summaryrefslogtreecommitdiffstats
path: root/src/plugins/ioam/ioam_plugin_doc.rst
blob: 0f84d5f7a361ad6b9f57f09cd977fe6843d25ead (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
Inband OAM (iOAM)
=================

In-band OAM (iOAM) is an implementation study to record operational
information in the packet while the packet traverses a path between two
points in the network.

Overview of iOAM can be found in
`iOAM-Devnet <https://github.com/ciscodevnet/iOAM>`__ page. The
following IETF drafts detail the motivation and mechanism for recording
operational information: -
`iOAM-ietf-requirements <https://tools.ietf.org/html/draft-brockners-inband-oam-requirements-01>`__
- Describes motivation and usecases for iOAM -
`iOAM-ietf-data <https://tools.ietf.org/html/draft-brockners-inband-oam-data-01>`__
- Describes data records that can be collected using iOAM -
`iOAM-ietf-transport <https://tools.ietf.org/html/draft-brockners-inband-oam-transport-01>`__
- Lists out the transport protocols and mechanism to carry iOAM data
records -
`iOAM-ietf-proof-of-transit <https://tools.ietf.org/html/draft-brockners-proof-of-transit-01>`__
- Describes the idea of Proof of Transit (POT) and mechanisms to
operationalize the idea

Terminology
-----------

In-band OAM is expected to be deployed in a specific domain rather than
on the overall Internet. The part of the network which employs in-band
OAM is referred to as **“in-band OAM-domain”**.

In-band OAM data is added to a packet on entering the in-band OAM-domain
and is removed from the packet when exiting the domain. Within the
in-band OAM-domain, network nodes that the packet traverses may update
the in-band OAM data records.

-  The node which adds in-band OAM data to the packet is called the
   **“in-band OAM encapsulating node”**.

-  The node which removes the in-band OAM data is referred to as the
   **“in-band OAM decapsulating node”**.

-  Nodes within the domain which are aware of in-band OAM data and read
   and/or write or process the in-band OAM data are called **“in-band
   OAM transit nodes”**.

Features supported in the current release
-----------------------------------------

VPP can function as in-band OAM encapsulating, transit and decapsulating
node. In this version of VPP in-band OAM data is transported as options
in an IPv6 hop-by-hop extension header. Hence in-band OAM can be enabled
for IPv6 traffic.

The following iOAM features are supported:

-  **In-band OAM Tracing** : In-band OAM supports multiple data records
   to be recorded in the packet as the packet traverses the network.
   These data records offer insights into the operational behavior of
   the network. The following information can be collected in the
   tracing data from the nodes a packet traverses:

   -  Node ID
   -  Ingress interface ID
   -  Egress interface ID
   -  Timestamp
   -  Pre-configured application data

-  **In-band OAM Proof of Transit (POT)**: Proof of transit iOAM data is
   added to every packet for verifying that a packet traverses a
   specific set of nodes. In-band OAM data is updated at every node that
   is enabled with iOAM proof of transit and is used to verify whether a
   packet traversed all the specified nodes. When the verifier receives
   each packet, it can validate whether the packet traversed the
   specified nodes.

Configuration
-------------

Configuring iOAM involves: - Selecting the packets for which iOAM data
must be inserted, updated or removed - Selection of packets for iOAM
data insertion on iOAM encapsulating node. Selection of packets is done
by 5-tuple based classification - Selection of packets for updating iOAM
data is implicitly done on the presence of iOAM options in the packet -
Selection of packets for removing the iOAM data is done on 5-tuple based
classification - The kind of data to be collected - Tracing data - Proof
of transit - Additional details for processing iOAM data to be collected
- For trace data - trace type, number of nodes to be recorded in the
trace, time stamp precision, etc. - For POT data - configuration of POT
profile required to process the POT data

The CLI for configuring iOAM is explained here followed by detailed
steps and examples to deploy iOAM on VPP as an encapsulating, transit or
decapsulating iOAM node in the subsequent sub-sections.

