
	@if [ ! -s /usr/lib/graphviz/config6a ]; then \
		echo "Rebuilding system Graphviz configuration."; \
		sudo dot -c; \
	fi
else ifneq ("$(wildcard /etc/redhat-release)","")
	@sudo yum install $(CONFIRM) $(DOC_RPM_DEPENDS)
else ifeq ($(OS_ID),darwin)
	@set -e; \
	for bin in $(DOC_MAC_BIN_DEPENDS); do \
		which -s $${bin} || (\
			echo "Program '$${bin}' not found, please install it."; \
			false; \
		); \
	done
	@set -e; \
	for py in $(DOC_MAC_PY_DEPENDS); do \
		python -c "import $${py}" >/dev/null 2>&1 || (\
			echo "Python package '$${py}' not found, please install it."; \
			false; \
		); \
	done
else ifeq ($(OS_ID),opensuse)
	@sudo zypper install $(CONFIRM) $(DOC_SUSE_RPM_DEPENDS)
else
	$(error "Building documentation currently works only on Ubuntu, CentOS, MacOS and OpenSUSE systems.")
endif
	@touch $@

.PHONY: bootstrap-doxygen
bootstrap-doxygen: $(BR)/.doxygen-bootstrap.ok

.DELETE_ON_ERROR: $(BR)/.doxygen-siphon.dep
$(BR)/.doxygen-siphon.dep: Makefile \
		$(addprefix,$(WSROOT),$(DOXY_INPUT))
	@echo "Building siphon dependencies..."
	@rm -f "$@"; for input in $(DOXY_INPUT); do \
		[ -e "$(WS_ROOT)/$$input" ] && \
		find "$(WS_ROOT)/$$input" -type f \
			\( -name '*.[ch]' -or -name '*.dox' \) -print \
			| grep -v -E '^$(WS_ROOT)/$(DOXY_EXCLUDE_REGEXP)' \
			| sed -e "s/^/\$$(SIPHON_FILES): /" \
			>> $@; \
	done

# Include the source -> siphon dependencies
-include $(BR)/.doxygen-siphon.dep

# Generate .siphon files that contain fragments of source file that
# relate to the siphons we support.
.NOTPARALLEL: $(SIPHON_FILES)
$(SIPHON_FILES): $(BR)/.doxygen-bootstrap.ok \
		$(DOXY_DIR)/siphon-generate \
		$(addprefix,$(WSROOT),$(DOXY_INPUT)) \
		$(wildcard $(DOXY_DIR)/siphon/*.py)
	@echo "Validating source tree..."
	@set -e; for input in $(DOXY_INPUT); do \
		if [ ! -e "$(WS_ROOT)/$$input" ]; then \
			echo "ERROR: Input path '$$input' does not exist." >&2; \
			exit 1; \
		fi; \
	done
	@rm -rf "$(SIPHON_INPUT)" "$(SIPHON_OUTPUT)"
	@mkdir -p "$(SIPHON_INPUT)" "$(SIPHON_OUTPUT)"
	@touch $(SIPHON_INPUT)/files
	@echo "Collating source file list for siphoning..."
	@for input in $(DOXY_INPUT); do \
		cd "$(WS_ROOT)"; \
		find "$$input" -type f \
			\( -name '*.[ch]' -or -name '*.dox' \) -print \
			| grep -v -E '^src/examples/' \
			| grep -v -E '^$(DOXY_EXCLUDE_REGEXP)' \
			>> $(SIPHON_INPUT)/files; \
	done
	@echo "Generating siphons..."
	@set -e; \
	cd "$(WS_ROOT)"; \
	$(DOXY_DIR)/siphon-generate \
		--output="$(SIPHON_INPUT)" \
		"@$(SIPHON_INPUT)/files"

# Evaluate this to build a siphon doc output target for each desired
# output type:
# $(eval $(call siphon-process,file_extension,output_type_name))
define siphon-process
$(SIPHON_OUTPUT)/%.$(1): $(SIPHON_INPUT)/%.siphon \
		$(DOXY_DIR)/siphon-process \
		$(wildcard $(DOXY_DIR)/siphon/*.py) \
		$(wildcard $(DOXY_DIR)/siphon_templates/$(2)/*/*.$(1))
	@echo "Processing siphon for $(2) from $$(notdir $$<)..."
	@set -e; \
	cd "$(WS_ROOT)"; \
	$(DOXY_DIR)/siphon-process \
		--type=$$(basename $$(notdir $$<)) \
		--format=$(2) \
		--output="$$@" \
		"$$<"
endef

# Process the .siphon source fragments and render them into doxygen flavored
# markdown documentation
.DELETE_ON_ERROR: $(SIPHON_DOCS)
$(eval $(call siphon-process,md,markdown))

# Process the .siphon source fragments and render them into a list of cli
# commands.
.DELETE_ON_ERROR: $(SIPHON_ITEMLIST)
$(eval $(call siphon-process,itemlist,itemlist))

# This target can be used just to generate the siphoned things
.PHONY: doxygen-siphon
doxygen-siphon: $(SIPHON_DOCS) $(SIPHON_ITEMLIST)

# Generate the doxygen docs
.PHONY: doxygen
doxygen: $(SIPHON_DOCS)
	@mkdir -p "$(DOXY_OUTPUT)"
	@echo "Running Doxygen..."
	set -e; cd "$(WS_ROOT)"; \
	    ROOT="$(WS_ROOT)" \
	    BUILD_ROOT="$(BR)" \
	    INPUT="$(addprefix $(WS_ROOT)/,$(DOXY_INPUT)) $(EXTRA_DOXY_INPUT)" \
	    INCLUDE_PATH="$(DOXY_INCLUDE_PATH)" \
	    EXCLUDE="$(DOXY_EXCLUDE)" \
	    HTML=YES \
	    VERSION="`git describe --tags --dirty`" \
	    doxygen $(DOXY_DIR)/doxygen.cfg

.PHONY: wipe-doxygen
wipe-doxygen:
	rm -rf "$(BR)/docs" "$(BR)/.doxygen-siphon.d"

.PHONY: clean
clean: wipe-doxygen
d='n1359' href='#n1359'>1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/*
 *------------------------------------------------------------------
 * Copyright (c) 2020 Intel and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

#include <vlib/vlib.h>
#include <vnet/plugin/plugin.h>
#include <vnet/crypto/crypto.h>
#include <vnet/vnet.h>
#include <vpp/app/version.h>

#include <dpdk/buffer.h>
#include <dpdk/device/dpdk.h>
#include <dpdk/device/dpdk_priv.h>
#undef always_inline
#include <rte_bus_vdev.h>
#include <rte_cryptodev.h>
#include <rte_crypto_sym.h>
#include <rte_crypto.h>
#include <rte_cryptodev_pmd.h>
#include <rte_config.h>

#if CLIB_DEBUG > 0
#define always_inline static inline
#else
#define always_inline static inline __attribute__ ((__always_inline__))
#endif

#define CRYPTODEV_NB_CRYPTO_OPS	1024
#define CRYPTODEV_MAX_INFLIGHT	(CRYPTODEV_NB_CRYPTO_OPS - 1)
#define CRYPTODEV_AAD_MASK	(CRYPTODEV_NB_CRYPTO_OPS - 1)
#define CRYPTODEV_DEQ_CACHE_SZ	32
#define CRYPTODEV_NB_SESSION	10240
#define CRYPTODEV_MAX_AAD_SIZE	16
#define CRYPTODEV_MAX_N_SGL	8 /**< maximum number of segments */

