1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
|
/*
*------------------------------------------------------------------
* Copyright (c) 2018 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*------------------------------------------------------------------
*/
#include <vlib/vlib.h>
#include <vlib/unix/unix.h>
#include <vlib/pci/pci.h>
#include <vppinfra/ring.h>
#include <vnet/ethernet/ethernet.h>
#include <vnet/devices/devices.h>
#include <rdma/rdma.h>
#define RDMA_TX_RETRIES 5
#define RDMA_TXQ_DV_DSEG_SZ(txq) (RDMA_MLX5_WQE_DS * RDMA_TXQ_DV_SQ_SZ(txq))
#define RDMA_TXQ_DV_DSEG2WQE(d) (((d) + RDMA_MLX5_WQE_DS - 1) / RDMA_MLX5_WQE_DS)
/*
* MLX5 direct verbs tx/free functions
*/
static_always_inline void
rdma_device_output_free_mlx5 (vlib_main_t * vm,
const vlib_node_runtime_t * node,
rdma_txq_t * txq)
{
u16 idx = txq->dv_cq_idx;
u32 cq_mask = pow2_mask (txq->dv_cq_log2sz);
u32 sq_mask = pow2_mask (txq->dv_sq_log2sz);
u32 mask = pow2_mask (txq->bufs_log2sz);
u32 buf_sz = RDMA_TXQ_BUF_SZ (txq);
u32 log2_cq_sz = txq->dv_cq_log2sz;
struct mlx5_cqe64 *cqes = txq->dv_cq_cqes, *cur = cqes + (idx & cq_mask);
u8 op_own, saved;
const rdma_mlx5_wqe_t *wqe;
for (;;)
{
op_own = *(volatile u8 *) &cur->op_own;
if (((idx >> log2_cq_sz) & MLX5_CQE_OWNER_MASK) !=
(op_own & MLX5_CQE_OWNER_MASK) || (op_own >> 4) == MLX5_CQE_INVALID)
break;
if (PREDICT_FALSE ((op_own >> 4)) != MLX5_CQE_REQ)
vlib_error_count (vm, node->node_index, RDMA_TX_ERROR_COMPLETION, 1);
idx++;
cur = cqes + (idx & cq_mask);
}
if (idx == txq->dv_cq_idx)
return; /* nothing to do */
cur = cqes + ((idx - 1) & cq_mask);
saved = cur->op_own;
(void) saved;
cur->op_own = 0xf0;
txq->dv_cq_idx = idx;
/* retrieve original WQE and get new tail counter */
wqe = txq->dv_sq_wqes + (be16toh (cur->wqe_counter) & sq_mask);
if (PREDICT_FALSE (wqe->ctrl.imm == RDMA_TXQ_DV_INVALID_ID))
return; /* can happen if CQE reports error for an intermediate WQE */
ASSERT (RDMA_TXQ_USED_SZ (txq->head, wqe->ctrl.imm) <= buf_sz &&
RDMA_TXQ_USED_SZ (wqe->ctrl.imm, txq->tail) < buf_sz);
/* free sent buffers and update txq head */
vlib_buffer_free_from_ring (vm, txq->bufs, txq->head & mask, buf_sz,
RDMA_TXQ_USED_SZ (txq->head, wqe->ctrl.imm));
txq->head = wqe->ctrl.imm;
/* ring doorbell */
CLIB_MEMORY_STORE_BARRIER ();
txq->dv_cq_dbrec[0] = htobe32 (idx);
}
static_always_inline void
rdma_device_output_tx_mlx5_doorbell (rdma_txq_t * txq, rdma_mlx5_wqe_t * last,
const u16 tail, u32 sq_mask)
{
last->ctrl.imm = tail; /* register item to free */
last->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE; /* generate a CQE so we can free buffers */
ASSERT (tail != txq->tail &&
RDMA_TXQ_AVAIL_SZ (txq, txq->head, txq->tail) >=
RDMA_TXQ_USED_SZ (txq->tail, tail));
CLIB_MEMORY_STORE_BARRIER ();
txq->dv_sq_dbrec[MLX5_SND_DBR] = htobe32 (tail);
CLIB_COMPILER_BARRIER ();
txq->dv_sq_db[0] = *(u64 *) (txq->dv_sq_wqes + (txq->tail & sq_mask));
}
static_always_inline void
rdma_mlx5_wqe_init (rdma_mlx5_wqe_t * wqe, const void *tmpl,