VPP iOAM configuration for enabling trace and POT is as follows:

::

   set ioam rewrite trace-type <0x1f|0x7|0x9|0x11|0x19>
   trace-elts <number of trace elements> trace-tsp <0|1|2|3>
   node-id <node ID in hex> app-data <application data in hex> [pot]

A description of each of the options of the CLI follows: - trace-type :
An entry in the “Node data List” array of the trace option can have
different formats, following the needs of the a deployment. For example:
Some deployments might only be interested in recording the node
identifiers, whereas others might be interested in recording node
identifier and timestamp. The following types are currently supported: -
0x1f : Node data to include hop limit (8 bits), node ID (24 bits),
ingress and egress interface IDs (16 bits each), timestamp (32 bits),
application data (32 bits) - 0x7 : Node data to include hop limit (8
bits), node ID (24 bits), ingress and egress interface IDs (16 bits
each) - 0x9 : Node data to include hop limit (8 bits), node ID (24
bits), timestamp (32 bits) - 0x11: Node data to include hop limit (8
bits), node ID (24 bits), application data (32 bits) - 0x19: Node data
to include hop limit (8 bits), node ID (24 bits), timestamp (32 bits),
application data (32 bits) - trace-elts : Defines the length of the node
data array in the trace option. - trace-tsp : Defines the timestamp
precision to use with the enumerated value for precision as follows: - 0
: 32bits timestamp in seconds - 1 : 32bits timestamp in milliseconds - 2
: 32bits timestamp in microseconds - 3 : 32bits timestamp in nanoseconds
- node-id : Unique identifier for the node, included in the node ID
field of the node data in trace option. - app-data : The value
configured here is included as is in application data field of node data
in trace option. - pot : Enables POT option to be included in the iOAM
options.