/* VNET_CRYPTO_ALGO, TYPE, DPDK_CRYPTO_ALGO, IV_LEN, TAG_LEN, AAD_LEN */
#define foreach_vnet_aead_crypto_conversion \
  _(AES_128_GCM, AEAD, AES_GCM, 12, 16, 8)  \
  _(AES_128_GCM, AEAD, AES_GCM, 12, 16, 12) \
  _(AES_192_GCM, AEAD, AES_GCM, 12, 16, 8)  \
  _(AES_192_GCM, AEAD, AES_GCM, 12, 16, 12) \
  _(AES_256_GCM, AEAD, AES_GCM, 12, 16, 8)  \
  _(AES_256_GCM, AEAD, AES_GCM, 12, 16, 12)

/**
 * crypto (alg, cryptodev_alg), hash (alg, digest-size)
 **/
#define foreach_cryptodev_link_async_alg	\
  _ (AES_128_CBC, AES_CBC, SHA1, 12)		\
  _ (AES_192_CBC, AES_CBC, SHA1, 12)		\
  _ (AES_256_CBC, AES_CBC, SHA1, 12)		\
  _ (AES_128_CBC, AES_CBC, SHA224, 14)		\
  _ (AES_192_CBC, AES_CBC, SHA224, 14)		\
  _ (AES_256_CBC, AES_CBC, SHA224, 14)		\
  _ (AES_128_CBC, AES_CBC, SHA256, 16)		\
  _ (AES_192_CBC, AES_CBC, SHA256, 16)		\
  _ (AES_256_CBC, AES_CBC, SHA256, 16)		\
  _ (AES_128_CBC, AES_CBC, SHA384, 24)		\
  _ (AES_192_CBC, AES_CBC, SHA384, 24)		\
  _ (AES_256_CBC, AES_CBC, SHA384, 24)		\
  _ (AES_128_CBC, AES_CBC, SHA512, 32)		\
  _ (AES_192_CBC, AES_CBC, SHA512, 32)		\
  _ (AES_256_CBC, AES_CBC, SHA512, 32)

typedef enum
{
  CRYPTODEV_OP_TYPE_ENCRYPT = 0,
  CRYPTODEV_OP_TYPE_DECRYPT,
  CRYPTODEV_N_OP_TYPES,
} cryptodev_op_type_t;

typedef struct
{
  struct rte_cryptodev_sym_session *keys[CRYPTODEV_N_OP_TYPES];
} cryptodev_key_t;

typedef struct
{
  u32 dev_id;
  u32 q_id;
  u8 *dp_service_buffer;
  char *desc;
} cryptodev_inst_t;

typedef struct
{
  struct rte_mempool *sess_pool;
  struct rte_mempool *sess_priv_pool;
} cryptodev_numa_data_t;

typedef struct
{
  CLIB_CACHE_LINE_ALIGN_MARK (cacheline0);
  vlib_buffer_t *b[VNET_CRYPTO_FRAME_SIZE];
  struct rte_crypto_dp_service_ctx *dp_service;
  struct rte_crypto_vec vec[CRYPTODEV_MAX_N_SGL];
  struct rte_ring *cached_frame;
  u16 aad_index;
  u8 *aad_buf;
  u64 aad_phy_addr;
  u16 cryptodev_id;
  u16 cryptodev_q;
  u16 inflight;
} cryptodev_engine_thread_t;

typedef struct
{
  cryptodev_numa_data_t *per_numa_data;
  cryptodev_key_t *keys;
  cryptodev_engine_thread_t *per_thread_data;
  enum rte_iova_mode iova_mode;
  cryptodev_inst_t *cryptodev_inst;
  clib_bitmap_t *active_cdev_inst_mask;
  clib_spinlock_t tlock;
} cryptodev_main_t;

cryptodev_main_t cryptodev_main;

static int
prepare_aead_xform (struct rte_crypto_sym_xform *xform,
		    cryptodev_op_type_t op_type,
		    const vnet_crypto_key_t * key, u32 aad_len)
{
  struct rte_crypto_aead_xform *aead_xform = &xform->aead;
  memset (xform, 0, sizeof (*xform));
  xform->type = RTE_CRYPTO_SYM_XFORM_AEAD;
  xform->next = 0;

  if (key->alg != VNET_CRYPTO_ALG_AES_128_GCM &&
      key->alg != VNET_CRYPTO_ALG_AES_192_GCM &&
      key->alg != VNET_CRYPTO_ALG_AES_256_GCM)
    return -1;

  aead_xform->algo = RTE_CRYPTO_AEAD_AES_GCM;
  aead_xform->op = (op_type == CRYPTODEV_OP_TYPE_ENCRYPT) ?
    RTE_CRYPTO_AEAD_OP_ENCRYPT : RTE_CRYPTO_AEAD_OP_DECRYPT;
  aead_xform->aad_length = aad_len;
  aead_xform->digest_length = 16;
  aead_xform->iv.offset = 0;
  aead_xform->iv.length = 12;
  aead_xform->key.data = key->data;
  aead_xform->key.length = vec_len (key->data);

  return 0;
}

static int
prepare_linked_xform (struct rte_crypto_sym_xform *xforms,
		      cryptodev_op_type_t op_type,
		      const vnet_crypto_key_t * key)
{
  struct rte_crypto_sym_xform *xform_cipher, *xform_auth;
  vnet_crypto_key_t *key_cipher, *key_auth;
  enum rte_crypto_cipher_algorithm cipher_algo = ~0;
  enum rte_crypto_auth_algorithm auth_algo = ~0;
  u32 digest_len = ~0;

  key_cipher = vnet_crypto_get_key (key->index_crypto);
  key_auth = vnet_crypto_get_key (key->index_integ);
  if (!key_cipher || !key_auth)
    return -1;

  if (op_type == CRYPTODEV_OP_TYPE_ENCRYPT)
    {
      xform_cipher = xforms;
      xform_auth = xforms + 1;
      xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
      xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
    }
  else
    {
      xform_cipher = xforms + 1;
      xform_auth = xforms;
      xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
      xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
    }

  xform_cipher->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
  xform_auth->type = RTE_CRYPTO_SYM_XFORM_AUTH;
  xforms->next = xforms + 1;

  switch (key->async_alg)
    {
#define _(a, b, c, d) \
  case VNET_CRYPTO_ALG_##a##_##c##_TAG##d:\
    cipher_algo = RTE_CRYPTO_CIPHER_##b; \
    auth_algo = RTE_CRYPTO_AUTH_##c##_HMAC; \
    digest_len = d; \
    break;

      foreach_cryptodev_link_async_alg
#undef _
    default:
      return -1;
    }

  xform_cipher->cipher.algo = cipher_algo;
  xform_cipher->cipher.key.data = key_cipher->data;
  xform_cipher->cipher.key.length = vec_len (key_cipher->data);
  xform_cipher->cipher.iv.length = 16;
  xform_cipher->cipher.iv.offset = 0;

  xform_auth->auth.algo = auth_algo;
  xform_auth->auth.digest_length = digest_len;
  xform_auth->auth.key.data = key_auth->data;
  xform_auth->auth.key.length = vec_len (key_auth->data);

  return 0;
}

static int
cryptodev_session_create (vnet_crypto_key_t * const key,
			  struct rte_mempool *sess_priv_pool,
			  cryptodev_key_t * session_pair, u32 aad_len)
{
  struct rte_crypto_sym_xform xforms_enc[2] = { {0} };
  struct rte_crypto_sym_xform xforms_dec[2] = { {0} };
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_inst_t *dev_inst;
  struct rte_cryptodev *cdev;
  int ret;
  uint8_t dev_id = 0;

  if (key->type == VNET_CRYPTO_KEY_TYPE_LINK)
    ret = prepare_linked_xform (xforms_enc, CRYPTODEV_OP_TYPE_ENCRYPT, key);
  else
    ret = prepare_aead_xform (xforms_enc, CRYPTODEV_OP_TYPE_ENCRYPT, key,
			      aad_len);
  if (ret)
    return 0;

  if (key->type == VNET_CRYPTO_KEY_TYPE_LINK)
    prepare_linked_xform (xforms_dec, CRYPTODEV_OP_TYPE_DECRYPT, key);
  else
    prepare_aead_xform (xforms_dec, CRYPTODEV_OP_TYPE_DECRYPT, key, aad_len);

  vec_foreach (dev_inst, cmt->cryptodev_inst)
  {
    dev_id = dev_inst->dev_id;
    cdev = rte_cryptodev_pmd_get_dev (dev_id);

