1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/*
*------------------------------------------------------------------
* Copyright (c) 2020 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*------------------------------------------------------------------
*/
package memif
import (
"encoding/binary"
"fmt"
"syscall"
)
const cookie = 0x3E31F20
// VersionMajor is memif protocols major version
const VersionMajor = 2
// VersionMinor is memif protocols minor version
const VersionMinor = 0
// Version is memif protocols version as uint16
// (M-Major m-minor: MMMMMMMMmmmmmmmm)
const Version = ((VersionMajor << 8) | VersionMinor)
type msgType uint16
const (
msgTypeNone msgType = iota
msgTypeAck
msgTypeHello
msgTypeInit
msgTypeAddRegion
msgTypeAddRing
msgTypeConnect
msgTypeConnected
msgTypeDisconnect
)
type interfaceMode uint8
const (
interfaceModeEthernet interfaceMode = iota
interfaceModeIp
interfaceModePuntInject
)
const msgSize = 128
const msgTypeSize = 2
const msgAddRingFlagS2M = (1 << 0)
// Descriptor flags
//
// next buffer present
const descFlagNext = (1 << 0)
// Ring flags
//
// Interrupt
const ringFlagInterrupt = 1
func min16(a uint16, b uint16) uint16 {
if a < b {
return a
}
return b
}
func min8(a uint8, b uint8) uint8 {
if a < b {
return a
}
return b
}
type MsgHello struct {
// app name
Name [32]byte
VersionMin uint16
VersionMax uint16
MaxRegion uint16
MaxRingM2S uint16
MaxRingS2M uint16
MaxLog2RingSize uint8
}
type MsgInit struct {
Version uint16
Id uint32
Mode interfaceMode
Secret [24]byte
// app name
Name [32]byte
}
type MsgAddRegion struct {
Index uint16
Size uint64
}
type MsgAddRing struct {
Flags uint16
Index uint16
Region uint16
Offset uint32
RingSizeLog2 uint8
PrivateHdrSize uint16
}
type MsgConnect struct {
// interface name
Name [32]byte
}
type MsgConnected struct {
// interface name
Name [32]byte
}
type MsgDisconnect struct {
Code uint32
String [96]byte
}
/* DESCRIPTOR BEGIN */
const descSize = 16
// desc field offsets
const descFlagsOffset = 0
const descRegionOffset = 2
const descLengthOffset = 4
const descOffsetOffset = 8
const descMetadataOffset = 12
// descBuf represents a memif descriptor as array of bytes
type descBuf []byte
// newDescBuf returns new descriptor buffer
func newDescBuf() descBuf {
return make(descBuf, descSize)
}
// getDescBuff copies descriptor from shared memory to descBuf
func (q *Queue) getDescBuf(slot int, db descBuf) {
copy(db, q.i.regions[q.ring.region].data[q.ring.offset+ringSize+slot*descSize:])
}
// putDescBuf copies contents of descriptor buffer into shared memory
func (q *Queue) putDescBuf(slot int, db descBuf) {
copy(q.i.regions[q.ring.region].data[q.ring.offset+ringSize+slot*descSize:], db)
}
func (db descBuf) getFlags() int {
return (int)(binary.LittleEndian.Uint16((db)[descFlagsOffset:]))
}
func (db descBuf) getRegion() int {
return (int)(binary.LittleEndian.Uint16((db)[descRegionOffset:]))
}
func (db descBuf) getLength() int {
return (int)(binary.LittleEndian.Uint32((db)[descLengthOffset:]))
}
func (db descBuf) getOffset() int {
return (int)(binary.LittleEndian.Uint32((db)[descOffsetOffset:]))
}
func (db descBuf) getMetadata() int {
return (int)(binary.LittleEndian.Uint32((db)[descMetadataOffset:]))
}
func (db descBuf) setFlags(val int) {
binary.LittleEndian.PutUint16((db)[descFlagsOffset:], uint16(val))
}
func (db descBuf) setRegion(val int) {
binary.LittleEndian.PutUint16((db)[descRegionOffset:], uint16(val))
}
func (db descBuf) setLength(val int) {
binary.LittleEndian.PutUint32((db)[descLengthOffset:], uint32(val))
}
func (db descBuf) setOffset(val int) {
