1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
/*
*------------------------------------------------------------------
* Copyright (c) 2019 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*------------------------------------------------------------------
*/
#include <vlib/vlib.h>
#include <vnet/plugin/plugin.h>
#include <vnet/crypto/crypto.h>
#include <x86intrin.h>
#include <crypto_native/crypto_native.h>
#include <crypto_native/aes.h>
#if __GNUC__ > 4 && !__clang__ && CLIB_DEBUG == 0
#pragma GCC optimize ("O3")
#endif
typedef struct
{
u8x16 encrypt_key[15];
#if __VAES__
__m512i decrypt_key[15];
#else
u8x16 decrypt_key[15];
#endif
} aes_cbc_key_data_t;
static_always_inline u8x16 __clib_unused
xor3 (u8x16 a, u8x16 b, u8x16 c)
{
#if __AVX512F__
return (u8x16) _mm_ternarylogic_epi32 ((__m128i) a, (__m128i) b,
(__m128i) c, 0x96);
#endif
return a ^ b ^ c;
}
#if __VAES__
static_always_inline __m512i
xor3_x4 (__m512i a, __m512i b, __m512i c)
{
return _mm512_ternarylogic_epi32 (a, b, c, 0x96);
}
static_always_inline __m512i
aes_block_load_x4 (u8 * src[], int i)
{
__m512i r = { };
r = _mm512_inserti64x2 (r, (__m128i) aes_block_load (src[0] + i), 0);
r = _mm512_inserti64x2 (r, (__m128i) aes_block_load (src[1] + i), 1);
r = _mm512_inserti64x2 (r, (__m128i) aes_block_load (src[2] + i), 2);
r = _mm512_inserti64x2 (r, (__m128i) aes_block_load (src[3] + i), 3);
return r;
}
static_always_inline void
aes_block_store_x4 (u8 * dst[], int i, __m512i r)
{
aes_block_store (dst[0] + i, (u8x16) _mm512_extracti64x2_epi64 (r, 0));
aes_block_store (dst[1] + i, (u8x16) _mm512_extracti64x2_epi64 (r, 1));
aes_block_store (dst[2] + i, (u8x16) _mm512_extracti64x2_epi64 (r, 2));
aes_block_store (dst[3] + i, (u8x16) _mm512_extracti64x2_epi64 (r, 3));
}
#endif
static_always_inline void __clib_unused
aes_cbc_dec (u8x16 * k, u8 * src, u8 * dst, u8 * iv, int count,
aes_key_size_t rounds)
{
u8x16 r0, r1, r2, r3, c0, c1, c2, c3, f;
int i;
f = aes_block_load (iv);
while (count >= 64)
{
_mm_prefetch (src + 128, _MM_HINT_T0);
_mm_prefetch (dst + 128, _MM_HINT_T0);
c0 = aes_block_load (src);
c1 = aes_block_load (src + 16);
c2 = aes_block_load (src + 32);
c3 = aes_block_load (src + 48);
r0 = c0 ^ k[0];
r1 = c1 ^ k[0];
r2 = c2 ^ k[0];
r3 = c3 ^ k[0];
for (i = 1; i < rounds; i++)
{
r0 = aes_dec_round (r0, k[i]);
r1 = aes_dec_round (r1, k[i]);
r2 = aes_dec_round (r2, k[i]);
r3 = aes_dec_round (r3, k[i]);
}
r0 = aes_dec_last_round (r0, k[i]);
r1 = aes_dec_last_round (r1, k[i]);
r2 = aes_dec_last_round (r2, k[i]);
r3 = aes_dec_last_round (r3, k[i]);
aes_block_store (dst, r0 ^ f);
aes_block_store (dst + 16, r1 ^ c0);
aes_block_store (dst + 32, r2 ^ c1);
aes_block_store (dst + 48, r3 ^ c2);
f = c3;
count -= 64;
src += 64;
dst += 64;
}
while (count > 0)
{
c0 = aes_block_load (src);
r0 = c0 ^ k[0];
for (i = 1; i < rounds; i++)
r0 = aes_dec_round (r0, k[i]);
r0 = aes_dec_last_round (r0, k[i]);