    /* if the session is already configured for the driver type, avoid
       configuring it again to increase the session data's refcnt */
    if (session_pair->keys[0]->sess_data[cdev->driver_id].data &&
	session_pair->keys[1]->sess_data[cdev->driver_id].data)
      continue;

    ret = rte_cryptodev_sym_session_init (dev_id, session_pair->keys[0],
					  xforms_enc, sess_priv_pool);
    ret = rte_cryptodev_sym_session_init (dev_id, session_pair->keys[1],
					  xforms_dec, sess_priv_pool);
    if (ret < 0)
      return ret;
  }
  session_pair->keys[0]->opaque_data = aad_len;
  session_pair->keys[1]->opaque_data = aad_len;

  return 0;
}

static void
cryptodev_session_del (struct rte_cryptodev_sym_session *sess)
{
  u32 n_devs, i;

  if (sess == NULL)
    return;

  n_devs = rte_cryptodev_count ();

  for (i = 0; i < n_devs; i++)
    rte_cryptodev_sym_session_clear (i, sess);

  rte_cryptodev_sym_session_free (sess);
}

static int
cryptodev_check_supported_vnet_alg (vnet_crypto_key_t * key)
{
  vnet_crypto_alg_t alg;
  if (key->type == VNET_CRYPTO_KEY_TYPE_LINK)
    return 0;

  alg = key->alg;

#define _(a, b, c, d, e, f)	\
  if (alg == VNET_CRYPTO_ALG_##a) \
    return 0;

  foreach_vnet_aead_crypto_conversion
#undef _
    return -1;
}

static_always_inline void
cryptodev_sess_handler (vlib_main_t * vm, vnet_crypto_key_op_t kop,
			vnet_crypto_key_index_t idx, u32 aad_len)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_numa_data_t *numa_data;
  vnet_crypto_key_t *key = vnet_crypto_get_key (idx);
  struct rte_mempool *sess_pool, *sess_priv_pool;
  cryptodev_key_t *ckey = 0;
  int ret = 0;

  if (kop == VNET_CRYPTO_KEY_OP_DEL)
    {
      if (idx >= vec_len (cmt->keys))
	return;

      ckey = pool_elt_at_index (cmt->keys, idx);
      cryptodev_session_del (ckey->keys[0]);
      cryptodev_session_del (ckey->keys[1]);
      ckey->keys[0] = 0;
      ckey->keys[1] = 0;
      pool_put (cmt->keys, ckey);
      return;
    }
  else if (kop == VNET_CRYPTO_KEY_OP_MODIFY)
    {
      if (idx >= vec_len (cmt->keys))
	return;

      ckey = pool_elt_at_index (cmt->keys, idx);

      cryptodev_session_del (ckey->keys[0]);
      cryptodev_session_del (ckey->keys[1]);
      ckey->keys[0] = 0;
      ckey->keys[1] = 0;
    }
  else				/* create key */
    pool_get_zero (cmt->keys, ckey);

  /* do not create session for unsupported alg */
  if (cryptodev_check_supported_vnet_alg (key))
    return;

  numa_data = vec_elt_at_index (cmt->per_numa_data, vm->numa_node);
  sess_pool = numa_data->sess_pool;
  sess_priv_pool = numa_data->sess_priv_pool;

  ckey->keys[0] = rte_cryptodev_sym_session_create (sess_pool);
  if (!ckey->keys[0])
    {
      ret = -1;
      goto clear_key;
    }

  ckey->keys[1] = rte_cryptodev_sym_session_create (sess_pool);
  if (!ckey->keys[1])
    {
      ret = -1;
      goto clear_key;
    }

  ret = cryptodev_session_create (key, sess_priv_pool, ckey, aad_len);

clear_key:
  if (ret != 0)
    {
      cryptodev_session_del (ckey->keys[0]);
      cryptodev_session_del (ckey->keys[1]);
      memset (ckey, 0, sizeof (*ckey));
      pool_put (cmt->keys, ckey);
    }
}

/*static*/ void
cryptodev_key_handler (vlib_main_t * vm, vnet_crypto_key_op_t kop,
		       vnet_crypto_key_index_t idx)
{
  cryptodev_sess_handler (vm, kop, idx, 8);
}

static_always_inline void
cryptodev_mark_frame_err_status (vnet_crypto_async_frame_t * f,
				 vnet_crypto_op_status_t s)
{
  u32 n_elts = f->n_elts, i;

  for (i = 0; i < n_elts; i++)
    f->elts[i].status = s;
  f->state = VNET_CRYPTO_FRAME_STATE_NOT_PROCESSED;
}

static_always_inline int
cryptodev_frame_build_sgl (vlib_main_t * vm, enum rte_iova_mode iova_mode,
			   struct rte_crypto_vec *data_vec,
			   u16 * n_seg, vlib_buffer_t * b, u32 size)
{
  struct rte_crypto_vec *vec = data_vec + 1;
  if (vlib_buffer_chain_linearize (vm, b) > CRYPTODEV_MAX_N_SGL)
    return -1;

  while ((b->flags & VLIB_BUFFER_NEXT_PRESENT) && size)
    {
      u32 len;
      b = vlib_get_buffer (vm, b->next_buffer);
      len = clib_min (b->current_length, size);
      vec->base = (void *) vlib_buffer_get_current (b);
      if (iova_mode == RTE_IOVA_VA)
	vec->iova = pointer_to_uword (vec->base);
      else
	vec->iova = vlib_buffer_get_current_pa (vm, b);
      vec->len = len;
      size -= len;
      vec++;
      *n_seg += 1;
    }

  if (size)
    return -1;

  return 0;
}

static_always_inline u64
compute_ofs_linked_alg (vnet_crypto_async_frame_elt_t * fe, i16 * min_ofs,
			u32 * max_end)
{
  union rte_crypto_sym_ofs ofs;
  u32 crypto_end = fe->crypto_start_offset + fe->crypto_total_length;
  u32 integ_end = fe->integ_start_offset + fe->crypto_total_length +
    fe->integ_length_adj;