Trace configuration
~~~~~~~~~~~~~~~~~~~

On in-band OAM encapsulating node
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  **Configure classifier and apply ACL** to select packets for iOAM
   data insertion

   -  Example to enable iOAM data insertion for all the packets towards
      IPv6 address db06::06:

   vpp# classify table miss-next node ip6-lookup mask l3 ip6 dst

   vpp# classify session acl-hit-next node ip6-add-hop-by-hop
   table-index 0 match l3 ip6 dst db06::06

   vpp# set int input acl intfc GigabitEthernet0/0/0 ip6-table 0

-  **Enable tracing** : Specify node ID, maximum number of nodes for
   which trace data should be recorded, type of data to be included for
   recording, optionally application data to be included

   -  Example to enable tracing with a maximum of 4 nodes recorded and
      the data to be recorded to include - hop limit, node id, ingress
      and egress interface IDs, timestamp (millisecond precision),
      application data (0x1234):

   vpp# set ioam rewrite trace-type 0x1f trace-elts 4 trace-tsp 1
   node-id 0x1 app-data 0x1234

On in-band OAM transit node
^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  The transit node requires trace type, timestamp precision, node ID
   and optionally application data to be configured, to update its node
   data in the trace option.

Example:

::

   vpp# set ioam rewrite trace-type 0x1f trace-elts 4 trace-tsp 1
   node-id 0x2 app-data 0x1234

On the In-band OAM decapsulating node
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  The decapsulating node similar to encapsulating node requires
   **classification** of the packets to remove iOAM data from.

   -  Example to decapsulate iOAM data for packets towards db06::06,
      configure classifier and enable it as an ACL as follows:

   vpp# classify table miss-next node ip6-lookup mask l3 ip6 dst

   vpp# classify session acl-hit-next node ip6-lookup table-index 0
   match l3 ip6 dst db06::06 opaque-index 100

   vpp# set int input acl intfc GigabitEthernet0/0/0 ip6-table 0

-  Decapsulating node requires trace type, timestamp precision, node ID
   and optionally application data to be configured, to update its node
   data in the trace option before it is decapsulated.

Example:

::

   vpp# set ioam rewrite trace-type 0x1f trace-elts 4
   trace-tsp 1 node-id 0x3 app-data 0x1234

Proof of Transit configuration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For details on proof-of-transit, see the IETF draft
`iOAM-ietf-proof-of-transit <https://tools.ietf.org/html/draft-brockners-proof-of-transit-01>`__.
To enable Proof of Transit all the nodes that participate and hence are
verified for transit need a proof of transit profile. A script to
generate a proof of transit profile as per the mechanism described in
`iOAM-ietf-proof-of-transit <https://tools.ietf.org/html/draft-brockners-proof-of-transit-01>`__
will be available at
`iOAM-Devnet <https://github.com/ciscodevnet/iOAM>`__.

The Proof of transit mechanism implemented here is based on Shamir’s
Secret Sharing algorithm. The overall algorithm uses two polynomials
POLY-1 and POLY-2. The degree of polynomials depends on number of nodes
to be verified for transit. POLY-1 is secret and constant. Each node
gets a point on POLY-1 at setup-time and keeps it secret. POLY-2 is
public, random and per packet. Each node is assigned a point on POLY-1
and POLY-2 with the same x index. Each node derives its point on POLY-2
each time a packet arrives at it. A node then contributes its points on
POLY-1 and POLY-2 to construct POLY-3 (POLY-3 = POLY-1 + POLY-2) using
lagrange extrapolation and forwards it towards the verifier by updating
POT data in the packet. The verifier constructs POLY-3 from the
accumulated value from all the nodes and its own points on POLY-1 and
POLY-2 and verifies whether POLY-3 = POLY-1 + POLY-2. Only the verifier
knows POLY-1. The solution leverages finite field arithmetic in a field
of size “prime number” for reasons explained in description of Shamir’s
secret sharing algorithm.

| Here is an explanation of POT profile list and profile configuration
  CLI to realize the above mechanism. It is best to use the script
  provided at `iOAM-Devnet <https://github.com/ciscodevnet/iOAM>`__ to
  generate this configuration. - **Create POT profile** : set pot
  profile name id [0-1]
| [validator-key 0xu64] prime-number 0xu64 secret_share 0xu64
| lpc 0xu64 polynomial2 0xu64 bits-in-random [0-64]
| - name : Profile list name. - id : Profile id, it can be 0 or 1. A
  maximum of two profiles can be configured per profile list. -
  validator-key : Secret key configured only on the