binary.LittleEndian.PutUint32((db)[descOffsetOffset:], uint32(val))
}
func (db descBuf) setMetadata(val int) {
binary.LittleEndian.PutUint32((db)[descMetadataOffset:], uint32(val))
}
/* DESCRIPTOR END */
/* RING BEGIN */
type ringType uint8
const (
ringTypeS2M ringType = iota
ringTypeM2S
)
const ringSize = 128
// ring field offsets
const ringCookieOffset = 0
const ringFlagsOffset = 4
const ringHeadOffset = 6
const ringTailOffset = 64
// ringBuf represents a memif ring as array of bytes
type ringBuf []byte
type ring struct {
ringType ringType
size int
log2Size int
region int
rb ringBuf
offset int
}
// newRing returns new memif ring based on data received in msgAddRing (master only)
func newRing(regionIndex int, ringType ringType, ringOffset int, log2RingSize int) *ring {
r := &ring{
ringType: ringType,
size: (1 << log2RingSize),
log2Size: log2RingSize,
rb: make(ringBuf, ringSize),
offset: ringOffset,
}
return r
}
// newRing returns a new memif ring
func (i *Interface) newRing(regionIndex int, ringType ringType, ringIndex int) *ring {
r := &ring{
ringType: ringType,
size: (1 << i.run.Log2RingSize),
log2Size: int(i.run.Log2RingSize),
rb: make(ringBuf, ringSize),
}
rSize := ringSize + descSize*r.size
if r.ringType == ringTypeS2M {
r.offset = 0
} else {
r.offset = int(i.run.NumQueuePairs) * rSize
}
r.offset += ringIndex * rSize
return r
}
// putRing put the ring to the shared memory
func (q *Queue) putRing() {
copy(q.i.regions[q.ring.region].data[q.ring.offset:], q.ring.rb)
}
// updateRing updates ring with data from shared memory
func (q *Queue) updateRing() {
copy(q.ring.rb, q.i.regions[q.ring.region].data[q.ring.offset:])
}
func (r *ring) getCookie() int {
return (int)(binary.LittleEndian.Uint32((r.rb)[ringCookieOffset:]))
}
// getFlags returns the flags value from ring buffer
// Use Queue.getFlags in fast-path to avoid updating the whole ring.
func (r *ring) getFlags() int {
return (int)(binary.LittleEndian.Uint16((r.rb)[ringFlagsOffset:]))
}
// getHead returns the head pointer value from ring buffer.
// Use readHead in fast-path to avoid updating the whole ring.
func (r *ring) getHead() int {
return (int)(binary.LittleEndian.Uint16((r.rb)[ringHeadOffset:]))
}
// getTail returns the tail pointer value from ring buffer.
// Use readTail in fast-path to avoid updating the whole ring.
func (r *ring) getTail() int {
return (int)(binary.LittleEndian.Uint16((r.rb)[ringTailOffset:]))
}
func (r *ring) setCookie(val int) {
binary.LittleEndian.PutUint32((r.rb)[ringCookieOffset:], uint32(val))
}
func (r *ring) setFlags(val int) {
binary.LittleEndian.PutUint16((r.rb)[ringFlagsOffset:], uint16(val))
}
// setHead set the head pointer value int the ring buffer.
// Use writeHead in fast-path to avoid putting the whole ring into shared memory.
func (r *ring) setHead(val int) {
binary.LittleEndian.PutUint16((r.rb)[ringHeadOffset:], uint16(val))
}
// setTail set the tail pointer value int the ring buffer.
// Use writeTail in fast-path to avoid putting the whole ring into shared memory.
func (r *ring) setTail(val int) {
binary.LittleEndian.PutUint16((r.rb)[ringTailOffset:], uint16(val))
}
/* RING END */
// isInterrupt returns true if the queue is in interrupt mode
func (q *Queue) isInterrupt() bool {
return (q.getFlags() & ringFlagInterrupt) == 0
}
// interrupt performs an interrupt if the queue is in interrupt mode
func (q *Queue) interrupt() error {
if q.isInterrupt() {
buf := make([]byte, 8)
binary.PutUvarint(buf, 1)
n, err := syscall.Write(q.interruptFd, buf[:])
if err != nil {
return err
}
if n != 8 {
return fmt.Errorf("Faild to write to eventfd")
}
}
return nil
}
|