summaryrefslogtreecommitdiffstats
path: root/src/plugins/memif/device.c
blob: 28bf8259311ca0220da8f6f3c3bc60045d591c8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/*
 *------------------------------------------------------------------
 * Copyright (c) 2016 Cisco and/or its affiliates.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *------------------------------------------------------------------
 */

#define _GNU_SOURCE
#include <stdint.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/uio.h>

#include <vlib/vlib.h>
#include <vlib/unix/unix.h>
#include <vnet/ethernet/ethernet.h>

#include <memif/memif.h>
#include <memif/private.h>

#define foreach_memif_tx_func_error	       \
_(NO_FREE_SLOTS, "no free tx slots")           \
_(ROLLBACK, "no enough space in tx buffers")

typedef enum
{
#define _(f,s) MEMIF_TX_ERROR_##f,
  foreach_memif_tx_func_error
#undef _
    MEMIF_TX_N_ERROR,
} memif_tx_func_error_t;

static char *memif_tx_func_error_strings[] = {
#define _(n,s) s,
  foreach_memif_tx_func_error
#undef _
};

#ifndef CLIB_MARCH_VARIANT
u8 *
format_memif_device_name (u8 * s, va_list * args)
{
  u32 dev_instance = va_arg (*args, u32);
  memif_main_t *mm = &memif_main;
  memif_if_t *mif = pool_elt_at_index (mm->interfaces, dev_instance);
  memif_socket_file_t *msf;

  msf = pool_elt_at_index (mm->socket_files, mif->socket_file_index);
  s = format (s, "memif%lu/%lu", msf->socket_id, mif->id);
  return s;
}
#endif

static u8 *
format_memif_device (u8 * s, va_list * args)
{
  u32 dev_instance = va_arg (*args, u32);
  int verbose = va_arg (*args, int);
  u32 indent = format_get_indent (s);

  s = format (s, "MEMIF interface");
  if (verbose)
    {
      s = format (s, "\n%U instance %u", format_white_space, indent + 2,
		  dev_instance);
    }
  return s;
}

static u8 *
format_memif_tx_trace (u8 * s, va_list * args)
{
  s = format (s, "Unimplemented...");
  return s;
}

static_always_inline void
memif_add_copy_op (memif_per_thread_data_t * ptd, void *data, u32 len,
		   u16 buffer_offset, u16 buffer_vec_index)
{
  memif_copy_op_t *co;
  vec_add2_aligned (ptd->copy_ops, co, 1, CLIB_CACHE_LINE_BYTES);
  co->data = data;
  co->data_len = len;
  co->buffer_offset = buffer_offset;
  co->buffer_vec_index = buffer_vec_index;
}

static_always_inline uword
memif_interface_tx_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
			   vlib_frame_t * frame, memif_if_t * mif,
			   memif_ring_type_t type, memif_queue_t * mq,
			   memif_per_thread_data_t * ptd)
{
  memif_ring_t *ring;
  u32 *buffers = vlib_frame_vector_args (frame);
  u32 n_left = frame->n_vectors;
  u32 n_copy_op;
  u16 ring_size, mask, slot, free_slots;
  int n_retries = 5;
  vlib_buffer_t *b0, *b1, *b2, *b3;
  memif_copy_op_t *co;
  memif_region_index_t last_region = ~0;
  void *last_region_shm = 0;

  ring = mq->ring;
  ring_size = 1 << mq->log2_ring_size;
  mask = ring_size - 1;

retry:

  free_slots = ring->tail - mq->last_tail;
  mq->last_tail += free_slots;
  slot = (type == MEMIF_RING_S2M) ? ring->head : ring->tail;

  if (type == MEMIF_RING_S2M)
    free_slots = ring_size - ring->head + mq->last_tail;
  else
    free_slots = ring->head - ring->tail;

  while (n_left && free_slots)
    {
      memif_desc_t *d0;
      void *mb0;
      i32 src_off;
      u32 bi0, dst_off, src_left, dst_left, bytes_to_copy;
      u32 saved_ptd_copy_ops_len = _vec_len (ptd->copy_ops);
      u32 saved_ptd_buffers_len = _vec_len (ptd->buffers);
      u16 saved_slot = slot;

      CLIB_PREFETCH (&ring->desc[(slot + 8) & mask], CLIB_CACHE_LINE_BYTES,
		     LOAD);

      d0 = &ring->desc[slot & mask];
      if (PREDICT_FALSE (last_region != d0->region))
	{
	  last_region_shm = mif->regions[d0->region].shm;
	  last_region = d0->region;
	}
      mb0 = last_region_shm + d0->offset;

      dst_off = 0;

      /* slave is the producer, so it should be able to reset buffer length */
      dst_left = (type == MEMIF_RING_S2M) ? mif->run.buffer_size : d0->length;

      if (PREDICT_TRUE (n_left >= 4))
	vlib_prefetch_buffer_header (vlib_get_buffer (vm, buffers[3]), LOAD);
      bi0 = buffers[0];

    next_in_chain:

      b0 = vlib_get_buffer (vm, bi0);
      src_off = b0->current_data;
      src_left = b0->current_length;

      while (src_left)
	{
	  if (PREDICT_FALSE (dst_left == 0))
	    {
	      if (free_slots)
		{
		  slot++;
		  free_slots--;
		  d0->flags = MEMIF_DESC_FLAG_NEXT;
		  d0 = &ring->desc[slot & mask];
		  dst_off = 0;
		  dst_left =
		    (type ==
		     MEMIF_RING_S2M) ? mif->run.buffer_size : d0->length;

		  if (PREDICT_FALSE (last_region != d0->region))
		    {
		      last_region_shm = mif->regions[d0->region].shm;
		      last_region = d0->region;
		    }
		  mb0 = last_region_shm + d0->offset;
		}
	      else
		{
		  /* we need to rollback vectors before bailing out */
		  _vec_len (ptd->buffers) = saved_ptd_buffers_len;
		  _vec_len (ptd->copy_ops) = saved_ptd_copy_ops_len;
		  vlib_error_count (vm, node->node_index,
				    MEMIF_TX_ERROR_ROLLBACK, 1);
		  slot = saved_slot;
		  goto no_free_slots;
		}
	    }
	  bytes_to_copy = clib_min (src_left, dst_left);
	  memif_add_copy_op (ptd, mb0 + dst_off, bytes_to_copy, src_off,
			     vec_len (ptd->buffers));
	  vec_add1_aligned (ptd->buffers, bi0, CLIB_CACHE_LINE_BYTES);
	  src_off += bytes_to_copy;
	  dst_off += bytes_to_copy;
	  src_left -= bytes_to_copy;
	  dst_left -= bytes_to_copy;
	}

      if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_NEXT_PRESENT))
	{
	  bi0 = b0->next_buffer;
	  goto next_in_chain;
	}

      d0->length = dst_off;
      d0->flags = 0;

      free_slots -= 1;
      slot += 1;

      buffers++;
      n_left--;
    }
no_free_slots:

  /* copy data */
  n_copy_op = vec_len (ptd->copy_ops);
  co = ptd->copy_ops;
  while (n_copy_op >= 8)
    {
      CLIB_PREFETCH (co[4].data, CLIB_CACHE_LINE_BYTES, LOAD);
      CLIB_PREFETCH (co[5].data, CLIB_CACHE_LINE_BYTES, LOAD);
      CLIB_PREFETCH (co[6].data, CLIB_CACHE_LINE_BYTES, LOAD);
      CLIB_PREFETCH (co[7].data, CLIB_CACHE_LINE_BYTES, LOAD);

      b0 = vlib_get_buffer (vm, ptd->buffers[co[0].buffer_vec_index]);
      b1 = vlib_get_buffer (vm, ptd->buffers[co[1].buffer_vec_index]);
      b2 = vlib_get_buffer (vm, ptd->buffers[co[2].buffer_vec_index]);
      b3 = vlib_get_buffer (vm, ptd->buffers[co[3].buffer_vec_index]);

      clib_memcpy_fast (co[0].data, b0->data + co[0].buffer_offset,
			co[0].data_len);
      clib_memcpy_fast (co[1].data, b1->data + co[1].buffer_offset,
			co[1].data_len);
      clib_memcpy_fast (co[2].data, b2->data + co[2].buffer_offset,
			co[2].data_len);
      clib_memcpy_fast (co[3].data, b3->data + co[3].buffer_offset,
			co[3].data_len);

      co += 4;
      n_copy_op -= 4;
    }
  while (n_copy_op)
    {
      b0 = vlib_get_buffer (vm, ptd->buffers[co[0].buffer_vec_index]);
      clib_memcpy_fast (co[0].data, b0->data + co[0].buffer_offset,
			co[0].data_len);
      co += 1;
      n_copy_op -= 1;
    }

  vec_reset_length (ptd->copy_ops);
  vec_reset_length (ptd->buffers);

  CLIB_MEMORY_STORE_BARRIER ();
  if (type == MEMIF_RING_S2M)
    ring->head = slot;
  else
    ring->tail = slot;

  if (n_left && n_retries--)
    goto retry;

  clib_spinlock_unlock_if_init (&mif->lockp);

  if (n_left)
    {
      vlib_error_count (vm, node->node_index, MEMIF_TX_ERROR_NO_FREE_SLOTS,
			n_left);
    }

  if ((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0 && mq->int_fd > -1)
    {
      u64 b = 1;
      CLIB_UNUSED (int r) = write (mq->int_fd, &b, sizeof (b));
      mq->int_count++;
    }

  vlib_buffer_free (vm, vlib_frame_vector_args (frame), frame->n_vectors);

  return frame->n_vectors;
}

static_always_inline uword
memif_interface_tx_zc_inline (vlib_main_t * vm, vlib_node_runtime_t * node,
			      vlib_frame_t * frame, memif_if_t * mif,
			      memif_queue_t * mq,
			      memif_per_thread_data_t * ptd)
{
  memif_ring_t *ring = mq->ring;
  u32 *buffers = vlib_frame_vector_args (frame);
  u32 n_left = frame->n_vectors;
  u16 slot, free_slots, n_free;
  u16 ring_size = 1 << mq->log2_ring_size;
  u16 mask = ring_size - 1;
  int n_retries = 5;
  vlib_buffer_t *b0;

retry:
  n_free = ring->tail - mq->last_tail;
  if (n_free >= 16)
    {
      vlib_buffer_free_from_ring_no_next (vm, mq->buffers,
					  mq->last_tail & mask,
					  ring_size, n_free);
      mq->last_tail += n_free;
    }

  slot = ring->head;
  free_slots = ring_size - ring->head + mq->last_tail;

  while (n_left && free_slots)
    {
      u16 s0;
      u16 slots_in_packet = 1;
      memif_desc_t *d0;
      u32 bi0;

      CLIB_PREFETCH (&ring->desc[(slot + 8) & mask], CLIB_CACHE_LINE_BYTES,
		     STORE);

      if (PREDICT_TRUE (n_left >= 4))
	vlib_prefetch_buffer_header (vlib_get_buffer (vm, buffers[3]), LOAD);

      bi0 = buffers[0];

    next_in_chain:
      s0 = slot & mask;
      d0 = &ring->desc[s0];
      mq->buffers[s0] = bi0;
      b0 = vlib_get_buffer (vm, bi0);

      d0->region = b0->buffer_pool_index + 1;
      d0->offset = (void *) b0->data + b0->current_data -
	mif->regions[d0->region].shm;
      d0->length = b0->current_length;

      free_slots--;
      slot++;

      if (PREDICT_FALSE (b0->flags & VLIB_BUFFER_NEXT_PRESENT))
	{
	  if (PREDICT_FALSE (free_slots == 0))
	    {
	      /* revert to last fully processed packet */
	      free_slots += slots_in_packet;
	      slot -= slots_in_packet;
	      goto no_free_slots;
	    }

	  d0->flags = MEMIF_DESC_FLAG_NEXT;
	  bi0 = b0->next_buffer;

	  /* next */
	  slots_in_packet++;
	  goto next_in_chain;
	}

      d0->flags = 0;

      /* next from */
      buffers++;
      n_left--;
    }
no_free_slots:

  CLIB_MEMORY_STORE_BARRIER ();
  ring->head = slot;

  if (n_left && n_retries--)
    goto retry;

  clib_spinlock_unlock_if_init (&mif->lockp);

  if (n_left)
    {
      vlib_error_count (vm, node->node_index, MEMIF_TX_ERROR_NO_FREE_SLOTS,
			n_left);
      vlib_buffer_free (vm, buffers, n_left);
    }

  if ((ring->flags & MEMIF_RING_FLAG_MASK_INT) == 0 && mq->int_fd > -1)
    {
      u64 b = 1;
      CLIB_UNUSED (int r) = write (mq->int_fd, &b, sizeof (b));
      mq->int_count++;
    }

  return frame->n_vectors;
}

VNET_DEVICE_CLASS_TX_FN (memif_device_class) (vlib_main_t * vm,
					      vlib_node_runtime_t * node,
					      vlib_frame_t * frame)
{
  memif_main_t *nm = &memif_main;
  vnet_interface_output_runtime_t *rund = (void *) node->runtime_data;
  memif_if_t *mif = pool_elt_at_index (nm->interfaces, rund->dev_instance);
  memif_queue_t *mq;
  u32 thread_index = vm->thread_index;
  memif_per_thread_data_t *ptd = vec_elt_at_index (memif_main.per_thread_data,
						   thread_index);
  u8 tx_queues = vec_len (mif->tx_queues);

  if (tx_queues < vec_len (vlib_mains))
    {
      ASSERT (tx_queues > 0);
      mq = vec_elt_at_index (mif->tx_queues, thread_index % tx_queues);
      clib_spinlock_lock_if_init (&mif->lockp);
    }
  else
    mq = vec_elt_at_index (mif->tx_queues, thread_index);

  if (mif->flags & MEMIF_IF_FLAG_ZERO_COPY)
    return memif_interface_tx_zc_inline (vm, node, frame, mif, mq, ptd);
  else if (mif->flags & MEMIF_IF_FLAG_IS_SLAVE)
    return memif_interface_tx_inline (vm, node, frame, mif, MEMIF_RING_S2M,
				      mq, ptd);
  else
    return memif_interface_tx_inline (vm, node, frame, mif, MEMIF_RING_M2S,
				      mq, ptd);
}

static void
memif_set_interface_next_node (vnet_main_t * vnm, u32 hw_if_index,
			       u32 node_index)
{
  memif_main_t *apm = &memif_main;
  vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
  memif_if_t *mif = pool_elt_at_index (apm->interfaces, hw->dev_instance);