  verifier/decapsulating node used to compare and verify proof of
  transit. - prime-number : Prime number for finite field arithmetic as
  required by the proof of transit mechanism. - secret_share : Unique
  point for each node on the secret polynomial POLY-1. - lpc : Lagrange
  Polynomial Constant(LPC) calculated per node based on its point (x
  value used for evaluating the points on the polynomial) on the
  polynomial used in lagrange extrapolation for reconstructing
  polynomial (POLY-3). - polynomial2 : Is the pre-evaluated value of the
  point on 2nd polynomial(POLY-2). This is unique for each node. It is
  pre-evaluated for all the coefficients of POLY-2 except for the
  constant part of the polynomial that changes per packet and is
  received as part of the POT data in the packet. - bits-in-random : To
  control the size of the random number to be generated. This number has
  to match the other numbers generated and used in the profile as per
  the algorithm.

-  **Set a configured profile as active/in-use** :
   set pot profile-active name ID [0-1]

   -  name : Name of the profile list to be used for computing POT data
      per packet.
   -  ID : Identifier of the profile within the list to be used.

.. _on-in-band-oam-encapsulating-node-1:

On In-band OAM encapsulating node
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  Configure the classifier and apply ACL to select packets for iOAM
   data insertion.

   -  Example to enable iOAM data insertion for all the packet towards
      IPv6 address db06::06 -

   vpp# classify table miss-next node ip6-lookup mask l3 ip6 dst

   vpp# classify session acl-hit-next node ip6-add-hop-by-hop
   table-index 0 match l3 ip6 dst db06::06

   vpp# set int input acl intfc GigabitEthernet0/0/0 ip6-table 0

-  Configure the proof of transit profile list with profiles. Each
   profile list referred to by a name can contain 2 profiles, only one
   is in use for updating proof of transit data at any time.

   -  Example profile list example with a profile generated from the
      script to verify transit through 3 nodes is:

   vpp# set pot profile name example id 0 prime-number
   0x7fff0000fa884685 secret_share 0x6c22eff0f45ec56d lpc
   0x7fff0000fa884682 polynomial2 0xffb543d4a9c bits-in-random 63

-  Enable one of the profiles from the configured profile list as active
   so that is will be used for calculating proof of transit

Example enable profile ID 0 from profile list example configured above:

::

   vpp# set pot profile-active name example ID 0

-  Enable POT option to be inserted

   vpp# set ioam rewrite pot

.. _on-in-band-oam-transit-node-1:

On in-band OAM transit node
^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  Configure the proof of transit profile list with profiles for transit
   node. Example:

   vpp# set pot profile name example id 0 prime-number
   0x7fff0000fa884685 secret_share 0x564cdbdec4eb625d lpc 0x1
   polynomial2 0x23f3a227186a bits-in-random 63

On in-band OAM decapsulating node / verifier
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

-  The decapsulating node, similar to the encapsulating node requires
   classification of the packets to remove iOAM data from.

   -  Example to decapsulate iOAM data for packets towards db06::06
      configure classifier and enable it as an ACL as follows:

   vpp# classify table miss-next node ip6-lookup mask l3 ip6 dst

   vpp# classify session acl-hit-next node ip6-lookup table-index 0
   match l3 ip6 dst db06::06 opaque-index 100

   vpp# set int input acl intfc GigabitEthernet0/0/0 ip6-table 0

-  To update and verify the proof of transit, POT profile list should be
   configured.

   -  Example POT profile list configured as follows:

   vpp# set pot profile name example id 0 validate-key
   0x7fff0000fa88465d prime-number 0x7fff0000fa884685 secret_share
   0x7a08fbfc5b93116d lpc 0x3 polynomial2 0x3ff738597ce bits-in-random
   63

Operational data
----------------

Following CLIs are available to check iOAM operation: - To check iOAM
configuration that are effective use “show ioam summary”

Example:

::

   vpp# show ioam summary
                 REWRITE FLOW CONFIGS - Not configured
    HOP BY HOP OPTIONS - TRACE CONFIG -
                           Trace Type : 0x1f (31)
            Trace timestamp precision : 1 (Milliseconds)
                   Num of trace nodes : 4
                              Node-id : 0x2 (2)
                             App Data : 0x1234 (4660)
                           POT OPTION - 1 (Enabled)
   Try 'show ioam pot and show pot profile' for more information

-  To find statistics about packets for which iOAM options were added