vlib_buffer_t * b, const u16 tail)
{
u16 sz = b->current_length;
const void *cur = vlib_buffer_get_current (b);
uword addr = pointer_to_uword (cur);
clib_memcpy_fast (wqe, tmpl, RDMA_MLX5_WQE_SZ);
/* speculatively copy at least MLX5_ETH_L2_INLINE_HEADER_SIZE (18-bytes) */
STATIC_ASSERT (STRUCT_SIZE_OF (struct mlx5_wqe_eth_seg, inline_hdr_start) +
STRUCT_SIZE_OF (struct mlx5_wqe_eth_seg,
inline_hdr) >=
MLX5_ETH_L2_INLINE_HEADER_SIZE, "wrong size");
clib_memcpy_fast (wqe->eseg.inline_hdr_start, cur,
MLX5_ETH_L2_INLINE_HEADER_SIZE);
wqe->wqe_index_lo = tail;
wqe->wqe_index_hi = tail >> 8;
if (PREDICT_TRUE (sz >= MLX5_ETH_L2_INLINE_HEADER_SIZE))
{
/* inline_hdr_sz is set to MLX5_ETH_L2_INLINE_HEADER_SIZE
in the template */
wqe->dseg.byte_count = htobe32 (sz - MLX5_ETH_L2_INLINE_HEADER_SIZE);
wqe->dseg.addr = htobe64 (addr + MLX5_ETH_L2_INLINE_HEADER_SIZE);
}
else
{
/* dseg.byte_count and desg.addr are set to 0 in the template */
wqe->eseg.inline_hdr_sz = htobe16 (sz);
}
}
/*
* specific data path for chained buffers, supporting ring wrap-around
* contrary to the normal path - otherwise we may fail to enqueue chained
* buffers because we are close to the end of the ring while we still have
* plenty of descriptors available
*/
static_always_inline u32
rdma_device_output_tx_mlx5_chained (vlib_main_t * vm,
const vlib_node_runtime_t * node,
const rdma_device_t * rd,
rdma_txq_t * txq, u32 n_left_from, u32 n,
u32 * bi, vlib_buffer_t ** b,
rdma_mlx5_wqe_t * wqe, u16 tail)
{
rdma_mlx5_wqe_t *last = wqe;
u32 wqe_n = RDMA_TXQ_AVAIL_SZ (txq, txq->head, tail);
u32 sq_mask = pow2_mask (txq->dv_sq_log2sz);
u32 mask = pow2_mask (txq->bufs_log2sz);
u32 dseg_mask = RDMA_TXQ_DV_DSEG_SZ (txq) - 1;
const u32 lkey = wqe[0].dseg.lkey;
vlib_buffer_copy_indices (txq->bufs + (txq->tail & mask), bi,
n_left_from - n);
while (n >= 1 && wqe_n >= 1)
{
u32 *bufs = txq->bufs + (tail & mask);
rdma_mlx5_wqe_t *wqe = txq->dv_sq_wqes + (tail & sq_mask);
/* setup the head WQE */
rdma_mlx5_wqe_init (wqe, txq->dv_wqe_tmpl, b[0], tail);
bufs[0] = bi[0];
if (b[0]->flags & VLIB_BUFFER_NEXT_PRESENT)
{
/*
* max number of available dseg:
* - 4 dseg per WQEBB available
* - max 32 dseg per WQE (5-bits length field in WQE ctrl)
*/
#define RDMA_MLX5_WQE_DS_MAX (1 << 5)
const u32 dseg_max =
clib_min (RDMA_MLX5_WQE_DS * (wqe_n - 1), RDMA_MLX5_WQE_DS_MAX);
vlib_buffer_t *chained_b = b[0];
u32 chained_n = 0;
/* there are exactly 4 dseg per WQEBB and we rely on that */
STATIC_ASSERT (RDMA_MLX5_WQE_DS *
sizeof (struct mlx5_wqe_data_seg) ==
MLX5_SEND_WQE_BB, "wrong size");
/*
* iterate over fragments, supporting ring wrap-around contrary to
* the normal path - otherwise we may fail to enqueue chained
* buffers because we are close to the end of the ring while we
* still have plenty of descriptors available
*/
while (chained_n < dseg_max
&& chained_b->flags & VLIB_BUFFER_NEXT_PRESENT)
{
struct mlx5_wqe_data_seg *dseg = (void *) txq->dv_sq_wqes;
dseg += ((tail + 1) * RDMA_MLX5_WQE_DS + chained_n) & dseg_mask;
