summaryrefslogtreecommitdiffstats
path: root/plugins/lb-plugin/lb/lbhash.h
blob: 12e892569fec298d58ef0b0b5b365136599d1cf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * Copyright (c) 2012 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * vppinfra already includes tons of different hash tables.
 * MagLev flow table is a bit different. It has to be very efficient
 * for both writing and reading operations. But it does not need to
 * be 100% reliable (write can fail). It also needs to recycle
 * old entries in a lazy way.
 *
 * This hash table is the most dummy hash table you can do.
 * Fixed total size, fixed bucket size.
 * Advantage is that it could be very efficient (maybe).
 *
 */

#ifndef LB_PLUGIN_LB_LBHASH_H_
#define LB_PLUGIN_LB_LBHASH_H_

#include <vnet/vnet.h>

#define LBHASH_ENTRY_PER_BUCKET_LOG2 2
#define LBHASH_ENTRY_PER_BUCKET (1 << LBHASH_ENTRY_PER_BUCKET_LOG2)
#define LBHASH_ENTRY_PER_BUCKET_MASK (LBHASH_ENTRY_PER_BUCKET - 1)

typedef struct {
  u64 key[5];
  u32 value;
  u32 last_seen;
} lb_hash_entry_t;

typedef struct {
  u32 buckets_mask;
  u32 timeout;
  lb_hash_entry_t entries[];
} lb_hash_t;

#define lb_hash_nbuckets(h) (((h)->buckets_mask >> LBHASH_ENTRY_PER_BUCKET_LOG2) + 1)
#define lb_hash_size(h) ((h)->buckets_mask + LBHASH_ENTRY_PER_BUCKET)

#define lb_hash_foreach_entry(h, e) \
  for (e = (h)->entries; e < h->entries + lb_hash_size(h); e++)

#define lb_hash_foreach_valid_entry(h, e, now) \
    lb_hash_foreach_entry(h, e) \
       if (!clib_u32_loop_gt((now), (e)->last_seen + (h)->timeout))

static_always_inline
lb_hash_t *lb_hash_alloc(u32 buckets, u32 timeout)
{
  if ((!is_pow2(buckets)) ||
      ((buckets << LBHASH_ENTRY_PER_BUCKET_LOG2) == 0))
    return NULL;

  // Allocate 1 more bucket for prefetch
  u32 size = sizeof(lb_hash_t) + ((buckets << LBHASH_ENTRY_PER_BUCKET_LOG2) + 1)* sizeof(lb_hash_entry_t);
  u8 *mem = 0;
  lb_hash_t *h;
  vec_alloc_aligned(mem, size, CLIB_CACHE_LINE_BYTES);
  h = (lb_hash_t *)mem;
  h->buckets_mask = (buckets - 1) << LBHASH_ENTRY_PER_BUCKET_LOG2;
  h->timeout = timeout;
  return h;
}

static_always_inline
void lb_hash_free(lb_hash_t *h)
{
  vec_free(h);
}

#if __SSE4_2__
static_always_inline
u32 lb_hash_crc_u32(u32 data, u32 value)
{
  __asm__ volatile( "crc32l %[data], %[value];"
                    : [value] "+r" (value)
                    : [data] "rm" (data));
  return value;
}

static_always_inline
u32 lb_hash_hash(u64 k[5])
{
  u32 * dp = (u32 *) k;
  u32 value = 0;

  value = lb_hash_crc_u32 (dp[0], value);
  value = lb_hash_crc_u32 (dp[1], value);
  value = lb_hash_crc_u32 (dp[2], value);
  value = lb_hash_crc_u32 (dp[3], value);
  value = lb_hash_crc_u32 (dp[4], value);
  value = lb_hash_crc_u32 (dp[5], value);
  value = lb_hash_crc_u32 (dp[6], value);
  value = lb_hash_crc_u32 (dp[7], value);
  value = lb_hash_crc_u32 (dp[8], value);
  value = lb_hash_crc_u32 (dp[9], value);
  return value;
}
#else
static_always_inline
u32 lb_hash_hash(u64 k[5])
{
  u64 tmp = k[0] ^ k[1] ^ k[2] ^ k[3] ^ k[4];
  return (u32)clib_xxhash (tmp);
}
#endif



static_always_inline
void lb_hash_get(lb_hash_t *h, u64 k[5], u32 hash, u32 time_now, u32 *available_index, u32 *value)
{
  lb_hash_entry_t *e = &h->entries[hash & h->buckets_mask];
  u32 i;
  *value = ~0;
  *available_index = ~0;
  CLIB_PREFETCH (&(e[1]), sizeof(lb_hash_entry_t), STORE);
  for (i=0; i<LBHASH_ENTRY_PER_BUCKET; i++) {
    CLIB_PREFETCH (&(e[i+2]), sizeof(lb_hash_entry_t), STORE); //+2 somehow performs best
    u64 cmp =
        (e[i].key[0] ^ k[0]) |
        (e[i].key[1] ^ k[1]) |
        (e[i].key[2] ^ k[2]) |
        (e[i].key[3] ^ k[3]) |
        (e[i].key[4] ^ k[4]);

    u8 timeouted = clib_u32_loop_gt(time_now, e[i].last_seen + h->timeout);

    *value = (cmp || timeouted)?*value:e[i].value;
    e[i].last_seen = (cmp || timeouted)?e[i].last_seen:time_now;
    *available_index = (timeouted && (*available_index == ~0))?(&e[i] - h->entries):*available_index;

    if (!cmp)
      return;
  }
}

static_always_inline
u32 lb_hash_available_value(lb_hash_t *h, u32 available_index)
{
  return h->entries[available_index].value;
}

static_always_inline
u32 lb_hash_put(lb_hash_t *h, u64 k[5], u32 value, u32 available_index, u32 time_now)
{
  lb_hash_entry_t *e = &h->entries[available_index];
  e->key[0] = k[0];
  e->key[1] = k[1];
  e->key[2] = k[2];
  e->key[3] = k[3];
  e->key[4] = k[4];
  e->value = value;
  e->last_seen = time_now;
  return 0;
}

static_always_inline
u32 lb_hash_elts(lb_hash_t *h, u32 time_now)
{
  u32 tot = 0;
  lb_hash_entry_t *e;
  lb_hash_foreach_valid_entry(h, e, time_now) {
    tot++;
  }
  return tot;
}

#endif /* LB_PLUGIN_LB_LBHASH_H_ */