  /* Shut off redirection */
  if (node_index == ~0)
    {
      mif->per_interface_next_index = node_index;
      return;
    }

  mif->per_interface_next_index =
    vlib_node_add_next (vlib_get_main (), memif_input_node.index, node_index);
}

static void
memif_clear_hw_interface_counters (u32 instance)
{
  /* Nothing for now */
}

static clib_error_t *
memif_interface_rx_mode_change (vnet_main_t * vnm, u32 hw_if_index, u32 qid,
				vnet_hw_interface_rx_mode mode)
{
  memif_main_t *mm = &memif_main;
  vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
  memif_if_t *mif = pool_elt_at_index (mm->interfaces, hw->dev_instance);
  memif_queue_t *mq = vec_elt_at_index (mif->rx_queues, qid);

  if (mode == VNET_HW_INTERFACE_RX_MODE_POLLING)
    mq->ring->flags |= MEMIF_RING_FLAG_MASK_INT;
  else
    mq->ring->flags &= ~MEMIF_RING_FLAG_MASK_INT;

  return 0;
}

static clib_error_t *
memif_interface_admin_up_down (vnet_main_t * vnm, u32 hw_if_index, u32 flags)
{
  memif_main_t *mm = &memif_main;
  vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
  memif_if_t *mif = pool_elt_at_index (mm->interfaces, hw->dev_instance);
  static clib_error_t *error = 0;

  if (flags & VNET_SW_INTERFACE_FLAG_ADMIN_UP)
    mif->flags |= MEMIF_IF_FLAG_ADMIN_UP;
  else
    mif->flags &= ~MEMIF_IF_FLAG_ADMIN_UP;

  return error;
}

static clib_error_t *
memif_subif_add_del_function (vnet_main_t * vnm,
			      u32 hw_if_index,
			      struct vnet_sw_interface_t *st, int is_add)
{
  /* Nothing for now */
  return 0;
}

/* *INDENT-OFF* */
VNET_DEVICE_CLASS (memif_device_class) = {
  .name = "memif",
  .format_device_name = format_memif_device_name,
  .format_device = format_memif_device,
  .format_tx_trace = format_memif_tx_trace,
  .tx_function_n_errors = MEMIF_TX_N_ERROR,
  .tx_function_error_strings = memif_tx_func_error_strings,
  .rx_redirect_to_node = memif_set_interface_next_node,
  .clear_counters = memif_clear_hw_interface_counters,
  .admin_up_down_function = memif_interface_admin_up_down,
  .subif_add_del_function = memif_subif_add_del_function,
  .rx_mode_change_function = memif_interface_rx_mode_change,
};