if (((clib_address_t) dseg & (MLX5_SEND_WQE_BB - 1)) == 0)
{
/*
* start of new WQEBB
* head/tail are shared between buffers and descriptor
* In order to maintain 1:1 correspondance between
* buffer index and descriptor index, we build
* 4-fragments chains and save the head
*/
chained_b->flags &= ~(VLIB_BUFFER_NEXT_PRESENT |
VLIB_BUFFER_TOTAL_LENGTH_VALID);
u32 idx = tail + 1 + RDMA_TXQ_DV_DSEG2WQE (chained_n);
idx &= mask;
txq->bufs[idx] = chained_b->next_buffer;
}
chained_b = vlib_get_buffer (vm, chained_b->next_buffer);
dseg->byte_count = htobe32 (chained_b->current_length);
dseg->lkey = lkey;
dseg->addr = htobe64 (vlib_buffer_get_current_va (chained_b));
chained_n += 1;
}
if (chained_b->flags & VLIB_BUFFER_NEXT_PRESENT)
{
/*
* no descriptors left: drop the chain including 1st WQE
* skip the problematic packet and continue
*/
vlib_buffer_free_from_ring (vm, txq->bufs, tail & mask,
RDMA_TXQ_BUF_SZ (txq), 1 +
RDMA_TXQ_DV_DSEG2WQE (chained_n));
vlib_error_count (vm, node->node_index,
dseg_max == chained_n ?
RDMA_TX_ERROR_SEGMENT_SIZE_EXCEEDED :
RDMA_TX_ERROR_NO_FREE_SLOTS, 1);
/* fixup tail to overwrite wqe head with next packet */
tail -= 1;
}
else
{
/* update WQE descriptor with new dseg number */
((u8 *) & wqe[0].ctrl.qpn_ds)[3] = RDMA_MLX5_WQE_DS + chained_n;
tail += RDMA_TXQ_DV_DSEG2WQE (chained_n);
wqe_n -= RDMA_TXQ_DV_DSEG2WQE (chained_n);
last = wqe;
}
}
else
{
/* not chained */
last = wqe;
}
tail += 1;
bi += 1;
b += 1;
wqe_n -= 1;
n -= 1;
}
if (n == n_left_from)
return 0; /* we fail to enqueue even a single packet */
rdma_device_output_tx_mlx5_doorbell (txq, last, tail, sq_mask);
return n_left_from - n;
}
static_always_inline u32
rdma_device_output_tx_mlx5 (vlib_main_t * vm,
const vlib_node_runtime_t * node,
const rdma_device_t * rd, rdma_txq_t * txq,
const u32 n_left_from, u32 * bi,
vlib_buffer_t ** b)
{
u32 sq_mask = pow2_mask (txq->dv_sq_log2sz);
u32 mask = pow2_mask (txq->bufs_log2sz);
rdma_mlx5_wqe_t *wqe;
u32 n, n_wrap;
u16 tail = txq->tail;
ASSERT (RDMA_TXQ_BUF_SZ (txq) <= RDMA_TXQ_DV_SQ_SZ (txq));
/* avoid wrap-around logic in core loop */
n = clib_min (n_left_from, RDMA_TXQ_BUF_SZ (txq) - (tail & mask));
n_wrap = n_left_from - n;
wrap_around:
wqe = txq->dv_sq_wqes + (tail & sq_mask);
while (n >= 8)
{
u32 flags = b[0]->flags | b[1]->flags | b[2]->flags | b[3]->flags;
if (PREDICT_FALSE (flags & VLIB_BUFFER_NEXT_PRESENT))
return rdma_device_output_tx_mlx5_chained (vm, node, rd, txq,
n_left_from, n, bi, b, wqe,
tail);
vlib_prefetch_buffer_header (b[4], LOAD);
rdma_mlx5_wqe_init (wqe + 0, txq->dv_wqe_tmpl, b[0], tail + 0);
vlib_prefetch_buffer_header (b[5], LOAD);
rdma_mlx5_wqe_init (wqe + 1, txq->dv_wqe_tmpl, b[1], tail + 1);
vlib_prefetch_buffer_header (b[6], LOAD);
rdma_mlx5_wqe_init (wqe + 2, txq->dv_wqe_tmpl, b[2], tail + 2);
vlib_prefetch_buffer_header (b[7], LOAD);
rdma_mlx5_wqe_init (wqe + 3, txq->dv_wqe_tmpl, b[3], tail + 3);
b += 4;
tail += 4;
wqe += 4;
n -= 4;
}
while (n >= 1)
{