aes_block_store (dst, r0 ^ f);
f = c0;
count -= 16;
src += 16;
dst += 16;
}
}
#ifdef __VAES__
static_always_inline void
vaes_cbc_dec (__m512i * k, u8 * src, u8 * dst, u8 * iv, int count,
aes_key_size_t rounds)
{
__m512i permute = { 6, 7, 8, 9, 10, 11, 12, 13 };
__m512i r0, r1, r2, r3, c0, c1, c2, c3, f = { };
__mmask8 m;
int i, n_blocks = count >> 4;
f = _mm512_mask_loadu_epi64 (f, 0xc0, (__m512i *) (iv - 48));
while (n_blocks >= 16)
{
c0 = _mm512_loadu_si512 ((__m512i *) src);
c1 = _mm512_loadu_si512 ((__m512i *) (src + 64));
c2 = _mm512_loadu_si512 ((__m512i *) (src + 128));
c3 = _mm512_loadu_si512 ((__m512i *) (src + 192));
r0 = c0 ^ k[0];
r1 = c1 ^ k[0];
r2 = c2 ^ k[0];
r3 = c3 ^ k[0];
for (i = 1; i < rounds; i++)
{
r0 = _mm512_aesdec_epi128 (r0, k[i]);
r1 = _mm512_aesdec_epi128 (r1, k[i]);
r2 = _mm512_aesdec_epi128 (r2, k[i]);
r3 = _mm512_aesdec_epi128 (r3, k[i]);
}
r0 = _mm512_aesdeclast_epi128 (r0, k[i]);
r1 = _mm512_aesdeclast_epi128 (r1, k[i]);
r2 = _mm512_aesdeclast_epi128 (r2, k[i]);
r3 = _mm512_aesdeclast_epi128 (r3, k[i]);
r0 ^= _mm512_permutex2var_epi64 (f, permute, c0);
_mm512_storeu_si512 ((__m512i *) dst, r0);
r1 ^= _mm512_permutex2var_epi64 (c0, permute, c1);
_mm512_storeu_si512 ((__m512i *) (dst + 64), r1);
r2 ^= _mm512_permutex2var_epi64 (c1, permute, c2);
_mm512_storeu_si512 ((__m512i *) (dst + 128), r2);
r3 ^= _mm512_permutex2var_epi64 (c2, permute, c3);
_mm512_storeu_si512 ((__m512i *) (dst + 192), r3);
f = c3;
n_blocks -= 16;
src += 256;
dst += 256;
}
while (n_blocks > 0)
{
m = (1 << (n_blocks * 2)) - 1;
c0 = _mm512_mask_loadu_epi64 (c0, m, (__m512i *) src);
f = _mm512_permutex2var_epi64 (f, permute, c0);
r0 = c0 ^ k[0];
for (i = 1; i < rounds; i++)
r0 = _mm512_aesdec_epi128 (r0, k[i]);
r0 = _mm512_aesdeclast_epi128 (r0, k[i]);
_mm512_mask_storeu_epi64 ((__m512i *) dst, m, r0 ^ f);
f = c0;
n_blocks -= 4;
src += 64;
dst += 64;
}
}
#endif
#ifdef __VAES__
#define N 16
#define u32xN u32x16
#define u32xN_min_scalar u32x16_min_scalar
#define u32xN_is_all_zero u32x16_is_all_zero
#else
#define N 4
#define u32xN u32x4
#define u32xN_min_scalar u32x4_min_scalar
#define u32xN_is_all_zero u32x4_is_all_zero
#endif
static_always_inline u32
aesni_ops_enc_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[],
u32 n_ops, aes_key_size_t ks)
{
crypto_native_main_t *cm = &crypto_native_main;
crypto_native_per_thread_data_t *ptd =
vec_elt_at_index (cm->per_thread_data, vm->thread_index);
int rounds = AES_KEY_ROUNDS (ks);
u8 dummy[8192];
u32 i, j, count, n_left = n_ops;
u32xN dummy_mask = { };
u32xN len = { };
vnet_crypto_key_index_t key_index[N];
u8 *src[N] = { };
u8 *dst[N] = { };
/* *INDENT-OFF* */
union
{
u8x16 x1[N];
__m512i x4[N / 4];
} r = { }, k[15] = { };
/* *INDENT-ON* */
for (i = 0; i < N; i++)
key_index[i] = ~0;
more:
for (i = 0; i < N; i++)
if (len[i] == 0)
{
if (n_left == 0)
{
/* no more work to enqueue, so we are enqueueing dummy buffer */