/* *INDENT-ON* */

/*
 * fd.io coding-style-patch-verification: ON
 *
 * Local Variables:
 * eval: (c-set-style "gnu")
 * End:
 */
an> @classmethod def setUpClass(cls): super(ARPTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(ARPTestCase, cls).tearDownClass() def setUp(self): super(ARPTestCase, self).setUp() # create 3 pg interfaces self.create_pg_interfaces(range(4)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() self.pg0.config_ip4() self.pg0.config_ip6() self.pg0.resolve_arp() self.pg1.config_ip4() self.pg1.config_ip6() # pg3 in a different VRF self.tbl = VppIpTable(self, 1) self.tbl.add_vpp_config() self.pg3.set_table_ip4(1) self.pg3.config_ip4() def tearDown(self): self.pg0.unconfig_ip4() self.pg0.unconfig_ip6() self.pg1.unconfig_ip4() self.pg1.unconfig_ip6() self.pg3.unconfig_ip4() self.pg3.set_table_ip4(0) for i in self.pg_interfaces: i.admin_down() super(ARPTestCase, self).tearDown() def verify_arp_req(self, rx, smac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, "ff:ff:ff:ff:ff:ff") self.assertEqual(ether.src, smac) self.assertEqual(ether.type, 0x0806) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["who-has"]) self.assertEqual(arp.hwsrc, smac) self.assertEqual(arp.hwdst, "00:00:00:00:00:00") self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def verify_arp_resp(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) self.assertEqual(ether.type, 0x0806) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["is-at"]) self.assertEqual(arp.hwsrc, smac) self.assertEqual(arp.hwdst, dmac) self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def verify_arp_vrrp_resp(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["is-at"]) self.assertNotEqual(arp.hwsrc, smac) self.assertTrue("00:00:5e:00:01" in arp.hwsrc or "00:00:5E:00:01" in arp.hwsrc) self.assertEqual(arp.hwdst, dmac) self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def verify_ip(self, rx, smac, dmac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) self.assertEqual(ether.type, 0x0800) ip = rx[IP] self.assertEqual(ip.src, sip) self.assertEqual(ip.dst, dip) def verify_ip_o_mpls(self, rx, smac, dmac, label, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, dmac) self.assertEqual(ether.src, smac) self.assertEqual(ether.type, 0x8847) mpls = rx[MPLS] self.assertTrue(mpls.label, label) ip = rx[IP] self.assertEqual(ip.src, sip) self.assertEqual(ip.dst, dip) def test_arp(self): """ ARP """ # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(11) # # watch for: # - all neighbour events # - all neighbor events on pg1 # - neighbor events for host[1] on pg1 # self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid()) self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index) self.vapi.want_ip_neighbor_events(enable=1, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index, ip=self.pg1.remote_hosts[1].ip4) self.logger.info(self.vapi.cli("sh ip neighbor-watcher")) # # Send IP traffic to one of these unresolved hosts. # expect the generation of an ARP request # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) # # And a dynamic ARP entry for host 1 # dyn_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) dyn_arp.add_vpp_config() self.assertTrue(dyn_arp.query_vpp_config()) self.logger.info(self.vapi.cli("show ip neighbor-watcher")) # this matches all of the listnerers es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(3)] for e in es: self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[1].ip4) # # now we expect IP traffic forwarded # dyn_p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(dyn_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[1].ip4) # # And a Static ARP entry for host 2 # static_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].mac, self.pg1.remote_hosts[2].ip4, is_static=1) static_arp.add_vpp_config() es = [self.vapi.wait_for_event(1, "ip_neighbor_event") for i in range(2)] for e in es: self.assertEqual(str(e.neighbor.ip_address), self.pg1.remote_hosts[2].ip4) static_p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[2].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(static_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[2].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[2].ip4) # # remove all the listeners # self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid()) self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index) self.vapi.want_ip_neighbor_events(enable=0, pid=os.getpid(), sw_if_index=self.pg1.sw_if_index, ip=self.pg1.remote_hosts[1].ip4) # # flap the link. dynamic ARPs get flush, statics don't # self.pg1.admin_down() self.pg1.admin_up() self.pg0.add_stream(static_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_ip(rx[0], self.pg1.local_mac, self.pg1.remote_hosts[2].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[2].ip4) self.pg0.add_stream(dyn_p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) self.assertFalse(dyn_arp.query_vpp_config()) self.assertTrue(static_arp.query_vpp_config()) # # Send an ARP request from one of the so-far unlearned remote hosts # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[3].mac) / ARP(op="who-has", hwsrc=self.pg1._remote_hosts[3].mac, pdst=self.pg1.local_ip4, psrc=self.pg1._remote_hosts[3].ip4)) self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1._remote_hosts[3].mac, self.pg1.local_ip4, self.pg1._remote_hosts[3].ip4) # # VPP should have learned the mapping for the remote host # self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[3].ip4)) # # Fire in an ARP request before the interface becomes IP enabled # self.pg2.generate_remote_hosts(4) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg2.remote_hosts[3].ip4)) pt = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg2.remote_hosts[3].ip4)) self.send_and_assert_no_replies(self.pg2, p, "interface not IP enabled") # # Make pg2 un-numbered to pg1 # self.pg2.set_unnumbered(self.pg1.sw_if_index) # # test the unnumbered dump both by all interfaces and just the enabled # one # unnum = self.vapi.ip_unnumbered_dump() self.assertTrue(len(unnum)) self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index) self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index) unnum = self.vapi.ip_unnumbered_dump(self.pg2.sw_if_index) self.assertTrue(len(unnum)) self.assertEqual(unnum[0].ip_sw_if_index, self.pg1.sw_if_index) self.assertEqual(unnum[0].sw_if_index, self.pg2.sw_if_index) # # We should respond to ARP requests for the unnumbered to address # once an attached route to the source is known # self.send_and_assert_no_replies( self.pg2, p, "ARP req for unnumbered address - no source") attached_host = VppIpRoute(self, self.pg2.remote_hosts[3].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) attached_host.add_vpp_config() self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg2.remote_hosts[3].ip4) self.pg2.add_stream(pt) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg2.remote_hosts[3].ip4) # # A neighbor entry that has no associated FIB-entry # arp_no_fib = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[4].mac, self.pg1.remote_hosts[4].ip4, is_no_fib_entry=1) arp_no_fib.add_vpp_config() # # check we have the neighbor, but no route # self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1._remote_hosts[4].ip4)) self.assertFalse(find_route(self, self.pg1._remote_hosts[4].ip4, 32)) # # pg2 is unnumbered to pg1, so we can form adjacencies out of pg2 # from within pg1's subnet # arp_unnum = VppNeighbor(self, self.pg2.sw_if_index, self.pg1.remote_hosts[5].mac, self.pg1.remote_hosts[5].ip4) arp_unnum.add_vpp_config() p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[5].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_ip(rx[0], self.pg2.local_mac, self.pg1.remote_hosts[5].mac, self.pg0.remote_ip4, self.pg1._remote_hosts[5].ip4) # # ARP requests from hosts in pg1's subnet sent on pg2 are replied to # with the unnumbered interface's address as the source # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[6].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[6].ip4) # # An attached host route out of pg2 for an undiscovered hosts generates # an ARP request with the unnumbered address as the source # att_unnum = VppIpRoute(self, self.pg1.remote_hosts[7].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) att_unnum.add_vpp_config() p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1._remote_hosts[7].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_req(rx[0], self.pg2.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[7].ip4) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[7].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[7].ip4) # # An attached host route as yet unresolved out of pg2 for an # undiscovered host, an ARP requests begets a response. # att_unnum1 = VppIpRoute(self, self.pg1.remote_hosts[8].ip4, 32, [VppRoutePath("0.0.0.0", self.pg2.sw_if_index)]) att_unnum1.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[8].ip4)) self.pg2.