if (PREDICT_FALSE (b[0]->flags & VLIB_BUFFER_NEXT_PRESENT))
return rdma_device_output_tx_mlx5_chained (vm, node, rd, txq,
n_left_from, n, bi, b, wqe,
tail);
rdma_mlx5_wqe_init (wqe, txq->dv_wqe_tmpl, b[0], tail);
b += 1;
tail += 1;
wqe += 1;
n -= 1;
}
if (n_wrap)
{
n = n_wrap;
n_wrap = 0;
goto wrap_around;
}
rdma_device_output_tx_mlx5_doorbell (txq, &wqe[-1], tail, sq_mask);
return n_left_from;
}
/*
* standard ibverb tx/free functions
*/
static_always_inline void
rdma_device_output_free_ibverb (vlib_main_t * vm,
const vlib_node_runtime_t * node,
rdma_txq_t * txq)
{
struct ibv_wc wc[VLIB_FRAME_SIZE];
u32 mask = pow2_mask (txq->bufs_log2sz);
u16 tail;
int n;
n = ibv_poll_cq (txq->ibv_cq, VLIB_FRAME_SIZE, wc);
if (n <= 0)
{
if (PREDICT_FALSE (n < 0))
vlib_error_count (vm, node->node_index, RDMA_TX_ERROR_COMPLETION, 1);
return;
}
while (PREDICT_FALSE (IBV_WC_SUCCESS != wc[n - 1].status))
{
vlib_error_count (vm, node->node_index, RDMA_TX_ERROR_COMPLETION, 1);
n--;
if (0 == n)
return;
}
tail = wc[n - 1].wr_id;
vlib_buffer_free_from_ring (vm, txq->bufs, txq->head & mask,
RDMA_TXQ_BUF_SZ (txq),
RDMA_TXQ_USED_SZ (txq->head, tail));
txq->head = tail;
}
static_always_inline u32
rdma_device_output_tx_ibverb (vlib_main_t * vm,
const vlib_node_runtime_t * node,
const rdma_device_t * rd, rdma_txq_t * txq,
u32 n_left_from, u32 * bi, vlib_buffer_t ** b)
{
struct ibv_send_wr wr[VLIB_FRAME_SIZE], *w = wr;
struct ibv_sge sge[VLIB_FRAME_SIZE], *s = sge;
u32 n = n_left_from;
while (n >= 8)
{
vlib_prefetch_buffer_header (b[4], LOAD);
s[0].addr = vlib_buffer_get_current_va (b[0]);
s[0].length = b[0]->current_length;
s[0].lkey = rd->lkey;
vlib_prefetch_buffer_header (b[5], LOAD);
s[1].addr = vlib_buffer_get_current_va (b[1]);
s[1].length = b[1]->current_length;
s[1].lkey = rd->lkey;
vlib_prefetch_buffer_header (b[6], LOAD);
s[2].addr = vlib_buffer_get_current_va (b[2]);
s[2].length = b[2]->current_length;
s[2].lkey = rd->lkey;
vlib_prefetch_buffer_header (b[7], LOAD);
s[3].addr = vlib_buffer_get_current_va (b[3]);
s[3].length = b[3]->current_length;
s[3].lkey = rd->lkey;
clib_memset_u8 (&w[0], 0, sizeof (w[0]));
w[0].next = &w[0] + 1;
w[0].sg_list = &s[0];
w[0].num_sge = 1;
w[0].opcode = IBV_WR_SEND;
clib_memset_u8 (&w[1], 0, sizeof (w[1]));
w[1].next = &w[1] + 1;
w[1].sg_list = &s[1];
w[1].num_sge = 1;
w[1].opcode = IBV_WR_SEND;
clib_memset_u8 (&w[2], 0, sizeof (w[2]));
w[2].next = &w[2] + 1;
w[2].sg_list = &s[2];
w[2].num_sge = 1;
w[2].opcode = IBV_WR_SEND;
clib_memset_u8 (&w[3], 0, sizeof (w[3]));
w[3].next = &w[3] + 1;
w[3].sg_list = &s[3];
w[3].num_sge = 1;
w[3].opcode = IBV_WR_SEND;
s += 4;
w += 4;
b += 4;
n -= 4;
}
while (n >= 1)
{
s[0].addr = vlib_buffer_get_current_va (b[0]);
s[0].length = b[0]->current_length;
s[0].lkey = rd->lkey;
clib_memset_u8 (&w[0], 0, sizeof (w[0]));
w[0].next = &w[0] + 1;
w[0].sg_list = &s[0];
w[0].num_sge = 1;
w[0].opcode = IBV_WR_SEND;
s += 1;
w += 1;
b += 1;
n -= 1;
}
w[-1].wr_id = txq->tail; /* register item to free */