  *min_ofs = clib_min (fe->crypto_start_offset, fe->integ_start_offset);
  *max_end = clib_max (crypto_end, integ_end);

  ofs.ofs.cipher.head = fe->crypto_start_offset - *min_ofs;
  ofs.ofs.cipher.tail = *max_end - crypto_end;
  ofs.ofs.auth.head = fe->integ_start_offset - *min_ofs;
  ofs.ofs.auth.tail = *max_end - integ_end;

  return ofs.raw;
}

static_always_inline int
cryptodev_frame_linked_algs_enqueue (vlib_main_t * vm,
				     vnet_crypto_async_frame_t * frame,
				     cryptodev_op_type_t op_type)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index;
  vnet_crypto_async_frame_elt_t *fe;
  struct rte_crypto_vec *vec;
  struct rte_crypto_data iv_vec, digest_vec;
  vlib_buffer_t **b;
  u32 n_elts;
  cryptodev_key_t *key;
  u32 last_key_index;
  union rte_crypto_sym_ofs cofs;
  i16 min_ofs;
  u32 max_end;

  n_elts = frame->n_elts;

  if (PREDICT_FALSE (CRYPTODEV_MAX_INFLIGHT - cet->inflight < n_elts))
    {
      cryptodev_mark_frame_err_status (frame,
				       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
      return -1;
    }

  vlib_get_buffers (vm, frame->buffer_indices, cet->b, frame->n_elts);

  vec = cet->vec;
  b = cet->b;

  fe = frame->elts;

  key = pool_elt_at_index (cmt->keys, fe->key_index);
  last_key_index = fe->key_index;

  if (PREDICT_FALSE
      (rte_cryptodev_dp_configure_service
       (cet->cryptodev_id, cet->cryptodev_q, RTE_CRYPTO_DP_SYM_CHAIN,
	RTE_CRYPTO_OP_WITH_SESSION,
	(union rte_cryptodev_session_ctx) key->keys[op_type], cet->dp_service,
	0) < 0))
    {
      cryptodev_mark_frame_err_status (frame,
				       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
      return -1;
    }

  cofs.raw = compute_ofs_linked_alg (fe, &min_ofs, &max_end);

  while (n_elts)
    {
      u16 n_seg = 1;
      int status;

      if (n_elts > 2)
	{
	  CLIB_PREFETCH (&fe[1], CLIB_CACHE_LINE_BYTES, LOAD);
	  CLIB_PREFETCH (&fe[2], CLIB_CACHE_LINE_BYTES, LOAD);
	  vlib_prefetch_buffer_header (b[1], LOAD);
	  vlib_prefetch_buffer_header (b[2], LOAD);
	}

      if (PREDICT_FALSE (last_key_index != fe->key_index))
	{
	  cofs.raw = compute_ofs_linked_alg (fe, &min_ofs, &max_end);

	  key = pool_elt_at_index (cmt->keys, fe->key_index);
	  last_key_index = fe->key_index;

	  if (PREDICT_FALSE
	      (rte_cryptodev_dp_configure_service
	       (cet->cryptodev_id, cet->cryptodev_q, RTE_CRYPTO_DP_SYM_CHAIN,
		RTE_CRYPTO_OP_WITH_SESSION,
		(union rte_cryptodev_session_ctx) key->keys[op_type],
		cet->dp_service, 1) < 0))
	    {
	      cryptodev_mark_frame_err_status (frame,
					       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	      return -1;
	    }
	}

      vec->len = max_end - min_ofs;
      if (cmt->iova_mode == RTE_IOVA_VA)
	{
	  vec->base = (void *) (b[0]->data + min_ofs);
	  vec->iova = pointer_to_uword (b[0]->data) + min_ofs;
	  iv_vec.base = (void *) fe->iv;
	  iv_vec.iova = pointer_to_uword (fe->iv);
	  digest_vec.base = (void *) fe->tag;
	  digest_vec.iova = pointer_to_uword (fe->tag);
	}
      else
	{
	  vec->base = (void *) (b[0]->data + min_ofs);
	  vec->iova = vlib_buffer_get_pa (vm, b[0]) + min_ofs;
	  iv_vec.base = (void *) fe->iv;
	  iv_vec.iova = vlib_physmem_get_pa (vm, fe->iv);
	  digest_vec.base = (void *) fe->tag;
	  digest_vec.iova = vlib_physmem_get_pa (vm, fe->digest);
	}

      if (PREDICT_FALSE (fe->flags & VNET_CRYPTO_OP_FLAG_CHAINED_BUFFERS))
	{
	  vec->len = b[0]->current_data + b[0]->current_length - min_ofs;
	  if (cryptodev_frame_build_sgl
	      (vm, cmt->iova_mode, vec, &n_seg, b[0],
	       max_end - min_ofs - vec->len) < 0)
	    {
	      cryptodev_mark_frame_err_status (frame,
					       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	      return -1;
	    }
	}

      status = rte_cryptodev_dp_submit_single_job (cet->dp_service,
						   vec, n_seg, cofs, &iv_vec,
						   &digest_vec, 0,
						   (void *) frame);
      if (status < 0)
	{
	  cryptodev_mark_frame_err_status (frame,
					   VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	  return -1;
	}

      b++;
      fe++;
      n_elts--;
    }

  rte_cryptodev_dp_submit_done (cet->dp_service, frame->n_elts);
  cet->inflight += frame->n_elts;

  return 0;
}

static_always_inline int
cryptodev_frame_gcm_enqueue (vlib_main_t * vm,
			     vnet_crypto_async_frame_t * frame,
			     cryptodev_op_type_t op_type, u8 aad_len)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index;
  vnet_crypto_async_frame_elt_t *fe;
  vlib_buffer_t **b;
  u32 n_elts;
  cryptodev_key_t *key;
  u32 last_key_index;
  union rte_crypto_sym_ofs cofs;
  struct rte_crypto_vec *vec;
  struct rte_crypto_data iv_vec, digest_vec, aad_vec;
  u8 sess_aad_len;

  n_elts = frame->n_elts;

  if (PREDICT_FALSE (CRYPTODEV_MAX_INFLIGHT - cet->inflight < n_elts))
    {
      cryptodev_mark_frame_err_status (frame,
				       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
      return -1;
    }

  vlib_get_buffers (vm, frame->buffer_indices, cet->b, frame->n_elts);

  vec = cet->vec;
  fe = frame->elts;
  b = cet->b;

  cofs.raw = 0;

  key = pool_elt_at_index (cmt->keys, fe->key_index);
  last_key_index = fe->key_index;
  sess_aad_len = (u8) key->keys[op_type]->opaque_data;
  if (PREDICT_FALSE (sess_aad_len != aad_len))
    cryptodev_sess_handler (vm, VNET_CRYPTO_KEY_OP_MODIFY,
			    fe->key_index, aad_len);

  if (PREDICT_FALSE
      (rte_cryptodev_dp_configure_service
       (cet->cryptodev_id, cet->cryptodev_q, RTE_CRYPTO_DP_SYM_AEAD,
	RTE_CRYPTO_OP_WITH_SESSION,
	(union rte_cryptodev_session_ctx) key->keys[op_type], cet->dp_service,
	0) < 0))
    {
      cryptodev_mark_frame_err_status (frame,
				       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
      return -1;
    }

  while (n_elts)
    {
      u32 aad_offset = ((cet->aad_index++) & CRYPTODEV_AAD_MASK) << 4;
      int status;
      u16 n_seg = 1;

      if (n_elts > 1)
	{
	  CLIB_PREFETCH (&fe[1], CLIB_CACHE_LINE_BYTES, LOAD);
	  vlib_prefetch_buffer_header (b[1], LOAD);
	}

      if (last_key_index != fe->key_index)
	{
	  key = pool_elt_at_index (cmt->keys, fe->key_index);
	  sess_aad_len = (u8) key->keys[op_type]->opaque_data;
	  if (PREDICT_FALSE (sess_aad_len != aad_len))
	    {
	      cryptodev_sess_handler (vm, VNET_CRYPTO_KEY_OP_MODIFY,
				      fe->key_index, aad_len);
	    }
	  last_key_index = fe->key_index;