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[8].ip4) # # Send an ARP request from one of the so-far unlearned remote hosts # with a VLAN0 tag # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1._remote_hosts[9].mac) / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg1._remote_hosts[9].mac, pdst=self.pg1.local_ip4, psrc=self.pg1._remote_hosts[9].ip4)) self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1._remote_hosts[9].mac, self.pg1.local_ip4, self.pg1._remote_hosts[9].ip4) # # Add a hierarchy of routes for a host in the sub-net. # Should still get an ARP resp since the cover is attached # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_mac) / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[10].ip4)) r1 = VppIpRoute(self, self.pg1.remote_hosts[10].ip4, 30, [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)]) r1.add_vpp_config() self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[10].ip4) r2 = VppIpRoute(self, self.pg1.remote_hosts[10].ip4, 32, [VppRoutePath(self.pg1.remote_hosts[10].ip4, self.pg1.sw_if_index)]) r2.add_vpp_config() self.pg1.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, self.pg1.local_ip4, self.pg1.remote_hosts[10].ip4) # # add an ARP entry that's not on the sub-net and so whose # adj-fib fails the refinement check. then send an ARP request # from that source # a1 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_mac, "100.100.100.50") a1.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc="100.100.100.50", pdst=self.pg0.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for from failed adj-fib") # # ERROR Cases # 1 - don't respond to ARP request for address not within the # interface's sub-net # 1b - nor within the unnumbered subnet # 1c - nor within the subnet of a different interface # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local destination") self.assertFalse(find_nbr(self, self.pg0.sw_if_index, "10.10.10.3")) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_hosts[7].ip4)) self.send_and_assert_no_replies( self.pg0, p, "ARP req for non-local destination - unnum") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst=self.pg1.local_ip4, psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req diff sub-net") self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg1.remote_ip4)) # # 2 - don't respond to ARP request from an address not within the # interface's sub-net # 2b - to a proxied address # 2c - not within a different interface's sub-net p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc="10.10.10.3", pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_mac) / ARP(op="who-has", hwsrc=self.pg2.remote_mac, psrc="10.10.10.3", pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies( self.pg0, p, "ARP req for non-local source - unnum") p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg1.remote_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source 2c") # # 3 - don't respond to ARP request from an address that belongs to # the router # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg0.local_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") # # 4 - don't respond to ARP requests that has mac source different # from ARP request HW source # p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc="00:00:00:DE:AD:BE", psrc=self.pg0.remote_ip4, pdst=self.pg0.local_ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local source") # # 5 - don't respond to ARP requests for address within the # interface's sub-net but not the interface's address # self.pg0.generate_remote_hosts(2) p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, psrc=self.pg0.remote_hosts[0].ip4, pdst=self.pg0.remote_hosts[1].ip4)) self.send_and_assert_no_replies(self.pg0, p, "ARP req for non-local destination") # # cleanup # static_arp.remove_vpp_config() self.pg2.unset_unnumbered(self.pg1.sw_if_index) # need this to flush the adj-fibs self.pg2.unset_unnumbered(self.pg1.sw_if_index) self.pg2.admin_down() self.pg1.admin_down() def test_proxy_mirror_arp(self): """ Interface Mirror Proxy ARP """ # # When VPP has an interface whose address is also applied to a TAP # interface on the host, then VPP's TAP interface will be unnumbered # to the 'real' interface and do proxy ARP from the host. # the curious aspect of this setup is that ARP requests from the host # will come from the VPP's own address. # self.pg0.generate_remote_hosts(2) arp_req_from_me = (Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst=self.pg0.remote_hosts[1].ip4, psrc=self.pg0.local_ip4)) # # Configure Proxy ARP for the subnet on PG0addresses on pg0 # self.vapi.proxy_arp_add_del(proxy={'table_id': 0, 'low': self.pg0._local_ip4_subnet, 'hi': self.pg0._local_ip4_bcast}, is_add=1) # Make pg2 un-numbered to pg0 # self.pg2.set_unnumbered(self.pg0.sw_if_index) # # Enable pg2 for proxy ARP # self.pg2.set_proxy_arp() # # Send the ARP request with an originating address that # is VPP's own address # rx = self.send_and_expect(self.pg2, [arp_req_from_me], self.pg2) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, self.pg0.remote_hosts[1].ip4, self.pg0.local_ip4) # # validate we have not learned an ARP entry as a result of this # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg0.local_ip4)) # # setup a punt redirect so packets from the uplink go to the tap # redirect = VppIpPuntRedirect(self, self.pg0.sw_if_index, self.pg2.sw_if_index, self.pg0.local_ip4) redirect.add_vpp_config() p_tcp = (Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac,) / IP(src=self.pg0.remote_ip4, dst=self.pg0.local_ip4) / TCP(sport=80, dport=80) / Raw()) rx = self.send_and_expect(self.pg0, [p_tcp], self.pg2) # there's no ARP entry so this is an ARP req self.assertTrue(rx[0].haslayer(ARP)) # and ARP entry for VPP's pg0 address on the host interface n1 = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_mac, self.pg0.local_ip4, is_no_fib_entry=True).add_vpp_config() # now the packets shold forward rx = self.send_and_expect(self.pg0, [p_tcp], self.pg2) self.assertFalse(rx[0].haslayer(ARP)) self.assertEqual(rx[0][Ether].dst, self.pg2.remote_mac) # # flush the neighbor cache on the uplink # af = VppEnum.vl_api_address_family_t self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, self.pg0.sw_if_index) # ensure we can still resolve the ARPs on the uplink self.pg0.resolve_arp() self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_ip4)) # # cleanup # self.vapi.proxy_arp_add_del(proxy={'table_id': 0, 'low': self.pg0._local_ip4_subnet, 'hi': self.pg0._local_ip4_bcast}, is_add=0) redirect.remove_vpp_config() def test_proxy_arp(self): """ Proxy ARP """ self.pg1.generate_remote_hosts(2) # # Proxy ARP request packets for each interface # arp_req_pg0 = (Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) arp_req_pg0_tagged = (Ether(src=self.pg0.remote_mac, dst="ff:ff:ff:ff:ff:ff") / Dot1Q(vlan=0) / ARP(op="who-has", hwsrc=self.pg0.remote_mac, pdst="10.10.10.3", psrc=self.pg0.remote_ip4)) arp_req_pg1 = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_ip4)) arp_req_pg2 = (Ether(src=self.pg2.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg2.remote_mac, pdst="10.10.10.3", psrc=self.pg1.remote_hosts[1].ip4)) arp_req_pg3 = (Ether(src=self.pg3.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg3.remote_mac, pdst="10.10.10.3", psrc=self.pg3.remote_ip4)) # # Configure Proxy ARP for 10.10.10.0 -> 10.10.10.124 # self.vapi.proxy_arp_add_del(proxy={'table_id': 0, 'low': "10.10.10.2", 'hi': "10.10.10.124"}, is_add=1) # # No responses are sent when the interfaces are not enabled for proxy # ARP # self.send_and_assert_no_replies(self.pg0, arp_req_pg0, "ARP req from unconfigured interface") self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from unconfigured interface") # # Make pg2 un-numbered to pg1 # still won't reply. # self.pg2.set_unnumbered(self.pg1.sw_if_index) self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from unnumbered interface") # # Enable each interface to reply to proxy ARPs # for i in self.pg_interfaces: i.set_proxy_arp() # # Now each of the interfaces should reply to a request to a proxied # address # self.pg0.add_stream(arp_req_pg0) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0.get_capture(1) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, "10.10.10.3", self.pg0.remote_ip4) self.pg0.add_stream(arp_req_pg0_tagged) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0.get_capture(1) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, "10.10.10.3", self.pg0.remote_ip4) self.pg1.add_stream(arp_req_pg1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg1.get_capture(1) self.verify_arp_resp(rx[0], self.pg1.local_mac, self.pg1.remote_mac, "10.10.10.3", self.pg1.remote_ip4) self.pg2.add_stream(arp_req_pg2) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_resp(rx[0], self.pg2.local_mac, self.pg2.remote_mac, "10.10.10.3", self.pg1.remote_hosts[1].ip4) # # A request for an address out of the configured range # arp_req_pg1_hi = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.125", psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, arp_req_pg1_hi, "ARP req out of range HI") arp_req_pg1_low = (Ether(src=self.pg1.remote_mac, dst="ff:ff:ff:ff:ff:ff") / ARP(op="who-has", hwsrc=self.pg1.remote_mac, pdst="10.10.10.1", psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, arp_req_pg1_low, "ARP req out of range Low") # # Request for an address in the proxy range but from an interface # in a different VRF # self.send_and_assert_no_replies(self.pg3, arp_req_pg3, "ARP req from different VRF") # # Disable Each interface for