1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
/*
*------------------------------------------------------------------
* Copyright (c) 2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*------------------------------------------------------------------
*/
/*
*------------------------------------------------------------------
* Copyright(c) 2018, Intel Corporation All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES * LOSS OF USE,
* DATA, OR PROFITS * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*------------------------------------------------------------------
*/
/*
* Based on work by: Shay Gueron, Michael E. Kounavis, Erdinc Ozturk,
* Vinodh Gopal, James Guilford, Tomasz Kantecki
*
* References:
* [1] Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on
* Intel Architecture Processors. August, 2010
* [2] Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on
* Intel Architecture Processors. October, 2012.
* [3] intel-ipsec-mb library, https://github.com/01org/intel-ipsec-mb.git
*
* Definitions:
* GF Galois Extension Field GF(2^128) - finite field where elements are
* represented as polynomials with coefficients in GF(2) with the
* highest degree of 127. Polynomials are represented as 128-bit binary
* numbers where each bit represents one coefficient.
* e.g. polynomial x^5 + x^3 + x + 1 is represented in binary 101011.
* H hash key (128 bit)
* POLY irreducible polynomial x^127 + x^7 + x^2 + x + 1
* RPOLY irreducible polynomial x^128 + x^127 + x^126 + x^121 + 1
* + addition in GF, which equals to XOR operation
* * multiplication in GF
*
* GF multiplication consists of 2 steps:
* - carry-less multiplication of two 128-bit operands into 256-bit result
* - reduction of 256-bit result into 128-bit with modulo POLY
*
* GHash is calculated on 128-bit blocks of data according to the following
* formula:
* GH = (GH + data) * hash_key
*
* To avoid bit-reflection of data, this code uses GF multipication
* with reversed polynomial:
* a * b * x^-127 mod RPOLY
*
* To improve computation speed table Hi is precomputed with powers of H',
* where H' is calculated as H<<1 mod RPOLY.
* This allows us to improve performance by deferring reduction. For example
* to caclulate ghash of 4 128-bit blocks of data (b0, b1, b2, b3), we can do:
*
* __i128 Hi[4];
* ghash_precompute (H, Hi, 4);
*
* ghash_data_t _gd, *gd = &_gd;
* ghash_mul_first (gd, GH ^ b0, Hi[3]);
* ghash_mul_next (gd, b1, Hi[2]);
* ghash_mul_next (gd, b2, Hi[1]);
* ghash_mul_next (gd, b3, Hi[0]);
* ghash_reduce (gd);
* ghash_reduce2 (gd);
* GH = ghash_final (gd);
*
* Reduction step is split into 3 functions so it can be better interleaved
* with other code, (i.e. with AES computation).
*/
#ifndef __ghash_h__
#define __ghash_h__
/* on AVX-512 systems we can save a clock cycle by using ternary logic
instruction to calculate a XOR b XOR c */
static_always_inline __m128i
ghash_xor3 (__m128i a, __m128i b, __m128i c)
{
#if defined (__AVX512F__)
return _mm_ternarylogic_epi32 (a, b, c, 0x96);
#endif
return a ^ b ^ c;
}
typedef struct
{
__m128i mid, hi, lo, tmp_lo, tmp_hi;
int pending;
} ghash_data_t;
static const __m128i ghash_poly = { 1, 0xC200000000000000 };
static const __m128i ghash_poly2 = { 0x1C2000000, 0xC200000000000000 };
static_always_inline void
ghash_mul_first (ghash_data_t * gd, __m128i a, __m128i b)
{
/* a1 * b1 */
gd->hi = _mm_clmulepi64_si128 (a, b, 0x11);
/* a0 * b0 */
gd->lo = _mm_clmulepi64_si128 (a, b, 0x00);
/* a0 * b1 ^ a1 * b0 */
gd->mid = (_mm_clmulepi64_si128 (a, b, 0x01) ^
_mm_clmulepi64_si128 (a, b, 0x10));
/* set gd->pending to 0 so next invocation of ghash_mul_next(...) knows that
there is no pending data in tmp_lo and tmp_hi */
gd->pending = 0;
}
static_always_inline void
ghash_mul_next (ghash_data_t * gd, __m128i a, __m128i b)
{
/* a1 * b1 */
__m128i hi = _mm_clmulepi64_si128 (a, b, 0x11);
/* a0 * b0 */
__m128i lo = _mm_clmulepi64_si128 (a, b, 0x00);
/* this branch will be optimized out by the compiler, and it allows us to
reduce number of XOR operations by using ternary logic */
if (gd->pending)
{
/* there is peding data from previous invocation so we can XOR */
gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, hi);
gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, lo);
gd->pending = 0;
}
else
{
/* there is no peding data from previous invocation so we postpone XOR */
gd->tmp_hi = hi;
gd->tmp_lo = lo;
gd->pending = 1;
}
/* gd->mid ^= a0 * b1 ^ a1 * b0 */
gd->mid = ghash_xor3 (gd->mid,
_mm_clmulepi64_si128 (a, b, 0x01),
_mm_clmulepi64_si128 (a, b, 0x10));
}
static_always_inline void
ghash_reduce (ghash_data_t * gd)
{
__m128i r;
/* Final combination:
gd->lo ^= gd->mid << 64
gd->hi ^= gd->mid >> 64 */
__m128i midl = _mm_slli_si128 (gd->mid, 8);
__m128i midr = _mm_srli_si128 (gd->mid, 8);
if (gd->pending)
{
gd->lo = ghash_xor3 (gd->lo, gd->tmp_lo, midl);
gd->hi = ghash_xor3 (gd->hi, gd->tmp_hi, midr);
}
else
{
gd->lo ^= midl;
gd->hi ^= midr;
}
r = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x01);
gd->lo ^= _mm_slli_si128 (r, 8);
}
static_always_inline void
ghash_reduce2 (ghash_data_t * gd)
{
gd->tmp_lo = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x00);
gd->tmp_hi = _mm_clmulepi64_si128 (ghash_poly2, gd->lo, 0x10);
}
static_always_inline __m128i
ghash_final (ghash_data_t * gd)
{
return ghash_xor3 (gd->hi, _mm_srli_si128 (gd->tmp_lo, 4),
_mm_slli_si128 (gd->tmp_hi, 4));
}
static_always_inline __m128i
ghash_mul (__m128i a, __m128i b)
{
ghash_data_t _gd, *gd = &_gd;
ghash_mul_first (gd, a, b);
ghash_reduce (gd);
ghash_reduce2 (gd);
return ghash_final (gd);
}
static_always_inline void
ghash_precompute (__m128i H, __m128i * Hi, int count)
{
__m128i r;
/* calcullate H<<1 mod poly from the hash key */
r = _mm_srli_epi64 (H, 63);
H = _mm_slli_epi64 (H, 1);
H |= _mm_slli_si128 (r, 8);
r = _mm_srli_si128 (r, 8);
r = _mm_shuffle_epi32 (r, 0x24);
/* *INDENT-OFF* */
r = _mm_cmpeq_epi32 (r, (__m128i) (u32x4) {1, 0, 0, 1});
/* *INDENT-ON* */
Hi[0] = H ^ (r & ghash_poly);
/* calculate H^(i + 1) */
for (int i = 1; i < count; i++)
Hi[i] = ghash_mul (Hi[0], Hi[i - 1]);
}
#endif /* __ghash_h__ */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|