   (encapsulating node) and removed (decapsulating node) execute *show
   errors*

Example on encapsulating node:

::

   vpp# show error
      Count                    Node                  Reason
   1208804706                ip6-inacl               input ACL hits
   1208804706           ip6-add-hop-by-hop           Pkts w/ added ip6 hop-by-hop options

Example on decapsulating node:

::

   vpp# show error
      Count                    Node                  Reason
     69508569                ip6-inacl               input ACL hits
     69508569           ip6-pop-hop-by-hop           Pkts w/ removed ip6 hop-by-hop options

-  To check the POT profiles use “show pot profile”

Example:

::

   vpp# show pot profile
   Profile list in use  : example
   POT Profile at index: 0
                    ID : 0
             Validator : False (0)
          Secret share : 0x564cdbdec4eb625d (6218586935324795485)
          Prime number : 0x7fff0000fa884685 (9223090566081300101)
   2nd polynomial(eval) : 0x23f3a227186a (39529304496234)
                    LPC : 0x1 (1)
              Bit mask : 0x7fffffffffffffff (9223372036854775807)
   Profile index in use: 0
   Pkts passed : 0x36 (54)

-  To get statistics of POT for packets use “show ioam pot”

Example at encapsulating or transit node:

::

   vpp# show ioam pot
    Pkts with ip6 hop-by-hop POT options - 54
    Pkts with ip6 hop-by-hop POT options but no profile set - 0
    Pkts with POT in Policy - 0
    Pkts with POT out of Policy - 0

Example at decapsulating/verification node:

::

   vpp# show ioam pot
    Pkts with ip6 hop-by-hop POT options - 54
    Pkts with ip6 hop-by-hop POT options but no profile set - 0
    Pkts with POT in Policy - 54
    Pkts with POT out of Policy - 0

-  Tracing - enable trace of IPv6 packets to view the data inserted and
   collected.

Example when the nodes are receiving data over a DPDK interface: Enable
tracing using “trace add dpdk-input 20” and execute “show trace” to view
the iOAM data collected:

::

    vpp# trace add dpdk-input 20

    vpp# show trace

    ------------------- Start of thread 0 vpp_main -------------------

    Packet 1

    00:00:19:294697: dpdk-input
      GigabitEthernetb/0/0 rx queue 0
      buffer 0x10e6b: current data 0, length 214, free-list 0, totlen-nifb 0, trace 0x0
      PKT MBUF: port 0, nb_segs 1, pkt_len 214
        buf_len 2176, data_len 214, ol_flags 0x0, data_off 128, phys_addr 0xe9a35a00
        packet_type 0x0
      IP6: 00:50:56:9c:df:72 -> 00:50:56:9c:be:55
      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6
        tos 0x00, flow label 0x0, hop limit 63, payload length 160
    00:00:19:294737: ethernet-input
      IP6: 00:50:56:9c:df:72 -> 00:50:56:9c:be:55
    00:00:19:294753: ip6-input
      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6
        tos 0x00, flow label 0x0, hop limit 63, payload length 160
    00:00:19:294757: ip6-lookup
      fib 0 adj-idx 15 : indirect via db05::2 flow hash: 0x00000000
      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6
        tos 0x00, flow label 0x0, hop limit 63, payload length 160
    00:00:19:294802: ip6-hop-by-hop
      IP6_HOP_BY_HOP: next index 5 len 96 traced 96  Trace Type 0x1f , 1 elts left
        [0] ttl 0x0 node ID 0x0 ingress 0x0 egress 0x0 ts 0x0
    app 0x0
        [1] ttl 0x3e node ID 0x3 ingress 0x1 egress 0x2 ts 0xb68c2213
    app 0x1234
        [2] ttl 0x3f node ID 0x2 ingress 0x1 egress 0x2 ts 0xb68c2204
    app 0x1234
        [3] ttl 0x40 node ID 0x1 ingress 0x5 egress 0x6 ts 0xb68c2200
    app 0x1234
        POT opt present
              random = 0x577a916946071950, Cumulative = 0x10b46e78a35a392d, Index = 0x0
    00:00:19:294810: ip6-rewrite
      tx_sw_if_index 1 adj-idx 14 : GigabitEthernetb/0/0
                                    IP6: 00:50:56:9c:be:55 -> 00:50:56:9c:df:72 flow hash: 0x00000000
      IP6: 00:50:56:9c:be:55 -> 00:50:56:9c:df:72
      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6
        tos 0x00, flow label 0x0, hop limit 62, payload length 160
    00:00:19:294814: GigabitEthernetb/0/0-output
      GigabitEthernetb/0/0
      IP6: 00:50:56:9c:be:55 -> 00:50:56:9c:df:72
      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6
        tos 0x00, flow label 0x0, hop limit 62, payload length 160
    00:00:19:294820: GigabitEthernetb/0/0-tx
      GigabitEthernetb/0/0 tx queue 0
      buffer 0x10e6b: current data 0, length 214, free-list 0, totlen-nifb 0, trace 0x0
      IP6: 00:50:56:9c:be:55 -> 00:50:56:9c:df:72

      IP6_HOP_BY_HOP_OPTIONS: db05::2 -> db06::6

        tos 0x00, flow label 0x0, hop limit 62, payload length 160