proxy ARP # - expect none to respond # for i in self.pg_interfaces: i.set_proxy_arp(0) self.send_and_assert_no_replies(self.pg0, arp_req_pg0, "ARP req from disable") self.send_and_assert_no_replies(self.pg1, arp_req_pg1, "ARP req from disable") self.send_and_assert_no_replies(self.pg2, arp_req_pg2, "ARP req from disable") # # clean up on interface 2 # self.pg2.unset_unnumbered(self.pg1.sw_if_index) def test_mpls(self): """ MPLS """ # # Interface 2 does not yet have ip4 config # self.pg2.config_ip4() self.pg2.generate_remote_hosts(2) # # Add a route with out going label via an ARP unresolved next-hop # ip_10_0_0_1 = VppIpRoute(self, "10.0.0.1", 32, [VppRoutePath(self.pg2.remote_hosts[1].ip4, self.pg2.sw_if_index, labels=[55])]) ip_10_0_0_1.add_vpp_config() # # packets should generate an ARP request # p = (Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac) / IP(src=self.pg0.remote_ip4, dst="10.0.0.1") / UDP(sport=1234, dport=1234) / Raw(b'\xa5' * 100)) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_arp_req(rx[0], self.pg2.local_mac, self.pg2.local_ip4, self.pg2._remote_hosts[1].ip4) # # now resolve the neighbours # self.pg2.configure_ipv4_neighbors() # # Now packet should be properly MPLS encapped. # This verifies that MPLS link-type adjacencies are completed # when the ARP entry resolves # self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg2.get_capture(1) self.verify_ip_o_mpls(rx[0], self.pg2.local_mac, self.pg2.remote_hosts[1].mac, 55, self.pg0.remote_ip4, "10.0.0.1") self.pg2.unconfig_ip4() def test_arp_vrrp(self): """ ARP reply with VRRP virtual src hw addr """ # # IP packet destined for pg1 remote host arrives on pg0 resulting # in an ARP request for the address of the remote host on pg1 # p0 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_ip4) / UDP(sport=1234, dport=1234) / Raw()) rx1 = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_arp_req(rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_ip4) # # ARP reply for address of pg1 remote host arrives on pg1 with # the hw src addr set to a value in the VRRP IPv4 range of # MAC addresses # p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc="00:00:5e:00:01:09", pdst=self.pg1.local_ip4, psrc=self.pg1.remote_ip4)) self.send_and_assert_no_replies(self.pg1, p1, "ARP reply") # # IP packet destined for pg1 remote host arrives on pg0 again. # VPP should have an ARP entry for that address now and the packet # should be sent out pg1. # rx1 = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_ip(rx1[0], self.pg1.local_mac, "00:00:5e:00:01:09", self.pg0.remote_ip4, self.pg1.remote_ip4) self.pg1.admin_down() self.pg1.admin_up() def test_arp_duplicates(self): """ ARP Duplicates""" # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(3) # # Add host 1 on pg1 and pg2 # arp_pg1 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp_pg1.add_vpp_config() arp_pg2 = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_mac, self.pg1.remote_hosts[1].ip4) arp_pg2.add_vpp_config() # # IP packet destined for pg1 remote host arrives on pg1 again. # p = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_ip(rx1[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) # # remove the duplicate on pg1 # packet stream should generate ARPs out of pg1 # arp_pg1.remove_vpp_config() self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_arp_req(rx1[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_hosts[1].ip4) # # Add it back # arp_pg1.add_vpp_config() self.pg0.add_stream(p) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx1 = self.pg1.get_capture(1) self.verify_ip(rx1[0], self.pg1.local_mac, self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) def test_arp_static(self): """ ARP Static""" self.pg2.generate_remote_hosts(3) # # Add a static ARP entry # static_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].mac, self.pg2.remote_hosts[1].ip4, is_static=1) static_arp.add_vpp_config() # # Add the connected prefix to the interface # self.pg2.config_ip4() # # We should now find the adj-fib # self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].ip4, is_static=1)) self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32)) # # remove the connected # self.pg2.unconfig_ip4() # # put the interface into table 1 # self.pg2.set_table_ip4(1) # # configure the same connected and expect to find the # adj fib in the new table # self.pg2.config_ip4() self.assertTrue(find_route(self, self.pg2.remote_hosts[1].ip4, 32, table_id=1)) # # clean-up # self.pg2.unconfig_ip4() static_arp.remove_vpp_config() self.pg2.set_table_ip4(0) def test_arp_static_replace_dynamic_same_mac(self): """ ARP Static can replace Dynamic (same mac) """ self.pg2.generate_remote_hosts(1) dyn_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].mac, self.pg2.remote_hosts[0].ip4) static_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].mac, self.pg2.remote_hosts[0].ip4, is_static=1) # # Add a dynamic ARP entry # dyn_arp.add_vpp_config() # # We should find the dynamic nbr # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1)) self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0, mac=self.pg2.remote_hosts[0].mac)) # # Add a static ARP entry with the same mac # static_arp.add_vpp_config() # # We should now find the static nbr with the same mac # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0)) self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1, mac=self.pg2.remote_hosts[0].mac)) # # clean-up # static_arp.remove_vpp_config() def test_arp_static_replace_dynamic_diff_mac(self): """ ARP Static can replace Dynamic (diff mac) """ self.pg2.generate_remote_hosts(2) dyn_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].mac, self.pg2.remote_hosts[0].ip4) static_arp = VppNeighbor(self, self.pg2.sw_if_index, self.pg2.remote_hosts[1].mac, self.pg2.remote_hosts[0].ip4, is_static=1) # # Add a dynamic ARP entry # dyn_arp.add_vpp_config() # # We should find the dynamic nbr # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1)) self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0, mac=self.pg2.remote_hosts[0].mac)) # # Add a static ARP entry with a changed mac # static_arp.add_vpp_config() # # We should now find the static nbr with a changed mac # self.assertFalse(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=0)) self.assertTrue(find_nbr(self, self.pg2.sw_if_index, self.pg2.remote_hosts[0].ip4, is_static=1, mac=self.pg2.remote_hosts[1].mac)) # # clean-up # static_arp.remove_vpp_config() def test_arp_incomplete(self): """ ARP Incomplete""" self.pg1.generate_remote_hosts(3) p0 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) p1 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[2].ip4) / UDP(sport=1234, dport=1234) / Raw()) # # a packet to an unresolved destination generates an ARP request # rx = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_arp_req(rx[0], self.pg1.local_mac, self.pg1.local_ip4, self.pg1._remote_hosts[1].ip4) # # add a neighbour for remote host 1 # static_arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4, is_static=1) static_arp.add_vpp_config() # # change the interface's MAC # self.vapi.sw_interface_set_mac_address(self.pg1.sw_if_index, "00:00:00:33:33:33") # # now ARP requests come from the new source mac # rx = self.send_and_expect(self.pg0, [p1], self.pg1) self.verify_arp_req(rx[0], "00:00:00:33:33:33", self.pg1.local_ip4, self.pg1._remote_hosts[2].ip4) # # packets to the resolved host also have the new source mac # rx = self.send_and_expect(self.pg0, [p0], self.pg1) self.verify_ip(rx[0], "00:00:00:33:33:33", self.pg1.remote_hosts[1].mac, self.pg0.remote_ip4, self.pg1.remote_hosts[1].ip4) # # set the mac address on the interface that does not have a # configured subnet and thus no glean # self.vapi.sw_interface_set_mac_address(self.pg2.sw_if_index, "00:00:00:33:33:33") def test_garp(self): """ GARP """ # # Generate some hosts on the LAN # self.pg1.generate_remote_hosts(4) self.pg2.generate_remote_hosts(4) # # And an ARP entry # arp = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp.add_vpp_config() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[1].mac)) # # Send a GARP (request) to swap the host 1's address to that of host 2 # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[2].mac) / ARP(op="who-has", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[2].mac, pdst=self.pg1.remote_hosts[1].ip4, psrc=self.pg1.remote_hosts[1].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[2].mac)) # # Send a GARP (reply) to swap the host 1's address to that of host 3 # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[1].ip4, psrc=self.pg1.remote_hosts[1].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].ip4, mac=self.pg1.remote_hosts[3].mac)) # # GARPs (request nor replies) for host we don't know yet # don't result in new neighbour entries # p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="who-has", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[2].ip4, psrc=self.pg1.remote_hosts[2].