	  if (PREDICT_FALSE
	      (rte_cryptodev_dp_configure_service
	       (cet->cryptodev_id, cet->cryptodev_q, RTE_CRYPTO_DP_SYM_AEAD,
		RTE_CRYPTO_OP_WITH_SESSION,
		(union rte_cryptodev_session_ctx) key->keys[op_type],
		cet->dp_service, 1) < 0))
	    {
	      cryptodev_mark_frame_err_status (frame,
					       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	      return -1;
	    }
	}

      if (cmt->iova_mode == RTE_IOVA_VA)
	{
	  vec[0].base = (void *) (b[0]->data + fe->crypto_start_offset);
	  vec[0].iova = pointer_to_uword (vec[0].base);
	  vec[0].len = fe->crypto_total_length;
	  iv_vec.base = (void *) fe->iv;
	  iv_vec.iova = pointer_to_uword (fe->iv);
	  digest_vec.base = (void *) fe->tag;
	  digest_vec.iova = pointer_to_uword (fe->tag);
	  aad_vec.base = (void *) (cet->aad_buf + aad_offset);
	  aad_vec.iova = cet->aad_phy_addr + aad_offset;
	}
      else
	{
	  vec[0].base = (void *) (b[0]->data + fe->crypto_start_offset);
	  vec[0].iova =
	    vlib_buffer_get_pa (vm, b[0]) + fe->crypto_start_offset;
	  vec[0].len = fe->crypto_total_length;
	  iv_vec.base = (void *) fe->iv;
	  iv_vec.iova = vlib_physmem_get_pa (vm, fe->iv);
	  aad_vec.base = (void *) (cet->aad_buf + aad_offset);
	  aad_vec.iova = cet->aad_phy_addr + aad_offset;
	  digest_vec.base = (void *) fe->tag;
	  digest_vec.iova = vlib_physmem_get_pa (vm, fe->tag);
	}

      if (aad_len == 8)
	*(u64 *) (cet->aad_buf + aad_offset) = *(u64 *) fe->aad;
      else
	{
	  /* aad_len == 12 */
	  *(u64 *) (cet->aad_buf + aad_offset) = *(u64 *) fe->aad;
	  *(u32 *) (cet->aad_buf + aad_offset + 8) = *(u32 *) (fe->aad + 8);
	}

      if (PREDICT_FALSE (fe->flags & VNET_CRYPTO_OP_FLAG_CHAINED_BUFFERS))
	{
	  vec[0].len = b[0]->current_data +
	    b[0]->current_length - fe->crypto_start_offset;
	  if (cryptodev_frame_build_sgl
	      (vm, cmt->iova_mode, vec, &n_seg, b[0],
	       fe->crypto_total_length - vec[0].len) < 0)
	    {
	      cryptodev_mark_frame_err_status (frame,
					       VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	      return -1;
	    }
	}

      status =
	rte_cryptodev_dp_submit_single_job (cet->dp_service, vec, n_seg, cofs,
					    &iv_vec, &digest_vec, &aad_vec,
					    (void *) frame);
      if (PREDICT_FALSE (status < 0))
	{
	  cryptodev_mark_frame_err_status (frame,
					   VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR);
	  return -1;
	}
      fe++;
      b++;
      n_elts--;
    }

  rte_cryptodev_dp_submit_done (cet->dp_service, frame->n_elts);
  cet->inflight += frame->n_elts;

  return 0;
}

static u32
cryptodev_get_frame_n_elts (void *frame)
{
  vnet_crypto_async_frame_t *f = (vnet_crypto_async_frame_t *) frame;
  return f->n_elts;
}

static void
cryptodev_post_dequeue (void *frame, u32 index, u8 is_op_success)
{
  vnet_crypto_async_frame_t *f = (vnet_crypto_async_frame_t *) frame;

  f->elts[index].status = is_op_success ? VNET_CRYPTO_OP_STATUS_COMPLETED :
    VNET_CRYPTO_OP_STATUS_FAIL_BAD_HMAC;
}

#define GET_RING_OBJ(r, pos, f) do { \
	vnet_crypto_async_frame_t **ring = (void *)&r[1];     \
	f = ring[(r->cons.head + pos) & r->mask]; \
} while (0)

static_always_inline vnet_crypto_async_frame_t *
cryptodev_frame_dequeue (vlib_main_t * vm, u32 * nb_elts_processed,
			 u32 * enqueue_thread_idx)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_engine_thread_t *cet = cmt->per_thread_data + vm->thread_index;
  vnet_crypto_async_frame_t *frame, *frame_ret = 0;
  u32 n_deq, n_success;
  u32 n_cached_frame = rte_ring_count (cet->cached_frame), n_room_left;
  u8 no_job_to_deq = 0;
  u16 inflight = cet->inflight;

  n_room_left = CRYPTODEV_DEQ_CACHE_SZ - n_cached_frame - 1;

  if (n_cached_frame)
    {
      u32 i;
      for (i = 0; i < n_cached_frame; i++)
	{
	  vnet_crypto_async_frame_t *f;
	  void *f_ret;
	  u8 n_left, err, j;

	  GET_RING_OBJ (cet->cached_frame, i, f);

	  if (i < n_cached_frame - 2)
	    {
	      vnet_crypto_async_frame_t *f1, *f2;
	      GET_RING_OBJ (cet->cached_frame, i + 1, f1);
	      GET_RING_OBJ (cet->cached_frame, i + 2, f2);
	      CLIB_PREFETCH (f1, CLIB_CACHE_LINE_BYTES, LOAD);
	      CLIB_PREFETCH (f2, CLIB_CACHE_LINE_BYTES, LOAD);
	    }

	  n_left = f->state & 0x7f;
	  err = f->state & 0x80;

	  for (j = f->n_elts - n_left; j < f->n_elts && inflight; j++)
	    {
	      int ret =
		rte_cryptodev_dp_sym_dequeue_single_job (cet->dp_service,
							 &f_ret);
	      if (ret < 0)
		break;
	      f->elts[j].status = ret == 1 ? VNET_CRYPTO_OP_STATUS_COMPLETED :
		VNET_CRYPTO_OP_STATUS_FAIL_ENGINE_ERR;
	      err |= ret << 7;
	      inflight--;
	    }

	  if (j == f->n_elts)
	    {
	      if (i == 0)
		{
		  frame_ret = f;
		  f->state = err ? VNET_CRYPTO_FRAME_STATE_ELT_ERROR :
		    VNET_CRYPTO_FRAME_STATE_SUCCESS;
		}
	      else
		{
		  f->state = f->n_elts - j;
		  f->state |= err;
		}
	      if (inflight)
		continue;
	    }

	  /* to here f is not completed dequeued and no more job can be
	   * dequeued
	   */
	  f->state = f->n_elts - j;
	  f->state |= err;
	  no_job_to_deq = 1;
	  break;
	}

      if (frame_ret)
	{
	  rte_ring_sc_dequeue (cet->cached_frame, (void **) &frame_ret);
	  n_room_left++;
	}
    }

  /* no point to dequeue further */
  if (!inflight || no_job_to_deq || !n_room_left)
    goto end_deq;

  n_deq = rte_cryptodev_dp_sym_dequeue (cet->dp_service,
					cryptodev_get_frame_n_elts,
					cryptodev_post_dequeue,
					(void **) &frame, 0, &n_success);
  if (!n_deq)
    goto end_deq;

  inflight -= n_deq;
  no_job_to_deq = n_deq < frame->n_elts;
  /* we have to cache the frame */
  if (frame_ret || n_cached_frame || no_job_to_deq)
    {
      frame->state = frame->n_elts - n_deq;
      frame->state |= ((n_success < n_deq) << 7);
      rte_ring_sp_enqueue (cet->cached_frame, (void *) frame);
      n_room_left--;
    }
  else
    {
      frame->state = n_success == frame->n_elts ?
	VNET_CRYPTO_FRAME_STATE_SUCCESS : VNET_CRYPTO_FRAME_STATE_ELT_ERROR;
      frame_ret = frame;
    }