w[-1].next = 0; /* fix next pointer in WR linked-list */
w[-1].send_flags = IBV_SEND_SIGNALED; /* generate a CQE so we can free buffers */
w = wr;
if (PREDICT_FALSE (0 != ibv_post_send (txq->ibv_qp, w, &w)))
{
vlib_error_count (vm, node->node_index, RDMA_TX_ERROR_SUBMISSION,
n_left_from - (w - wr));
n_left_from = w - wr;
}
return n_left_from;
}
/*
* common tx/free functions
*/
static_always_inline void
rdma_device_output_free (vlib_main_t * vm, const vlib_node_runtime_t * node,
rdma_txq_t * txq, int is_mlx5dv)
{
if (is_mlx5dv)
rdma_device_output_free_mlx5 (vm, node, txq);
else
rdma_device_output_free_ibverb (vm, node, txq);
}
static_always_inline u32
rdma_device_output_tx_try (vlib_main_t * vm, const vlib_node_runtime_t * node,
const rdma_device_t * rd, rdma_txq_t * txq,
u32 n_left_from, u32 * bi, int is_mlx5dv)
{
vlib_buffer_t *b[VLIB_FRAME_SIZE];
const u32 mask = pow2_mask (txq->bufs_log2sz);
/* do not enqueue more packet than ring space */
n_left_from = clib_min (n_left_from, RDMA_TXQ_AVAIL_SZ (txq, txq->head,
txq->tail));
/* if ring is full, do nothing */
if (PREDICT_FALSE (n_left_from == 0))
return 0;
vlib_get_buffers (vm, bi, b, n_left_from);
n_left_from = is_mlx5dv ?
rdma_device_output_tx_mlx5 (vm, node, rd, txq, n_left_from, bi, b) :
rdma_device_output_tx_ibverb (vm, node, rd, txq, n_left_from, bi, b);
vlib_buffer_copy_indices_to_ring (txq->bufs, bi, txq->tail & mask,
RDMA_TXQ_BUF_SZ (txq), n_left_from);
txq->tail += n_left_from;
return n_left_from;
}
static_always_inline uword
rdma_device_output_tx (vlib_main_t * vm, vlib_node_runtime_t * node,
vlib_frame_t * frame, rdma_device_t * rd,
int is_mlx5dv)
{
u32 thread_index = vm->thread_index;
rdma_txq_t *txq =
vec_elt_at_index (rd->txqs, thread_index % vec_len (rd->txqs));
u32 *from;
u32 n_left_from;
int i;
ASSERT (RDMA_TXQ_BUF_SZ (txq) >= VLIB_FRAME_SIZE);
from = vlib_frame_vector_args (frame);
n_left_from = frame->n_vectors;
clib_spinlock_lock_if_init (&txq->lock);
for (i = 0; i < RDMA_TX_RETRIES && n_left_from > 0; i++)
{
u32 n_enq;
rdma_device_output_free (vm, node, txq, is_mlx5dv);
n_enq = rdma_device_output_tx_try (vm, node, rd, txq, n_left_from, from,
is_mlx5dv);
n_left_from -= n_enq;
from += n_enq;
}
clib_spinlock_unlock_if_init (&txq->lock);
if (PREDICT_FALSE (n_left_from))
{
vlib_buffer_free (vm, from, n_left_from);
vlib_error_count (vm, node->node_index,
RDMA_TX_ERROR_NO_FREE_SLOTS, n_left_from);
}
return frame->n_vectors - n_left_from;
}
VNET_DEVICE_CLASS_TX_FN (rdma_device_class) (vlib_main_t * vm,
vlib_node_runtime_t * node,
vlib_frame_t * frame)
{
rdma_main_t *rm = &rdma_main;
vnet_interface_output_runtime_t *ord = (void *) node->runtime_data;
rdma_device_t *rd = pool_elt_at_index (rm->devices, ord->dev_instance);
if (PREDICT_TRUE (rd->flags & RDMA_DEVICE_F_MLX5DV))
return rdma_device_output_tx (vm, node, frame, rd, 1 /* is_mlx5dv */ );
return rdma_device_output_tx (vm, node, frame, rd, 0 /* is_mlx5dv */ );
}
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/
|