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)) p1 = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg1.remote_hosts[3].mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc=self.pg1.remote_hosts[3].mac, pdst=self.pg1.remote_hosts[2].ip4, psrc=self.pg1.remote_hosts[2].ip4)) self.pg1.add_stream(p1) self.pg_enable_capture(self.pg_interfaces) self.pg_start() self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[2].ip4)) # # IP address in different subnets are not learnt # self.pg2.configure_ipv4_neighbors() for op in ["is-at", "who-has"]: p1 = [(Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_hosts[1].mac) / ARP(op=op, hwdst=self.pg2.local_mac, hwsrc=self.pg2.remote_hosts[1].mac, pdst=self.pg2.remote_hosts[1].ip4, psrc=self.pg2.remote_hosts[1].ip4)), (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg2.remote_hosts[1].mac) / ARP(op=op, hwdst="ff:ff:ff:ff:ff:ff", hwsrc=self.pg2.remote_hosts[1].mac, pdst=self.pg2.remote_hosts[1].ip4, psrc=self.pg2.remote_hosts[1].ip4))] self.send_and_assert_no_replies(self.pg1, p1) self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg2.remote_hosts[1].ip4)) # they are all dropped because the subnet's don't match self.assertEqual(4, self.statistics.get_err_counter( "/err/arp-reply/IP4 destination address not local to subnet")) def test_arp_incomplete2(self): """ Incomplete Entries """ # # ensure that we throttle the ARP and ND requests # self.pg0.generate_remote_hosts(2) # # IPv4/ARP # ip_10_0_0_1 = VppIpRoute(self, "10.0.0.1", 32, [VppRoutePath(self.pg0.remote_hosts[1].ip4, self.pg0.sw_if_index)]) ip_10_0_0_1.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IP(src=self.pg1.remote_ip4, dst="10.0.0.1") / UDP(sport=1234, dport=1234) / Raw()) self.pg1.add_stream(p1 * 257) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0._get_capture(1) # # how many we get is going to be dependent on the time for packet # processing but it should be small # self.assertLess(len(rx), 64) # # IPv6/ND # ip_10_1 = VppIpRoute(self, "10::1", 128, [VppRoutePath(self.pg0.remote_hosts[1].ip6, self.pg0.sw_if_index, proto=DpoProto.DPO_PROTO_IP6)]) ip_10_1.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst="10::1") / UDP(sport=1234, dport=1234) / Raw()) self.pg1.add_stream(p1 * 257) self.pg_enable_capture(self.pg_interfaces) self.pg_start() rx = self.pg0._get_capture(1) # # how many we get is going to be dependent on the time for packet # processing but it should be small # self.assertLess(len(rx), 64) def test_arp_forus(self): """ ARP for for-us """ # # Test that VPP responds with ARP requests to addresses that # are connected and local routes. # Use one of the 'remote' addresses in the subnet as a local address # The intention of this route is that it then acts like a secondary # address added to an interface # self.pg0.generate_remote_hosts(2) forus = VppIpRoute( self, self.pg0.remote_hosts[1].ip4, 32, [VppRoutePath("0.0.0.0", self.pg0.sw_if_index, type=FibPathType.FIB_PATH_TYPE_LOCAL)]) forus.add_vpp_config() p = (Ether(dst="ff:ff:ff:ff:ff:ff", src=self.pg0.remote_mac) / ARP(op="who-has", hwdst=self.pg0.local_mac, hwsrc=self.pg0.remote_mac, pdst=self.pg0.remote_hosts[1].ip4, psrc=self.pg0.remote_ip4)) rx = self.send_and_expect(self.pg0, [p], self.pg0) self.verify_arp_resp(rx[0], self.pg0.local_mac, self.pg0.remote_mac, self.pg0.remote_hosts[1].ip4, self.pg0.remote_ip4) def test_arp_table_swap(self): # # Generate some hosts on the LAN # N_NBRS = 4 self.pg1.generate_remote_hosts(N_NBRS) for n in range(N_NBRS): # a route thru each neighbour VppIpRoute(self, "10.0.0.%d" % n, 32, [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)]).add_vpp_config() # resolve each neighbour p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / ARP(op="is-at", hwdst=self.pg1.local_mac, hwsrc="00:00:5e:00:01:09", pdst=self.pg1.local_ip4, psrc=self.pg1.remote_hosts[n].ip4)) self.send_and_assert_no_replies(self.pg1, p1, "ARP reply") self.logger.info(self.vapi.cli("sh ip neighbors")) # # swap the table pg1 is in # table = VppIpTable(self, 100).add_vpp_config() self.pg1.unconfig_ip4() self.pg1.set_table_ip4(100) self.pg1.config_ip4() # # all neighbours are cleared # for n in range(N_NBRS): self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip4)) # # packets to all neighbours generate ARP requests # for n in range(N_NBRS): # a route thru each neighbour VppIpRoute(self, "10.0.0.%d" % n, 32, [VppRoutePath(self.pg1.remote_hosts[n].ip4, self.pg1.sw_if_index)], table_id=100).add_vpp_config() p = (Ether(src=self.pg1.remote_hosts[n].mac, dst=self.pg1.local_mac) / IP(src=self.pg1.remote_hosts[n].ip4, dst="10.0.0.%d" % n) / Raw(b'0x5' * 100)) rxs = self.send_and_expect(self.pg1, [p], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, self.pg1.local_ip4, self.pg1.remote_hosts[n].ip4) self.pg1.unconfig_ip4() self.pg1.set_table_ip4(0) def test_glean_src_select(self): """ Multi Connecteds """ # # configure multiple connected subnets on an interface # and ensure that ARP requests for hosts on those subnets # pick up the correct source address # conn1 = VppIpInterfaceAddress(self, self.pg1, "10.0.0.1", 24).add_vpp_config() conn2 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.1", 24).add_vpp_config() p1 = (Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac) / IP(src=self.pg1.remote_ip4, dst="10.0.0.128") / Raw(b'0x5' * 100)) rxs = self.send_and_expect(self.pg0, [p1], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.0.1", "10.0.0.128") p2 = (Ether(src=self.pg0.remote_mac, dst=self.pg0.local_mac) / IP(src=self.pg1.remote_ip4, dst="10.0.1.128") / Raw(b'0x5' * 100)) rxs = self.send_and_expect(self.pg0, [p2], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.1", "10.0.1.128") # # add a local address in the same subnet # the source addresses are equivalent. VPP happens to # choose the last one that was added conn3 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.2", 24).add_vpp_config() rxs = self.send_and_expect(self.pg0, [p2], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128") # # remove # conn3.remove_vpp_config() rxs = self.send_and_expect(self.pg0, [p2], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.1", "10.0.1.128") # # add back, this time remove the first one # conn3 = VppIpInterfaceAddress(self, self.pg1, "10.0.1.2", 24).add_vpp_config() rxs = self.send_and_expect(self.pg0, [p2], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128") conn1.remove_vpp_config() rxs = self.send_and_expect(self.pg0, [p2], self.pg1) for rx in rxs: self.verify_arp_req(rx, self.pg1.local_mac, "10.0.1.2", "10.0.1.128") # cleanup conn3.remove_vpp_config() conn2.remove_vpp_config() @tag_fixme_vpp_workers class NeighborStatsTestCase(VppTestCase): """ ARP/ND Counters """ @classmethod def setUpClass(cls): super(NeighborStatsTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborStatsTestCase, cls).tearDownClass() def setUp(self): super(NeighborStatsTestCase, self).setUp() self.create_pg_interfaces(range(2)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborStatsTestCase, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def test_arp_stats(self): """ ARP Counters """ self.vapi.cli("adj counters enable") self.pg1.generate_remote_hosts(2) arp1 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[0].mac, self.pg1.remote_hosts[0].ip4) arp1.add_vpp_config() arp2 = VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[1].mac, self.pg1.remote_hosts[1].ip4) arp2.add_vpp_config() p1 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[0].ip4) / UDP(sport=1234, dport=1234) / Raw()) p2 = (Ether(dst=self.pg0.local_mac, src=self.pg0.remote_mac) / IP(src=self.pg0.remote_ip4, dst=self.pg1.remote_hosts[1].ip4) / UDP(sport=1234, dport=1234) / Raw()) rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1) rx = self.send_and_expect(self.pg0, p2 * NUM_PKTS, self.pg1) self.assertEqual(NUM_PKTS, arp1.get_stats()['packets']) self.assertEqual(NUM_PKTS, arp2.get_stats()['packets']) rx = self.send_and_expect(self.pg0, p1 * NUM_PKTS, self.pg1) self.assertEqual(NUM_PKTS*2, arp1.get_stats()['packets']) def test_nd_stats(self): """ ND Counters """ self.vapi.cli("adj counters enable") self.pg0.generate_remote_hosts(3) nd1 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[1].mac, self.pg0.remote_hosts[1].ip6) nd1.add_vpp_config() nd2 = VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[2].mac, self.pg0.remote_hosts[2].ip6) nd2.add_vpp_config() p1 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[1].ip6) / UDP(sport=1234, dport=1234) / Raw()) p2 = (Ether(dst=self.pg1.local_mac, src=self.pg1.remote_mac) / IPv6(src=self.pg1.remote_ip6, dst=self.pg0.remote_hosts[2].ip6) / UDP(sport=1234, dport=1234) / Raw()) rx = self.send_and_expect(self.pg1, p1 * 16, self.pg0) rx = self.send_and_expect(self.pg1, p2 * 16, self.pg0) self.assertEqual(16, nd1.get_stats()['packets']) self.assertEqual(16, nd2.get_stats()['packets']) rx = self.send_and_expect(self.pg1, p1 * NUM_PKTS, self.pg0) self.assertEqual(NUM_PKTS+16, nd1.get_stats()['packets']) class NeighborAgeTestCase(VppTestCase): """ ARP/ND Aging """ @classmethod def setUpClass(cls): super(NeighborAgeTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborAgeTestCase, cls).tearDownClass() def setUp(self): super(NeighborAgeTestCase, self).setUp() self.create_pg_interfaces(range(1)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborAgeTestCase, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def wait_for_no_nbr(self, intf, address, n_tries=50, s_time=1): while (n_tries): if not find_nbr(self, intf, address): return True n_tries = n_tries - 1 self.sleep(s_time) return False def verify_arp_req(self, rx, smac, sip, dip): ether = rx[Ether] self.assertEqual(ether.dst, "ff:ff:ff:ff:ff:ff") self.assertEqual(ether.src, smac) arp = rx[ARP] self.assertEqual(arp.hwtype, 1) self.assertEqual(arp.ptype, 0x800) self.assertEqual(arp.hwlen, 6) self.assertEqual(arp.plen, 4) self.assertEqual(arp.op, arp_opts["who-has"]) self.assertEqual(arp.hwsrc, smac) self.assertEqual(arp.hwdst, "00:00:00:00:00:00") self.assertEqual(arp.psrc, sip) self.assertEqual(arp.pdst, dip) def test_age(self): """ Aging/Recycle """ self.vapi.cli("set logging unthrottle 0") self.vapi.cli("set logging size %d" % 0xffff) self.pg0.generate_remote_hosts(201) vaf = VppEnum.vl_api_address_family_t # # start listening on all interfaces # self.pg_enable_capture(self.pg_interfaces) # # Set the neighbor configuration: # limi = 200 # age = 0 seconds # recycle = false # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False) self.vapi.cli("sh ip neighbor-config") # add the 198 neighbours that should pass (-1 for one created in setup) for ii in range(200): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() # one more neighbor over the limit should fail with self.vapi.assert_negative_api_retval(): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].mac, self.pg0.remote_hosts[200].ip4).add_vpp_config() # # change the config to allow recycling the old neighbors # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=True) # now new additions are allowed VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].mac, self.pg0.remote_hosts[200].ip4).add_vpp_config() # add the first neighbor we configured has been re-used self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)) self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[200].ip4)) # # change the config to age old neighbors # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=2, recycle=True) self.vapi.cli("sh ip4 neighbor-sorted") # # expect probes from all these ARP entries as they age # 3 probes for each neighbor 3*200 = 600 rxs = self.pg0.get_capture(600, timeout=8) for ii in range(3): for jj in range(200): rx = rxs[ii*200 + jj] # rx.show() # # 3 probes sent then 1 more second to see if a reply comes, before # they age out # for jj in range(1, 201): self.wait_for_no_nbr(self.pg0.sw_if_index, self.pg0.remote_hosts[jj].ip4) self.assertFalse(self.vapi.ip_neighbor_dump(sw_if_index=0xffffffff, af=vaf.ADDRESS_IP4)) # # load up some neighbours again with 2s aging enabled # they should be removed after 10s (2s age + 4s for probes + gap) # check for the add and remove events # enum = VppEnum.vl_api_ip_neighbor_event_flags_t self.vapi.want_ip_neighbor_events_v2(enable=1) for ii in range(10): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() e = self.vapi.wait_for_event(1, "ip_neighbor_event_v2") self.assertEqual(e.flags, enum.IP_NEIGHBOR_API_EVENT_FLAG_ADDED) self.assertEqual(str(e.neighbor.ip_address), self.pg0.remote_hosts[ii].ip4) self.assertEqual(e.neighbor.mac_address, self.pg0.remote_hosts[ii].mac) self.sleep(10) self.assertFalse(self.vapi.ip_neighbor_dump(sw_if_index=0xffffffff, af=vaf.ADDRESS_IP4)) evs = [] for ii in range(10): e = self.vapi.wait_for_event(1, "ip_neighbor_event_v2") self.assertEqual(e.flags, enum.IP_NEIGHBOR_API_EVENT_FLAG_REMOVED) evs.append(e) # check we got the correct mac/ip pairs - done separately # because we don't care about the order the remove notifications # arrive for ii in range(10): found = False mac = self.pg0.remote_hosts[ii].mac ip = self.pg0.remote_hosts[ii].ip4 for e in evs: if (e.neighbor.mac_address == mac and str(e.neighbor.ip_address) == ip): found = True break self.assertTrue(found) # # check if we can set age and recycle with empty neighbor list # self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=1000, recycle=True) # # load up some neighbours again, then disable the aging # they should still be there in 10 seconds time # for ii in range(10): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[ii].mac, self.pg0.remote_hosts[ii].ip4).add_vpp_config() self.vapi.ip_neighbor_config(af=vaf.ADDRESS_IP4, max_number=200, max_age=0, recycle=False) self.sleep(10) self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[0].ip4)) class NeighborReplaceTestCase(VppTestCase): """ ARP/ND Replacement """ @classmethod def setUpClass(cls): super(NeighborReplaceTestCase, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborReplaceTestCase, cls).tearDownClass() def setUp(self): super(NeighborReplaceTestCase, self).setUp() self.create_pg_interfaces(range(4)) # pg0 configured with ip4 and 6 addresses used for input # pg1 configured with ip4 and 6 addresses used for output # pg2 is unnumbered to pg0 for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborReplaceTestCase, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def test_replace(self): """ replace """ N_HOSTS = 16 for i in self.pg_interfaces: i.generate_remote_hosts(N_HOSTS) i.configure_ipv4_neighbors() i.configure_ipv6_neighbors() # replace them all self.vapi.ip_neighbor_replace_begin() self.vapi.ip_neighbor_replace_end() for i in self.pg_interfaces: for h in range(N_HOSTS): self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[h].ip4)) self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[h].ip6)) # # and them all back via the API # for i in self.pg_interfaces: for h in range(N_HOSTS): VppNeighbor(self, i.sw_if_index, i.remote_hosts[h].mac, i.remote_hosts[h].ip4).add_vpp_config() VppNeighbor(self, i.sw_if_index, i.remote_hosts[h].mac, i.remote_hosts[h].ip6).add_vpp_config() # # begin the replacement again, this time touch some # the neighbours on pg1 so they are not deleted # self.vapi.ip_neighbor_replace_begin() # update from the API all neighbours on pg1 for h in range(N_HOSTS): VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[h].mac, self.pg1.remote_hosts[h].ip4).add_vpp_config() VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[h].mac, self.pg1.remote_hosts[h].ip6).add_vpp_config() # update from the data-plane all neighbours on pg3 self.pg3.configure_ipv4_neighbors() self.pg3.configure_ipv6_neighbors() # complete the replacement self.logger.info(self.vapi.cli("sh ip neighbors")) self.vapi.ip_neighbor_replace_end() for i in self.pg_interfaces: if i == self.pg1 or i == self.pg3: # neighbours on pg1 and pg3 are still present for h in range(N_HOSTS): self.assertTrue(find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip4)) self.assertTrue(find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip6)) else: # all other neighbours are toast for h in range(N_HOSTS): self.assertFalse(find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip4)) self.assertFalse(find_nbr(self, i.sw_if_index, i.remote_hosts[h].ip6)) class NeighborFlush(VppTestCase): """ Neighbor Flush """ @classmethod def setUpClass(cls): super(NeighborFlush, cls).setUpClass() @classmethod def tearDownClass(cls): super(NeighborFlush, cls).tearDownClass() def setUp(self): super(NeighborFlush, self).setUp() self.create_pg_interfaces(range(2)) for i in self.pg_interfaces: i.admin_up() i.config_ip4() i.config_ip6() i.resolve_arp() i.resolve_ndp() def tearDown(self): super(NeighborFlush, self).tearDown() for i in self.pg_interfaces: i.unconfig_ip4() i.unconfig_ip6() i.admin_down() def test_flush(self): """ Neighbour Flush """ e = VppEnum nf = e.vl_api_ip_neighbor_flags_t af = e.vl_api_address_family_t N_HOSTS = 16 static = [False, True] self.pg0.generate_remote_hosts(N_HOSTS) self.pg1.generate_remote_hosts(N_HOSTS) for s in static: # a few v4 and v6 dynamic neoghbors for n in range(N_HOSTS): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].mac, self.pg0.remote_hosts[n].ip4, is_static=s).add_vpp_config() VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].mac, self.pg1.remote_hosts[n].ip6, is_static=s).add_vpp_config() # flush the interfaces individually self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, self.pg0.sw_if_index) # check we haven't flushed that which we shouldn't for n in range(N_HOSTS): self.assertTrue(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip6, is_static=s)) self.vapi.ip_neighbor_flush(af.ADDRESS_IP6, self.pg1.sw_if_index) for n in range(N_HOSTS): self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].ip4)) self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip6)) # add the nieghbours back for n in range(N_HOSTS): VppNeighbor(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].mac, self.pg0.remote_hosts[n].ip4, is_static=s).add_vpp_config() VppNeighbor(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].mac, self.pg1.remote_hosts[n].ip6, is_static=s).add_vpp_config() self.logger.info(self.vapi.cli("sh ip neighbor")) # flush both interfaces at the same time self.vapi.ip_neighbor_flush(af.ADDRESS_IP6, 0xffffffff) # check we haven't flushed that which we shouldn't for n in range(N_HOSTS): self.assertTrue(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].ip4, is_static=s)) self.vapi.ip_neighbor_flush(af.ADDRESS_IP4, 0xffffffff) for n in range(N_HOSTS): self.assertFalse(find_nbr(self, self.pg0.sw_if_index, self.pg0.remote_hosts[n].ip4)) self.assertFalse(find_nbr(self, self.pg1.sw_if_index, self.pg1.remote_hosts[n].ip6)) if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)