  /* see if we can dequeue more */
  while (inflight && n_room_left && !no_job_to_deq)
    {
      n_deq = rte_cryptodev_dp_sym_dequeue (cet->dp_service,
					    cryptodev_get_frame_n_elts,
					    cryptodev_post_dequeue,
					    (void **) &frame, 0, &n_success);
      if (!n_deq)
	break;
      inflight -= n_deq;
      no_job_to_deq = n_deq < frame->n_elts;
      frame->state = frame->n_elts - n_deq;
      frame->state |= ((n_success < n_deq) << 7);
      rte_ring_sp_enqueue (cet->cached_frame, (void *) frame);
      n_room_left--;
    }

end_deq:
  if (inflight < cet->inflight)
    {
      rte_cryptodev_dp_dequeue_done (cet->dp_service,
				     cet->inflight - inflight);
      cet->inflight = inflight;
    }

  if (frame_ret)
    {
      *nb_elts_processed = frame_ret->n_elts;
      *enqueue_thread_idx = frame_ret->enqueue_thread_index;
    }

  return frame_ret;
}

/* *INDENT-OFF* */
static_always_inline int
cryptodev_enqueue_gcm_aad_8_enc (vlib_main_t * vm,
				 vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_gcm_enqueue (vm, frame,
				      CRYPTODEV_OP_TYPE_ENCRYPT, 8);
}
static_always_inline int
cryptodev_enqueue_gcm_aad_12_enc (vlib_main_t * vm,
				 vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_gcm_enqueue (vm, frame,
				      CRYPTODEV_OP_TYPE_ENCRYPT, 12);
}

static_always_inline int
cryptodev_enqueue_gcm_aad_8_dec (vlib_main_t * vm,
				 vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_gcm_enqueue (vm, frame,
				      CRYPTODEV_OP_TYPE_DECRYPT, 8);
}
static_always_inline int
cryptodev_enqueue_gcm_aad_12_dec (vlib_main_t * vm,
				 vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_gcm_enqueue (vm, frame,
				      CRYPTODEV_OP_TYPE_DECRYPT, 12);
}

static_always_inline int
cryptodev_enqueue_linked_alg_enc (vlib_main_t * vm,
				  vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_linked_algs_enqueue (vm, frame,
					      CRYPTODEV_OP_TYPE_ENCRYPT);
}

static_always_inline int
cryptodev_enqueue_linked_alg_dec (vlib_main_t * vm,
				  vnet_crypto_async_frame_t * frame)
{
  return cryptodev_frame_linked_algs_enqueue (vm, frame,
					      CRYPTODEV_OP_TYPE_DECRYPT);
}

typedef enum
{
  CRYPTODEV_RESOURCE_ASSIGN_AUTO = 0,
  CRYPTODEV_RESOURCE_ASSIGN_UPDATE,
} cryptodev_resource_assign_op_t;

/**
 *  assign a cryptodev resource to a worker.
 *  @param cet: the worker thread data
 *  @param cryptodev_inst_index: if op is "ASSIGN_AUTO" this param is ignored.
 *  @param op: the assignment method.
 *  @return: 0 if successfully, negative number otherwise.
 **/
static_always_inline int
cryptodev_assign_resource (cryptodev_engine_thread_t * cet,
			   u32 cryptodev_inst_index,
			   cryptodev_resource_assign_op_t op)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_inst_t *cinst = 0;
  uword idx;

  /* assign resource is only allowed when no inflight op is in the queue */
  if (cet->inflight)
    return -EBUSY;

  switch (op)
    {
    case CRYPTODEV_RESOURCE_ASSIGN_AUTO:
      if (clib_bitmap_count_set_bits (cmt->active_cdev_inst_mask) >=
	  vec_len (cmt->cryptodev_inst))
	return -1;

      clib_spinlock_lock (&cmt->tlock);
      idx = clib_bitmap_first_clear (cmt->active_cdev_inst_mask);
      clib_bitmap_set (cmt->active_cdev_inst_mask, idx, 1);
      cinst = vec_elt_at_index (cmt->cryptodev_inst, idx);
      cet->cryptodev_id = cinst->dev_id;
      cet->cryptodev_q = cinst->q_id;
      cet->dp_service = (struct rte_crypto_dp_service_ctx *)
	  cinst->dp_service_buffer;
      clib_spinlock_unlock (&cmt->tlock);
      break;
    case CRYPTODEV_RESOURCE_ASSIGN_UPDATE:
      /* assigning a used cryptodev resource is not allowed */
      if (clib_bitmap_get (cmt->active_cdev_inst_mask, cryptodev_inst_index)
	  == 1)
	return -EBUSY;
      vec_foreach_index (idx, cmt->cryptodev_inst)
      {
	cinst = cmt->cryptodev_inst + idx;
	if (cinst->dev_id == cet->cryptodev_id &&
	    cinst->q_id == cet->cryptodev_q)
	  break;
      }
      /* invalid existing worker resource assignment */
      if (idx == vec_len (cmt->cryptodev_inst))
	return -EINVAL;
      clib_spinlock_lock (&cmt->tlock);
      clib_bitmap_set_no_check (cmt->active_cdev_inst_mask, idx, 0);
      clib_bitmap_set_no_check (cmt->active_cdev_inst_mask,
				cryptodev_inst_index, 1);
      cinst = cmt->cryptodev_inst + cryptodev_inst_index;
      cet->cryptodev_id = cinst->dev_id;
      cet->cryptodev_q = cinst->q_id;
      cet->dp_service = (struct rte_crypto_dp_service_ctx *)
	  cinst->dp_service_buffer;
      clib_spinlock_unlock (&cmt->tlock);
      break;
    default:
      return -EINVAL;
    }
  return 0;
}

static u8 *
format_cryptodev_inst (u8 * s, va_list * args)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  u32 inst = va_arg (*args, u32);
  cryptodev_inst_t *cit = cmt->cryptodev_inst + inst;
  u32 thread_index = 0;
  struct rte_cryptodev_info info;

  rte_cryptodev_info_get (cit->dev_id, &info);
  s = format (s, "%-25s%-10u", info.device->name, cit->q_id);

  vec_foreach_index (thread_index, cmt->per_thread_data)
  {
    cryptodev_engine_thread_t *cet = cmt->per_thread_data + thread_index;
    if (vlib_num_workers () > 0 && thread_index == 0)
      continue;

    if (cet->cryptodev_id == cit->dev_id && cet->cryptodev_q == cit->q_id)
      {
	s = format (s, "%u (%v)\n", thread_index,
		    vlib_worker_threads[thread_index].name);
	break;
      }
  }

  if (thread_index == vec_len (cmt->per_thread_data))
    s = format (s, "%s\n", "free");

  return s;
}

static clib_error_t *
cryptodev_show_assignment_fn (vlib_main_t * vm, unformat_input_t * input,
			      vlib_cli_command_t * cmd)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  u32 inst;

  vlib_cli_output (vm, "%-5s%-25s%-10s%s\n", "No.", "Name", "Queue-id",
		   "Assigned-to");
  if (vec_len (cmt->cryptodev_inst) == 0)
    {
      vlib_cli_output (vm, "(nil)\n");
      return 0;
    }

  vec_foreach_index (inst, cmt->cryptodev_inst)
    vlib_cli_output (vm, "%-5u%U", inst, format_cryptodev_inst, inst);

  return 0;
}

VLIB_CLI_COMMAND (show_cryptodev_assignment, static) = {
    .path = "show cryptodev assignment",
    .short_help = "show cryptodev assignment",
    .function = cryptodev_show_assignment_fn,
};

static clib_error_t *
cryptodev_set_assignment_fn (vlib_main_t * vm, unformat_input_t * input,
			     vlib_cli_command_t * cmd)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_engine_thread_t *cet;
  unformat_input_t _line_input, *line_input = &_line_input;
  u32 thread_index, inst_index;
  u32 thread_present = 0, inst_present = 0;
  clib_error_t *error = 0;
  int ret;