src[i] = dst[i] = dummy;
len[i] = sizeof (dummy);
dummy_mask[i] = 0;
}
else
{
if (ops[0]->flags & VNET_CRYPTO_OP_FLAG_INIT_IV)
{
r.x1[i] = ptd->cbc_iv[i];
aes_block_store (ops[0]->iv, r.x1[i]);
ptd->cbc_iv[i] = aes_enc_round (r.x1[i], r.x1[i]);
}
else
r.x1[i] = aes_block_load (ops[0]->iv);
src[i] = ops[0]->src;
dst[i] = ops[0]->dst;
len[i] = ops[0]->len;
dummy_mask[i] = ~0;
if (key_index[i] != ops[0]->key_index)
{
aes_cbc_key_data_t *kd;
key_index[i] = ops[0]->key_index;
kd = (aes_cbc_key_data_t *) cm->key_data[key_index[i]];
for (j = 0; j < rounds + 1; j++)
k[j].x1[i] = kd->encrypt_key[j];
}
ops[0]->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
n_left--;
ops++;
}
}
count = u32xN_min_scalar (len);
ASSERT (count % 16 == 0);
for (i = 0; i < count; i += 16)
{
#ifdef __VAES__
r.x4[0] = xor3_x4 (r.x4[0], aes_block_load_x4 (src, i), k[0].x4[0]);
r.x4[1] = xor3_x4 (r.x4[1], aes_block_load_x4 (src, i), k[0].x4[1]);
r.x4[2] = xor3_x4 (r.x4[2], aes_block_load_x4 (src, i), k[0].x4[2]);
r.x4[3] = xor3_x4 (r.x4[3], aes_block_load_x4 (src, i), k[0].x4[3]);
for (j = 1; j < rounds; j++)
{
r.x4[0] = _mm512_aesenc_epi128 (r.x4[0], k[j].x4[0]);
r.x4[1] = _mm512_aesenc_epi128 (r.x4[1], k[j].x4[1]);
r.x4[2] = _mm512_aesenc_epi128 (r.x4[2], k[j].x4[2]);
r.x4[3] = _mm512_aesenc_epi128 (r.x4[3], k[j].x4[3]);
}
r.x4[0] = _mm512_aesenclast_epi128 (r.x4[0], k[j].x4[0]);
r.x4[1] = _mm512_aesenclast_epi128 (r.x4[1], k[j].x4[1]);
r.x4[2] = _mm512_aesenclast_epi128 (r.x4[2], k[j].x4[2]);
r.x4[3] = _mm512_aesenclast_epi128 (r.x4[3], k[j].x4[3]);
aes_block_store_x4 (dst, i, r.x4[0]);
aes_block_store_x4 (dst + 4, i, r.x4[1]);
aes_block_store_x4 (dst + 8, i, r.x4[2]);
aes_block_store_x4 (dst + 12, i, r.x4[3]);
#else
r.x1[0] = xor3 (r.x1[0], aes_block_load (src[0] + i), k[0].x1[0]);
r.x1[1] = xor3 (r.x1[1], aes_block_load (src[1] + i), k[0].x1[1]);
r.x1[2] = xor3 (r.x1[2], aes_block_load (src[2] + i), k[0].x1[2]);
r.x1[3] = xor3 (r.x1[3], aes_block_load (src[3] + i), k[0].x1[3]);
for (j = 1; j < rounds; j++)
{
r.x1[0] = aes_enc_round (r.x1[0], k[j].x1[0]);
r.x1[1] = aes_enc_round (r.x1[1], k[j].x1[1]);
r.x1[2] = aes_enc_round (r.x1[2], k[j].x1[2]);
r.x1[3] = aes_enc_round (r.x1[3], k[j].x1[3]);
}
r.x1[0] = aes_enc_last_round (r.x1[0], k[j].x1[0]);
r.x1[1] = aes_enc_last_round (r.x1[1], k[j].x1[1]);
r.x1[2] = aes_enc_last_round (r.x1[2], k[j].x1[2]);
r.x1[3] = aes_enc_last_round (r.x1[3], k[j].x1[3]);
aes_block_store (dst[0] + i, r.x1[0]);
aes_block_store (dst[1] + i, r.x1[1]);
aes_block_store (dst[2] + i, r.x1[2]);
aes_block_store (dst[3] + i, r.x1[3]);
#endif
}
for (i = 0; i < N; i++)
{
src[i] += count;
dst[i] += count;
len[i] -= count;
}
if (n_left > 0)
goto more;
if (!u32xN_is_all_zero (len & dummy_mask))
goto more;
return n_ops;
}
static_always_inline u32
aesni_ops_dec_aes_cbc (vlib_main_t * vm, vnet_crypto_op_t * ops[],
u32 n_ops, aes_key_size_t ks)
{
crypto_native_main_t *cm = &crypto_native_main;
int rounds = AES_KEY_ROUNDS (ks);
vnet_crypto_op_t *op = ops[0];
aes_cbc_key_data_t *kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index];
u32 n_left = n_ops;
ASSERT (n_ops >= 1);
decrypt:
#ifdef __VAES__
vaes_cbc_dec (kd->decrypt_key, op->src, op->dst, op->iv, op->len, rounds);
#else
aes_cbc_dec (kd->decrypt_key, op->src, op->dst, op->iv, op->len, rounds);
#endif
op->status = VNET_CRYPTO_OP_STATUS_COMPLETED;
if (--n_left)
{
op += 1;
kd = (aes_cbc_key_data_t *) cm->key_data[op->key_index];
goto decrypt;
}
return n_ops;
}
static_always_inline void *
aesni_cbc_key_exp (vnet_crypto_key_t * key, aes_key_size_t ks)
{
u8x16 e[15], d[15];
aes_cbc_key_data_t *kd;
kd = clib_mem_alloc_aligned (sizeof (*kd), CLIB_CACHE_LINE_BYTES);
aes_key_expand (e, key->data, ks);
aes_key_enc_to_dec (e, d, ks);
for (int i = 0; i < AES_KEY_ROUNDS (ks) + 1; i++)
{
#if __VAES__
kd->decrypt_key[i] = _mm512_broadcast_i64x2 ((__m128i) d[i]);
#else
kd->decrypt_key[i] = d[i];
#endif
kd->encrypt_key[i] = e[i];
}
return kd;
}
#define foreach_aesni_cbc_handler_type _(128) _(192) _(256)
#define _(x) \
static u32 aesni_ops_dec_aes_cbc_##x \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \
{ return aesni_ops_dec_aes_cbc (vm, ops, n_ops, AES_KEY_##x); } \
static u32 aesni_ops_enc_aes_cbc_##x \
(vlib_main_t * vm, vnet_crypto_op_t * ops[], u32 n_ops) \
{ return aesni_ops_enc_aes_cbc (vm, ops, n_ops, AES_KEY_##x); } \
static void * aesni_cbc_key_exp_##x (vnet_crypto_key_t *key) \
{ return aesni_cbc_key_exp (key, AES_KEY_##x); }
foreach_aesni_cbc_handler_type;
#undef _
#include <fcntl.h>
clib_error_t *
#ifdef __VAES__
crypto_native_aes_cbc_init_vaes (vlib_main_t * vm)
#elif __AVX512F__
crypto_native_aes_cbc_init_avx512 (vlib_main_t * vm)
#elif __AVX2__
crypto_native_aes_cbc_init_avx2 (vlib_main_t * vm)
#else
crypto_native_aes_cbc_init_sse42 (vlib_main_t * vm)
#endif
{
crypto_native_main_t *cm = &crypto_native_main;
crypto_native_per_thread_data_t *ptd;
clib_error_t *err = 0;
int fd;
if ((fd = open ("/dev/urandom", O_RDONLY)) < 0)
return clib_error_return_unix (0, "failed to open '/dev/urandom'");
/* *INDENT-OFF* */
vec_foreach (ptd, cm->per_thread_data)
{
for (int i = 0; i < 4; i++)
{
if (read(fd, ptd->cbc_iv, sizeof (ptd->cbc_iv)) !=
sizeof (ptd->cbc_iv))
{
err = clib_error_return_unix (0, "'/dev/urandom' read failure");
goto error;
}
}
}
/* *INDENT-ON* */
#define _(x) \
vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
VNET_CRYPTO_OP_AES_##x##_CBC_ENC, \
aesni_ops_enc_aes_cbc_##x); \
vnet_crypto_register_ops_handler (vm, cm->crypto_engine_index, \
VNET_CRYPTO_OP_AES_##x##_CBC_DEC, \
aesni_ops_dec_aes_cbc_##x); \
cm->key_fn[VNET_CRYPTO_ALG_AES_##x##_CBC] = aesni_cbc_key_exp_##x;
foreach_aesni_cbc_handler_type;
#undef _
error:
close (fd);
return err;
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|