  /* Get a line of input. */
  if (!unformat_user (input, unformat_line_input, line_input))
    return 0;

  while (unformat_check_input (line_input) != UNFORMAT_END_OF_INPUT)
    {
      if (unformat (line_input, "thread %u", &thread_index))
	thread_present = 1;
      else if (unformat (line_input, "resource %u", &inst_index))
	inst_present = 1;
      else
	{
	  error = clib_error_return (0, "unknown input `%U'",
				     format_unformat_error, line_input);
	  return error;
	}
    }

  if (!thread_present || !inst_present)
    {
      error = clib_error_return (0, "mandatory argument(s) missing");
      return error;
    }

  if (thread_index == 0 && vlib_num_workers () > 0)
    {
      error =
	clib_error_return (0, "assign crypto resource for master thread");
      return error;
    }

  if (thread_index > vec_len (cmt->per_thread_data) ||
      inst_index > vec_len (cmt->cryptodev_inst))
    {
      error = clib_error_return (0, "wrong thread id or resource id");
      return error;
    }

  cet = cmt->per_thread_data + thread_index;
  ret = cryptodev_assign_resource (cet, inst_index,
				   CRYPTODEV_RESOURCE_ASSIGN_UPDATE);
  if (ret)
    {
      error = clib_error_return (0, "cryptodev_assign_resource returned %i",
				 ret);
      return error;
    }

  return 0;
}

VLIB_CLI_COMMAND (set_cryptodev_assignment, static) = {
    .path = "set cryptodev assignment",
    .short_help = "set cryptodev assignment thread <thread_index> "
	"resource <inst_index>",
    .function = cryptodev_set_assignment_fn,
};

static int
check_cryptodev_alg_support (u32 dev_id)
{
  const struct rte_cryptodev_symmetric_capability *cap;
  struct rte_cryptodev_sym_capability_idx cap_idx;

#define _(a, b, c, d, e, f) \
  cap_idx.type = RTE_CRYPTO_SYM_XFORM_##b; \
  cap_idx.algo.aead = RTE_CRYPTO_##b##_##c; \
  cap = rte_cryptodev_sym_capability_get (dev_id, &cap_idx); \
  if (!cap) \
    return -RTE_CRYPTO_##b##_##c; \
  else \
    { \
      if (cap->aead.digest_size.min > e || cap->aead.digest_size.max < e) \
	return -RTE_CRYPTO_##b##_##c; \
      if (cap->aead.aad_size.min > f || cap->aead.aad_size.max < f) \
	return -RTE_CRYPTO_##b##_##c; \
      if (cap->aead.iv_size.min > d || cap->aead.iv_size.max < d) \
	return -RTE_CRYPTO_##b##_##c; \
    }

  foreach_vnet_aead_crypto_conversion
#undef _

#define _(a, b, c, d) \
  cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER; \
  cap_idx.algo.cipher = RTE_CRYPTO_CIPHER_##b; \
  cap = rte_cryptodev_sym_capability_get (dev_id, &cap_idx); \
  if (!cap) \
    return -RTE_CRYPTO_CIPHER_##b; \
  cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH; \
  cap_idx.algo.auth = RTE_CRYPTO_AUTH_##c##_HMAC; \
  cap = rte_cryptodev_sym_capability_get (dev_id, &cap_idx); \
  if (!cap) \
    return -RTE_CRYPTO_AUTH_##c;

  foreach_cryptodev_link_async_alg
#undef _
    return 0;
}

static u32
cryptodev_count_queue (u32 numa)
{
  struct rte_cryptodev_info info;
  u32 n_cryptodev = rte_cryptodev_count ();
  u32 i, q_count = 0;

  for (i = 0; i < n_cryptodev; i++)
    {
      rte_cryptodev_info_get (i, &info);
      if (rte_cryptodev_socket_id (i) != numa)
	{
	  clib_warning ("DPDK crypto resource %s is in different numa node "
	      "as %u, ignored", info.device->name, numa);
	  continue;
	}
      q_count += info.max_nb_queue_pairs;
    }

  return q_count;
}

static int
cryptodev_configure (vlib_main_t *vm, u32 cryptodev_id)
{
  struct rte_cryptodev_info info;
  struct rte_cryptodev *cdev;
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_numa_data_t *numa_data = vec_elt_at_index (cmt->per_numa_data,
						       vm->numa_node);
  u32 dp_size = 0;
  u32 i;
  int ret;

  cdev = rte_cryptodev_pmd_get_dev (cryptodev_id);
  rte_cryptodev_info_get (cryptodev_id, &info);

  if (!(info.feature_flags & RTE_CRYPTODEV_FF_DATA_PLANE_SERVICE))
    return -1;

  ret = check_cryptodev_alg_support (cryptodev_id);
  if (ret != 0)
    return ret;



  /** If the device is already started, we reuse it, otherwise configure
   *  both the device and queue pair.
   **/
  if (!cdev->data->dev_started)
    {
      struct rte_cryptodev_config cfg;

      cfg.socket_id = vm->numa_node;
      cfg.nb_queue_pairs = info.max_nb_queue_pairs;

      rte_cryptodev_configure (cryptodev_id, &cfg);

      for (i = 0; i < info.max_nb_queue_pairs; i++)
	{
	  struct rte_cryptodev_qp_conf qp_cfg;

	  qp_cfg.mp_session = numa_data->sess_pool;
	  qp_cfg.mp_session_private = numa_data->sess_priv_pool;
	  qp_cfg.nb_descriptors = CRYPTODEV_NB_CRYPTO_OPS;

	  ret = rte_cryptodev_queue_pair_setup (cryptodev_id, i, &qp_cfg,
						vm->numa_node);
	  if (ret)
	    break;
	}
      if (i != info.max_nb_queue_pairs)
	return -1;

      /* start the device */
      rte_cryptodev_start (i);
    }

  ret = rte_cryptodev_get_dp_service_ctx_data_size (cryptodev_id);
  if (ret < 0)
    return -1;
  dp_size = ret;

  for (i = 0; i < info.max_nb_queue_pairs; i++)
    {
      cryptodev_inst_t *cdev_inst;
      vec_add2(cmt->cryptodev_inst, cdev_inst, 1);
      cdev_inst->desc = vec_new (char, strlen (info.device->name) + 10);
      cdev_inst->dev_id = cryptodev_id;
      cdev_inst->q_id = i;
      vec_validate_aligned(cdev_inst->dp_service_buffer, dp_size, 8);
      snprintf (cdev_inst->desc, strlen (info.device->name) + 9,
		"%s_q%u", info.device->name, i);
    }

  return 0;
}

static int
cryptodev_cmp (void *v1, void *v2)
{
  cryptodev_inst_t *a1 = v1;
  cryptodev_inst_t *a2 = v2;

  if (a1->q_id > a2->q_id)
    return 1;
  if (a1->q_id < a2->q_id)
    return -1;
  return 0;
}

static int
cryptodev_probe (vlib_main_t *vm, u32 n_workers)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  u32 n_queues = cryptodev_count_queue (vm->numa_node);
  u32 i;
  int ret;

  if (n_queues < n_workers)
    return -1;

  for (i = 0; i < rte_cryptodev_count (); i++)
    {
      ret = cryptodev_configure (vm, i);
      if (ret)
	continue;
    }

  vec_sort_with_function(cmt->cryptodev_inst, cryptodev_cmp);

  /* if there is not enough device stop cryptodev */
  if (vec_len (cmt->cryptodev_inst) < n_workers)
    return -1;

  return 0;
}

static int
cryptodev_get_session_sz (vlib_main_t *vm, u32 n_workers)
{
  u32 sess_data_sz = 0, i;

  if (rte_cryptodev_count () == 0)
    return -1;

  for (i = 0; i < rte_cryptodev_count (); i++)
    {
      u32 dev_sess_sz = rte_cryptodev_sym_get_private_session_size (i);

      sess_data_sz = dev_sess_sz > sess_data_sz ? dev_sess_sz : sess_data_sz;
    }

  return sess_data_sz;
}

static void
dpdk_disable_cryptodev_engine (vlib_main_t * vm)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  cryptodev_numa_data_t *numa_data;
  cryptodev_engine_thread_t *ptd;

  vec_validate (cmt->per_numa_data, vm->numa_node);
  numa_data = vec_elt_at_index (cmt->per_numa_data, vm->numa_node);

  if (numa_data->sess_pool)
    rte_mempool_free (numa_data->sess_pool);
  if (numa_data->sess_priv_pool)
    rte_mempool_free (numa_data->sess_priv_pool);

  vec_foreach (ptd, cmt->per_thread_data)
    {
      if (ptd->aad_buf)
	rte_free (ptd->aad_buf);
      if (ptd->cached_frame)
	rte_ring_free (ptd->cached_frame);
    }
}

clib_error_t *
dpdk_cryptodev_init (vlib_main_t * vm)
{
  cryptodev_main_t *cmt = &cryptodev_main;
  vlib_thread_main_t *tm = vlib_get_thread_main ();
  cryptodev_engine_thread_t *ptd;
  cryptodev_numa_data_t *numa_data;
  struct rte_mempool *mp;
  u32 skip_master = vlib_num_workers () > 0;
  u32 n_workers = tm->n_vlib_mains - skip_master;
  u32 numa = vm->numa_node;
  i32 sess_sz;
  u32 eidx;
  u32 i;
  u8 *name = 0;
  clib_error_t *error;

  cmt->iova_mode = rte_eal_iova_mode ();

  sess_sz = cryptodev_get_session_sz(vm, n_workers);
  if (sess_sz < 0)
    {
      error = clib_error_return (0, "Not enough cryptodevs");
      return error;
    }

  vec_validate (cmt->per_numa_data, vm->numa_node);
  numa_data = vec_elt_at_index (cmt->per_numa_data, numa);

  /* create session pool for the numa node */
  name = format (0, "vcryptodev_sess_pool_%u%c", numa, 0);
  mp = rte_cryptodev_sym_session_pool_create ((char *) name,
					      CRYPTODEV_NB_SESSION,
					      0, 0, 0, numa);
  if (!mp)
    {
      error = clib_error_return (0, "Not enough memory for mp %s", name);
      goto err_handling;
    }
  vec_free (name);

  numa_data->sess_pool = mp;

  /* create session private pool for the numa node */
  name = format (0, "cryptodev_sess_pool_%u%c", numa, 0);
  mp = rte_mempool_create ((char *) name, CRYPTODEV_NB_SESSION, sess_sz, 0,
			   0, NULL, NULL, NULL, NULL, numa, 0);
  if (!mp)
    {
      error = clib_error_return (0, "Not enough memory for mp %s", name);
      vec_free (name);
      goto err_handling;
    }

  vec_free (name);

  numa_data->sess_priv_pool = mp;

  /* probe all cryptodev devices and get queue info */
  if (cryptodev_probe (vm, n_workers) < 0)
    {
      error = clib_error_return (0, "Failed to configure cryptodev");
      goto err_handling;
    }

  clib_bitmap_vec_validate (cmt->active_cdev_inst_mask, tm->n_vlib_mains);
  clib_spinlock_init (&cmt->tlock);

  vec_validate_aligned(cmt->per_thread_data, tm->n_vlib_mains - 1,
		       CLIB_CACHE_LINE_BYTES);
  for (i = skip_master; i < tm->n_vlib_mains; i++)
    {
      ptd = cmt->per_thread_data + i;
      cryptodev_assign_resource (ptd, 0, CRYPTODEV_RESOURCE_ASSIGN_AUTO);
      ptd->aad_buf = rte_zmalloc_socket (0, CRYPTODEV_NB_CRYPTO_OPS *
					 CRYPTODEV_MAX_AAD_SIZE,
					 CLIB_CACHE_LINE_BYTES,
					 numa);
      if (ptd->aad_buf == 0)
	{
	  error = clib_error_return (0, "Failed to alloc aad buf");
	  goto err_handling;
	}

      ptd->aad_phy_addr = rte_malloc_virt2iova (ptd->aad_buf);

      name = format (0, "cache_frame_ring_%u%u", numa, i);
      ptd->cached_frame = rte_ring_create ((char *)name,
					   CRYPTODEV_DEQ_CACHE_SZ, numa,
					   RING_F_SC_DEQ | RING_F_SP_ENQ);

      if (ptd->cached_frame == 0)
	{
	  error = clib_error_return (0, "Failed to frame ring");
	  goto err_handling;
	}
      vec_free (name);
    }

  /* register handler */
  eidx = vnet_crypto_register_engine (vm, "dpdk_cryptodev", 79,
                                      "DPDK Cryptodev Engine");

#define _(a, b, c, d, e, f) \
  vnet_crypto_register_async_handler \
    (vm, eidx, VNET_CRYPTO_OP_##a##_TAG##e##_AAD##f##_ENC, \
	cryptodev_enqueue_gcm_aad_##f##_enc,\
	cryptodev_frame_dequeue); \
  vnet_crypto_register_async_handler \
    (vm, eidx, VNET_CRYPTO_OP_##a##_TAG##e##_AAD##f##_DEC, \
	cryptodev_enqueue_gcm_aad_##f##_dec, \
	cryptodev_frame_dequeue);

  foreach_vnet_aead_crypto_conversion
#undef _

#define _(a, b, c, d) \
  vnet_crypto_register_async_handler \
    (vm, eidx, VNET_CRYPTO_OP_##a##_##c##_TAG##d##_ENC, \
	cryptodev_enqueue_linked_alg_enc, \
	cryptodev_frame_dequeue); \
  vnet_crypto_register_async_handler \
    (vm, eidx, VNET_CRYPTO_OP_##a##_##c##_TAG##d##_DEC, \
	cryptodev_enqueue_linked_alg_dec, \
	cryptodev_frame_dequeue);

    foreach_cryptodev_link_async_alg
#undef _

  vnet_crypto_register_key_handler (vm, eidx, cryptodev_key_handler);

  return 0;

err_handling:
  dpdk_disable_cryptodev_engine (vm);

  return error;
}
/* *INDENT-On* */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */